ON CLASSES OF OPERATORS GENERALIZING CLASS A AND PARANORMALITY

MASATOSHI ITO

Received July 1, 2002
Dedicated to Professor Hisaharu Umegaki on his 77th birthday.

Abstract

Recently, we introduced class A defined by an operator inequality, and also the definition of class A is similar to that of paranormality defined by a norm inequality. As generalizations of class A and paranormality, Fujii-Nakamoto introduced class $\mathrm{F}(p, r, q)$ and (p, r, q)-paranormality respectively. These classes are related to p hyponormality and \log-hyponormality. The author showed more precise inclusion relations among the families of class $\mathrm{F}(p, r, q)$ and (p, r, q)-paranormality than the results by Fujii-Nakamoto, and he also showed the results on powers of class $\mathrm{F}(p, r, q)$ operators. But some of the results on class $\mathrm{F}(p, r, q)$ require the assumption of invertibility.

In this paper, we shall remove the assumption of invertibility from the results on invertible class $\mathrm{F}(p, r, q)$ operators. Moreover we shall show that the families of class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ and $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormality are proper on p.

1. Introduction

In this paper, a capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \geq 0$) if ($T x, x) \geq 0$ for all $x \in H$, and also an operator T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible.

As extensions of hyponormal operators, i.e., $T^{*} T \geq T T^{*}$, it is well known that p hyponormal operators for $p>0$ are defined by $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ and invertible loghyponormal operators are defined by $\log T^{*} T \geq \log T T^{*}$ for an invertible operator T, and also an operator T is said to be p-quasihyponormal for $p>0$ if $T^{*}\left\{\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right\} T \geq 0$. We remark that we treat only invertible log-hyponormal operators in this paper (see also [19]). It is easily obtained that every p-hyponormal operator is q-hyponormal for $p>q>0$ by Löwner-Heinz theorem " $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$," and every invertible p-hyponormal operator for $p>0$ is \log-hyponormal since $\log t$ is an operator monotone function. We remark that log-hyponormality is sometimes regarded as 0 -hyponormality since $\frac{X^{p}-I}{p} \rightarrow \log X$ as $p \rightarrow+0$ for $X>0$. An operator T is paranormal if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$ for every unit vector $x \in H$. Ando [2] showed that every p-hyponormal operator for $p>0$ and (invertible) log-hyponormal operator is paranormal.

Recently, in [10], we introduced class A defined by $\left|T^{2}\right| \geq|T|^{2}$ where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$, and we showed that every invertible log-hyponormal operator belongs to class A and every class A operator is paranormal. We remark that class A is defined by an operator inequality and paranormality is defined by a norm inequality, and their definitions appear to be similar forms. And also Fujii-Jung-S.H.Lee-M.Y.Lee-Nakamoto [6] introduced class A (p, r)

[^0]and Yamazaki-Yanagida [21] introduced absolute- (p, r)-paranormality as follows: An operator T belongs to class $\mathrm{A}(p, r)$ for $p>0$ and $r>0$ if $\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left|T^{*}\right|^{2 r}$, and also an operator T is absolute- (p, r)-paranormal if $\left\||T|^{p}\left|T^{*}\right|^{r} x\right\|^{r} \geq\left\|\left|T^{*}\right|^{r} x\right\|^{p+r}$ for every unit vector $x \in H$. We remark that class $A(1,1)$ equals class A and also absolute-(1, 1)paranormality equals paranormality. These classes are generalizations of class $\mathrm{A}(k)$ and absolute- k-paranormality introduced as two families of classes based on class A and paranormality in [10], and also absolute- (p, r)-paranormality is a generalization of p-paranormality in [5]. We should remark that the families of class $\mathrm{A}(p, r)$ determined by operator inequalities and absolute- (p, r)-paranormality determined by norm inequalities constitute two increasing lines on $p>0$ and $r>0$ whose origin is (invertible) log-hyponormality.

Moreover, as a continuation of the discussion in [6], Fujii-Nakamoto [7] introduced the following classes of operators.

Definition ([7]). For each $p>0, r \geq 0$ and $q>0$,
(i) An operator T belongs to class $F(p, r, q)$ if

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}} \tag{1.1}
\end{equation*}
$$

(ii) An operator T is (p, r, q)-paranormal if

$$
\begin{equation*}
\left\||T|^{p} U|T|^{r} x\right\|^{\frac{1}{q}} \geq\left\||T|^{\frac{p+r}{q}} x\right\| \tag{1.2}
\end{equation*}
$$

for every unit vector $x \in H$, where $T=U|T|$ is the polar decomposition of T. In particular, if $r>0$ and $q \geq 1$, then (1.2) is equivalent to

$$
\begin{equation*}
\left\|\left.|T|^{p}\left|T^{*}\right|^{r} x\right|^{\frac{1}{q}} \geq\right\|\left|T^{*}\right|^{\frac{p+r}{q}} x \| \tag{1.3}
\end{equation*}
$$

for every unit vector $x \in H$ ([13]).

We remark that class $\mathrm{F}\left(p, r, \frac{p+r}{r}\right)$ equals class $\mathrm{A}(p, r)$ and also ($p, r, \frac{p+r}{r}$)-paranormality equals absolute- (p, r)-paranormality. In [13], we obtained the parallel result to that of class $\mathrm{A}(p, r)$ and absolute- (p, r)-paranormality that invertible class $\mathrm{F}(p, r, q)$ and (p, r, q) paranormality constitute two increasing lines on $p \geq \delta>0$ and $r \geq r_{0}>0$ whose origin is δ-quasihyponormality. And also we showed the result on powers of invertible class $\mathrm{F}(p, r, q)$ operators. Thus many reseachers have been discussed parallel families of classes of operators which are generalizations of class A and paranormality.

In this paper, we shall remove the assumption of invertibility from the results on invertible class $\mathrm{F}(p, r, q)$ operators in [13]. Moreover we shall show that the families of class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ and $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormality are proper on p.

2. Preliminaries

Fujii-Nakamoto [7] observed that class $\mathrm{F}(p, r, q)$ derives from the following Theorem 2.A shown in [8] and (p, r, q)-paranormality corresponds to class $\mathrm{F}(p, r, q)$.

We remark that alternative proofs of Theorem 2.A were given in [4] and [16] and also an elementary one page proof in [9]. Tanahashi [17] showed that the domain drawn for p, q and r in the Figure 1 is the best possible one for Theorem 2.A.

Theorem 2.A (Furuta inequality [8]).
If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\quad\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
and
(ii) $\quad\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$
hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.

Fujii-Nakamoto [7] and the author [13] obtained the results on inclusion relations among the families of class $\mathrm{F}(p, r, q)$ and (p, r, q)-paranormality.

Theorem 2.B ([7]).
(i) For a fixed $k>0, T$ is k-hyponormal if and only if T belongs to class $F(2 k p, 2 k r, q)$ for all $p>0, r \geq 0$ and $q \geq 1$ with $(1+2 r) q \geq 2(p+r)$, i.e., T belongs to class $F(p, r, q)$ for all $p>0, r \geq 0$ and $q \geq 1$ with $(k+r) q \geq p+r$.
(ii) If T belongs to class $F\left(p_{0}, r_{0}, q_{0}\right)$ for $p_{0}>0, r_{0} \geq 0$ and $q_{0} \geq 1$, then T belongs to class $F\left(p_{0}, r_{0}, q\right)$ for any $q \geq q_{0}$.
(iii) If T is $\left(p_{0}, r_{0}, q_{0}\right)$-paranormal for $p_{0}>0, r_{0} \geq 0$ and $q_{0}>0$, then T is $\left(p_{0}, r_{0}, q\right)$ paranormal for any $q \geq q_{0}$.
(iv) If T belongs to class $F(p, r, q)$ for $p>0, r \geq 0$ and $q \geq 1$, then T is (p, r, q)-paranormal.

Theorem 2.C ([13]).
(i) For each $p>0$ and $r>0$,
(i-1) T is p-quasihyponormal if and only if T belongs to class $F(p, r, 1)$ if and only if T is ($p, r, 1$)-paranormal.
(i-2) T is p-quasihyponormal if and only if T is $(p, 0,1)$-paranormal.
(ii) Let T be a class $F\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$ operator for $p_{0}>0, r_{0} \geq 0$ and $\delta>-r_{0}$.
(ii-1) If T is invertible and $0 \leq \delta \leq p_{0}$, then T belongs to class $F\left(p, r, \frac{p+r}{\delta+r}\right)$ for any $p \geq p_{0}$ and $r \geq r_{0}$.
(ii-2) If $-r_{0}<\delta \leq \bar{p}_{0}$, then T belongs to class $F\left(p_{0}, r, \frac{p_{0}+r}{\delta+r}\right)$ for any $r \geq r_{0}$.
(iii) Let T be a ($\left.p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$-paranormal operator for $p_{0}>0, r_{0} \geq 0$ and $\delta>-r_{0}$.
(iii-1) If $0 \leq \delta \leq p_{0}$, then T is $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for any $p \geq p_{0}$ and $r \geq r_{0}$.
(iii-2) If $-r_{0}<\delta \leq p_{0}$, then T is ($p_{0}, r, \frac{p_{0}+r}{\delta+r}$)-paranormal for any $r \geq r_{0}$.
(iii-3) If $0 \leq \delta$, then T is $\left(p, r_{0}, \frac{p+r_{0}}{\delta+r_{0}}\right)$-paranormal for any $p \geq p_{0}$.

We remark that only (ii-1) of Theorem 2.C requres invertibility of T, and also we obtained in [14] that every class $\mathrm{A}\left(p_{0}, r_{0}\right)$ operator for $p_{0}>0$ and $r_{0}>0$ belongs to class $\mathrm{A}(p, r)$ for any $p \geq p_{0}$ and $r \geq r_{0}$ (without assumption of invertibility).

The following Figure 2 represents the inclusion relations among the families of class $\mathrm{F}(p, r, q)$ and (p, r, q)-paranormality.

On the other hand, we obtained the results on powers of p-hyponormal, class $\mathrm{A}(p, r)$ and invertible class $\mathrm{F}(p, r, q)$ operators.

Theorem 2.D.

(i) Let T be a p-hyponormal operator for $0<p \leq 1$. Then T^{n} is $\frac{p}{n}$-hyponormal for all positive integer n ([1]).
(ii) Let T be a class $A(p, r)$ operator for $0<p \leq 1$ and $0<r \leq 1$. Then T^{n} belongs to class $A\left(\frac{p}{n}, \frac{r}{n}\right)$ for all positive integer $n([14])$.
(iii) Let T be an invertible class $F(p, r, q)$ operator for $0<p \leq 1,0 \leq r \leq 1$ and $q \geq 1$ with $r q \leq p+r$. Then T^{n} belongs to class $F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ for all positive integer n ([13]).

We remark that (iii) interpolates (i) and (ii) if T is invertible in Theorem 2.D. In fact, (iii) yields (i) by putting $q=1$ and $r=0$, and also (iii) yields (ii) by putting $q=\frac{p+r}{r}$.

Moreover we have another result on powers of class A operators by combining [22, Theorem 1] and [14, Theorem 3].

Theorem 1. If T is a class A operator, then

$$
|T|^{2} \leq\left|T^{2}\right| \leq \cdots \leq\left|T^{n}\right|^{\frac{2}{n}} \quad \text { and } \quad\left|T^{*}\right|^{2} \geq\left|T^{2^{*}}\right| \geq \cdots \geq\left|T^{n^{*}}\right|^{\frac{2}{n}}
$$

hold for all positive integer n.

We remark that (ii) of Theorem 2.D and Theorem 1 in case of invertible operators were shown in [20] and [12], respectively.

3. Main Results

In this section, we shall show the results which remove the assumption of invertibility from (ii-1) of Theorem 2.C and (iii) of Theorem 2.D.

Theorem 2. Let T be a class $F\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$ operator for $p_{0}>0, r_{0} \geq 0$ and $0 \leq \delta \leq p_{0}$. Then T belongs to class $F\left(p, r, \frac{p+r}{\delta+r}\right)$ for any $p \geq p_{0}$ and $r \geq r_{0}$.

Theorem 3. Let T be a class $F(p, r, q)$ operator for $0<p \leq 1,0 \leq r \leq 1$ and $q \geq 1$ with $r q \leq p+r$. Then T^{n} belongs to class $F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ for all positive integer n.

We need the following two results in order to prove Theorem 2.

Theorem 3.A ([14]). Let A and B be positive operators. Then for each $p \geq 0$ and $r \geq 0$,
(i) If $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$, then $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$.
(ii) If $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ and $N(A) \subset N(B)$, then $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$.

Theorem 3.B ([22]). If $A^{\alpha_{0}} \geq\left(A^{\frac{\alpha_{0}}{2}} B^{\beta_{0}} A^{\frac{\alpha_{0}}{2}}\right)^{\frac{\alpha_{0}}{\alpha_{0}+\beta_{0}}}$ holds for positive operators A and B and fixed $\alpha_{0}>0$ and $\beta_{0}>0$, then

$$
A^{\alpha} \geq\left(A^{\frac{\alpha}{2}} B^{\beta_{0}} A^{\frac{\alpha}{2}}\right)^{\frac{\alpha}{\alpha+\beta_{0}}}
$$

holds for any $\alpha \geq \alpha_{0}$. Moreover, for each fixed $\gamma \geq-\beta_{0}$,

$$
g_{\beta_{0}, \delta}(\alpha)=\left(B^{\frac{\beta_{0}}{2}} A^{\alpha} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\delta+\beta_{0}}{\alpha+\beta_{0}}}
$$

is an increasing function for $\alpha \geq \max \left\{\alpha_{0}, \delta\right\}$. Hence $\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{2}} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\alpha_{1}+\beta_{0}}{\alpha_{2}+\beta_{0}}} \geq B^{\frac{\beta_{0}}{2}} A^{\alpha_{1}} B^{\frac{\beta_{0}}{2}}$ holds for any α_{1} and α_{2} such that $\alpha_{2} \geq \alpha_{1} \geq \alpha_{0}$.

Proof of Theorem 2. In case $r_{0}=0$, it is already shown in (i) of Theorem 2.B since class $\mathrm{F}\left(p_{0}, 0, \frac{p_{0}}{\delta}\right)$ for $0<\delta \leq p_{0}$ equals δ-hyponormality. So we may assume $r_{0}>0$. Suppose that T belongs to class $\mathrm{F}\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$ for $p_{0}>0, r_{0}>0$ and $0 \leq \delta \leq p_{0}$, i.e.,

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r_{0}}|T|^{2 p_{0}}\left|T^{*}\right|^{r_{0}}\right)^{\frac{\delta+r_{0}}{p_{0}+r_{0}}} \geq\left|T^{*}\right|^{2\left(\delta+r_{0}\right)} \tag{3.1}
\end{equation*}
$$

Applying Löwner-Heinz theorem to (3.1), we have

$$
\left(\left|T^{*}\right|^{r_{0}}|T|^{2 p_{0}}\left|T^{*}\right|^{r_{0}}\right)^{\frac{r_{0}}{p_{0}+r_{0}}} \geq\left|T^{*}\right|^{2 r_{0}}
$$

and also we have

$$
\begin{equation*}
|T|^{2 p_{0}} \geq\left(|T|^{p_{0}}\left|T^{*}\right|^{2 r_{0}}|T|^{p_{0}}\right)^{\frac{p_{0}}{p_{0}+r_{0}}} \tag{3.2}
\end{equation*}
$$

by (i) of Theorem 3.A. By applying Theorem 3.B to (3.2), we obtain that

$$
\begin{equation*}
g_{r_{0}, \delta}(p)=\left(\left|T^{*}\right|^{r_{0}}|T|^{2 p}\left|T^{*}\right|^{r_{0}}\right)^{\frac{\delta+r_{0}}{p+r_{0}}} \tag{3.3}
\end{equation*}
$$

$$
\text { is an increasing function for } p \geq \max \left\{p_{0}, \delta\right\}=p_{0}
$$

Therefore we have

$$
\begin{array}{rlrl}
\left(\left|T^{*}\right|^{r_{0}}|T|^{2 p}\left|T^{*}\right|^{r_{0}}\right)^{\frac{\delta+r_{0}}{p+r_{0}}} & =g_{r_{0}, \delta}(p) & & \text { by }(3.3) \\
& \geq g_{r_{0}, \delta}\left(p_{0}\right) & \\
& =\left(\left|T^{*}\right|^{r_{0}}|T|^{2 p_{0}}\left|T^{*}\right|^{r_{0}}\right)^{\frac{\delta+r_{0}}{p_{0}+r_{0}}} & \\
& \geq\left|T^{*}\right|^{2\left(\delta+r_{0}\right)} & \text { by }(3.1)
\end{array}
$$

for any $p \geq p_{0}$, i.e., T belongs to class $\mathrm{F}\left(p, r_{0}, \frac{p+r_{0}}{\delta+r_{0}}\right)$ for any $p \geq p_{0}$. Hence T belongs to class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ for any $p \geq p_{0}$ and $r \geq r_{0}$ by (ii-2) of Theorem 2.C.

To prove Theorem 3, we prepare the following result which is a slight modification of [22, Lemma 5].

Lemma 4. Let A, B and C be positive operators, $p>0,0<r \leq 1$ and $q \geq 1$ with $r q \leq p+r \leq(1+r) q$. If $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}}$ and $B \geq C$, then $\left(C^{\frac{r}{2}} A^{p} C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq C^{\frac{p+r}{q}}$.

Proof. The hypothesis $B \geq C$ ensures $B^{r} \geq C^{r}$ for $r \in(0,1]$ by Löwner-Heinz theorem. By Douglas' theorem [3], there exists an operator X such that

$$
\begin{equation*}
B^{\frac{r}{2}} X=X^{*} B^{\frac{r}{2}}=C^{\frac{r}{2}} \tag{3.4}
\end{equation*}
$$

and $\|X\| \leq 1$. Then we have

$$
\begin{aligned}
\left(C^{\frac{r}{2}} A^{p} C^{\frac{r}{2}}\right)^{\frac{1}{q}} & =\left(X^{*} B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}} X\right)^{\frac{1}{q}} & & \\
& \geq X^{*}\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} X & & \text { by Hansen's inequality [11] } \\
& \geq X^{*} B^{\frac{p+r}{q}} X & & \text { by the hypothesis } \\
& =C^{\frac{r}{2}} B^{\frac{p+r}{q}-r} C^{\frac{r}{2}} & & \text { by }(3.4) \text { since } \frac{p+r}{q}-r \in[0,1] \\
& \geq C^{\frac{p+r}{q}} & & \text { by Löwner-Heinz theorem. }
\end{aligned}
$$

Hence the proof is complete.
Proof of Theorem 3. Let T be a class $\mathrm{F}(p, r, q)$ operator for $0<p \leq 1,0 \leq r \leq 1$ and $q \geq 1$ with $r q \leq p+r$, i.e.,

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}} \tag{1.1}
\end{equation*}
$$

Class $\mathrm{F}(p, r, q)$ operator T for $0<p \leq 1,0 \leq r \leq 1$ and $q \geq 1$ with $r q \leq p+r$ belongs to class $\mathrm{F}(1,1,2)$, i.e., class A by (ii) of Theorem 2.B and Theorem 2, and also

$$
\begin{equation*}
\left|T^{n}\right|^{\frac{2}{n}} \geq|T|^{2} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|T^{*}\right|^{2} \geq\left|T^{n^{*}}\right|^{\frac{2}{n}} \tag{3.6}
\end{equation*}
$$

hold for all positive integer n by Theorem 1. By applying Lemma 4 to (1.1) and (3.6), we have

$$
\begin{equation*}
\left(\left|T^{n^{*}}\right|^{\frac{r}{n}}|T|^{2 p}\left|T^{n^{*}}\right|^{\frac{r}{n}}\right)^{\frac{1}{q}} \geq\left|T^{n^{*}}\right|^{\frac{2}{n} \frac{p+r}{q}} \tag{3.7}
\end{equation*}
$$

for $0<p \leq 1,0 \leq r \leq 1$ and $q \geq 1$ with $r q \leq p+r$ since $p+r \leq(1+r) q$ always holds. Hence we obtain

$$
\begin{aligned}
\left(\left|T^{n^{*}}\right|^{\frac{r}{n}}\left|T^{n}\right|^{\frac{2 p}{n}}\left|T^{n^{*}}\right|^{\frac{r}{n}}\right)^{\frac{1}{q}} & \geq\left(\left|T^{n^{*}}\right|^{\frac{r}{n}}|T|^{2 p}\left|T^{n^{*}}\right|^{\frac{r}{n}}\right)^{\frac{1}{q}} & & \text { by }(3.5) \text { and Löwner-Heinz theorem } \\
& \geq\left|T^{n^{*}}\right|^{\frac{2}{q}\left(\frac{p}{n}+\frac{r}{n}\right)} & & \text { by }(3.7)
\end{aligned}
$$

for all positive integer n, that is, T^{n} belongs to class $\mathrm{F}\left(\frac{p}{n}, \frac{r}{n}, q\right)$ for all positive integer n.

4. Properness of class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ and $\left(p, r, \frac{p+r}{\delta+r}\right)$-Paranormality

In this section, we shall show the results on inclusion relation among the families of p-quasihyponormality, class $\mathrm{F}(p, r, q)$ and (p, r, q)-paranormality.

Theorem 5. For each $p_{0}>0$, there exists a p_{0}-quasihyponormal operator T such that T is not $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for any $p>0, r>0$ and $\delta>-r$ such that $\delta \leq p<p_{0}$.

Theorem 6. For each $p_{0}>0, r_{0}>0$ and $-r_{0}<\delta \leq p_{0}$,
(i) There exists a p_{0}-quasihyponormal operator T such that T is not p-quasihyponormal for any $p>0$ such that $0<p<p_{0}$.
(ii) There exists a class $F\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$ operator T such that T does not belong to class $F\left(p, r, \frac{p+r}{\delta+r}\right)$ for any $p>0$ and $r>0$ such that $-r<\delta \leq p<p_{0}$.
(iii) There exists a $\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$-paranormal operator T such that T is not $\left(p, r, \frac{p+r}{\delta+r}\right)$ paranormal for any $p>0$ and $r>0$ such that $-r<\delta \leq p<p_{0}$.

In Theorem 6, (i) has been obtained in [18], and also (ii) and (iii) asserts that the families of class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ and $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormality are proper on p. Moreover we remark that these properness on p has no connection with r, and also we have the following corollary by putting $r=r_{0}$ in Theorem 6 .

Corollary 7. For each $p_{0}>0, r_{0}>0$ and $-r_{0}<\delta \leq p_{0}$,
(i) There exists a class $F\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$ operator T such that T does not belong to class $F\left(p, r_{0}, \frac{p+r_{0}}{\delta+r_{0}}\right)$ for any $p>0$ such that $\delta \leq p<p_{0}$.
(ii) There exists a $\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$-paranormal operator T such that T is not $\left(p, r_{0}, \frac{p+r_{0}}{\delta+r_{0}}\right)$ paranormal for any $p>0$ such that $\delta \leq p<p_{0}$.

Here we shall show two propositions as a preparation of the proof of Theorem 5. We remark that these propositions are similar arguments to [2], [10], [15] and so on.

Firstly we shall give a characterization of (p, r, q)-paranormal operators.

Proposition 8. For each $p>0, r>0$ and $-r<\delta \leq p$, an operator T is $\left(p, r, \frac{p+r}{\delta+r}\right)$ paranormal if and only if

$$
(\delta+r)\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}-(p+r) \lambda^{p-\delta}\left|T^{*}\right|^{2(\delta+r)}+(p-\delta) \lambda^{p+r} \geq 0 \quad \text { for all } \lambda>0
$$

Proof. Suppose that T is $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for $p>0, r>0$ and $-r<\delta \leq p$, i.e.,

$$
\begin{equation*}
\left\|\left.|T|^{p}\left|T^{*}\right|^{r} x\right|^{\frac{\delta+r}{p+r}} \geq\right\|\left|T^{*}\right|^{\delta+r} x \| \quad \text { for every unit vector } x \in H \tag{1.3}
\end{equation*}
$$

(1.3) holds iff

$$
\left\|\left.|T|^{p}\left|T^{*}\right|^{r} x\right|^{\frac{\delta+r}{p+r}}\right\| x\left\|^{\frac{p-\delta}{p+r}} \geq\right\|\left|T^{*}\right|^{\delta+r} x \| \quad \text { for all } x \in H
$$

iff

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)^{\frac{\delta+r}{p+r}}(x, x)^{\frac{p-\delta}{p+r}} \geq\left(\left|T^{*}\right|^{2(\delta+r)} x, x\right) \quad \text { for all } x \in H \tag{4.1}
\end{equation*}
$$

By arithmetic-geometric mean inequality,

$$
\begin{align*}
& \left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)^{\frac{\delta+r}{p+r}}(x, x)^{\frac{p-\delta}{p+r}} \\
= & \left\{\left(\frac{1}{\lambda}\right)^{p-\delta}\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)\right\}^{\frac{\delta+r}{p+r}} \cdot\left\{\lambda^{\delta+r}(x, x)\right\}^{\frac{p-\delta}{p+r}} \tag{4.2}\\
\leq & \frac{\delta+r}{p+r} \frac{1}{\lambda^{p-\delta}}\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)+\frac{p-\delta}{p+r} \lambda^{\delta+r}(x, x)
\end{align*}
$$

for all $x \in H$ and all $\lambda>0$, so (4.1) ensures the following (4.3) by (4.2).

$$
\begin{array}{r}
\frac{\delta+r}{p+r} \frac{1}{\lambda^{p-\delta}}\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)+\frac{p-\delta}{p+r} \lambda^{\delta+r}(x, x) \geq\left(\left|T^{*}\right|^{2(\delta+r)} x, x\right) \tag{4.3}\\
\text { for all } x \in H \text { and all } \lambda>0
\end{array}
$$

Conversely, (4.1) follows from (4.3) by putting $\lambda=\left\{\frac{\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)}{(x, x)}\right\}^{\frac{1}{p+r}} \cdot$ (In case $\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r} x, x\right)=0$, let $\lambda \rightarrow+0$.) Hence (4.3) holds if and only if

$$
(\delta+r)\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}-(p+r) \lambda^{p-\delta}\left|T^{*}\right|^{2(\delta+r)}+(p-\delta) \lambda^{p+r} \geq 0 \quad \text { for all } \lambda>0,
$$

so that the proof is complete.
Secondly we shall give the following Proposition 9. But we omit to describe these calculation because it is obtained by easy calculation.

Proposition 9. Let $K=\bigoplus_{n=-\infty}^{\infty} H_{n}$ where $H_{n} \cong H$. For given positive operators A, B on H, define the operator $T_{A, B}$ on K as follows:

$$
T_{A, B}=\left(\begin{array}{ccccccc}
\ddots & & & & & & \tag{4.4}\\
\ddots & 0 & & & & & \\
& B^{\frac{1}{2}} & 0 & & & & \\
& & B^{\frac{1}{2}} & \boxed{0} & & & \\
& & & A^{\frac{1}{2}} & 0 & & \\
& & & & A^{\frac{1}{2}} & 0 & \\
& & & & & \ddots & \ddots
\end{array}\right),
$$

where \square shows the place of the $(0,0)$ matrix element.
(i) For each $p>0, T_{A, B}$ is p-quasihyponormal if and only if

$$
B^{\frac{1}{2}} A^{p} B^{\frac{1}{2}} \geq B^{p+1}
$$

(ii) For each $p>0, r>0$ and $-r<\delta \leq p, T_{A, B}$ is $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal if and only if

$$
(\delta+r) B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}-(p+r) \lambda^{p-\delta} B^{\delta+r}+(p-\delta) \lambda^{p+r} I \geq 0 \quad \text { for all } \lambda>0
$$

Proof of Theorem 5. Let

$$
\begin{align*}
& A=U \Lambda U^{*} \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \quad \text { where } U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \text { and } \Lambda=\left(\begin{array}{cc}
\left(2-e^{-p_{0}}\right)^{\frac{1}{p_{0}}} & 0 \\
0 & e^{-2}
\end{array}\right) \tag{4.5}
\end{align*}
$$

and also let $K=\bigoplus_{n=-\infty}^{\infty} H_{n}$ where $H_{n} \cong \mathbb{R}^{2}$. For positive matrices A, B on \mathbb{R}^{2} given in (4.5), define the operator $T_{A, B}$ on K as (4.4) in Proposition 9. By (i) of Proposition 9, $T_{A, B}$ is p-quasihyponormal for $p>0$ if and only if

$$
B^{\frac{1}{2}} A^{p} B^{\frac{1}{2}}-B^{p+1}=\left(\begin{array}{cc}
\frac{1}{2}\left\{\left(2-e^{-p_{0}}\right)^{\frac{p}{p_{0}}}+e^{-2 p}\right\}-1 & 0 \\
0 & 0
\end{array}\right) \geq 0
$$

if and only if

$$
f(p) \equiv \frac{1}{2}\left\{\left(2-e^{-p_{0}}\right)^{\frac{p}{p_{0}}}+e^{-2 p}\right\}-1 \geq 0
$$

On the other hand, let $X_{p}(\lambda)$ as

$$
\begin{aligned}
X_{p}(\lambda) & \equiv(\delta+r) B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}-(p+r) \lambda^{p-\delta} B^{\delta+r}+(p-\delta) \lambda^{p+r} I \\
& =\left(\begin{array}{cc}
\frac{1}{2}(\delta+r)\left\{\left(2-e^{-p_{0}}\right)^{\frac{p}{p_{0}}}+e^{-2 p}\right\}-(p+r) \lambda^{p-\delta}+(p-\delta) \lambda^{p+r} & 0 \\
0 & (p-\delta) \lambda^{p+r}
\end{array}\right) .
\end{aligned}
$$

By (ii) of Proposition 9, $T_{A, B}$ is $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for $p>0, r>0$ and $-r<\delta \leq p$ if and only if $X_{p}(\lambda) \geq 0$ for all $\lambda>0$ if and only if

$$
\begin{equation*}
g_{p}(\lambda) \equiv \frac{1}{2}(\delta+r)\left\{\left(2-e^{-p_{0}}\right)^{\frac{p}{p_{0}}}+e^{-2 p}\right\}-(p+r) \lambda^{p-\delta}+(p-\delta) \lambda^{p+r} \geq 0 \quad \text { for all } \lambda>0 \tag{4.6}
\end{equation*}
$$

since $(p-\delta) \lambda^{p+r} \geq 0$ for all $\lambda>0$. Since $g_{p}^{\prime}(\lambda)=(p+r)(p-\delta) \lambda^{p-\delta-1}\left(-1+\lambda^{\delta+r}\right)$, we get that

$$
\min _{\lambda>0} g_{p}(\lambda)=g_{p}(1)=\frac{1}{2}(\delta+r)\left\{\left(2-e^{-p_{0}}\right)^{\frac{p}{p_{0}}}+e^{-2 p}\right\}-(\delta+r)=(\delta+r) f(p)
$$

so that (4.6) holds if and only if $f(p) \geq 0$.
$f(p)$ is a convex function for $p>0$ since

$$
f^{\prime \prime}(p)=\frac{1}{2}\left[\left(2-e^{-p_{0}}\right)^{\frac{p}{p_{0}}}\left\{\log \left(2-e^{-p_{0}}\right)^{\frac{1}{p_{0}}}\right\}^{2}+4 e^{-2 p}\right]>0 \quad \text { for all } p>0
$$

and also $f(p)=0$ if $p=0, p_{0}$. So we have $f\left(p_{0}\right)=0$ but $f(p)<0$ for $0<p<p_{0}$. Therefore $g_{p}(1)<0$, that is $X_{p}(1) \nsupseteq 0$ for any $p>0, r>0$ and $\delta>-r$ such that $\delta \leq p<p_{0}$.

Hence $T_{A, B}$ is p_{0}-quasihyponormal but non- $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for any $p>0, r>0$ and $\delta>-r$ such that $\delta \leq p<p_{0}$, so the proof is complete.

Proof of Theorem 6. Let $p_{0}>0, r_{0}>0$ and $-r_{0}<\delta \leq p_{0}$.
Proof of (i). By (i-1) of Theorem 2.C, T is p-quasihyponormal if and only if T is $(p, r, 1)$ paranormal for some $p>0$ and $r>0$. Therefore there exists a p_{0}-quasihyponormal operator T such that T is not p-quasihyponormal for any $0<p<p_{0}$ by putting $\delta=p$ in Theorem 5 .

Proof of (ii). By (i-1) of Theorem 2.C and (ii) of Theorem 2.B, every p_{0}-quasihyponormal operator belongs to class $\mathrm{F}\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$. And also, by (iv) of Theorem 2.B, T does not belong to class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ if T is not $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for each $p>0, r>0$ and $-r<\delta \leq p$. Therefore there exists a class $\mathrm{F}\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$ operator T such that T does not belong to class $\mathrm{F}\left(p, r, \frac{p+r}{\delta+r}\right)$ for any $p>0$ and $r>0$ such that $-r<\delta \leq p<p_{0}$ by Theorem 5.

Proof of (iii). By (i-1) of Theorem 2.C and (iii) of Theorem 2.B, every p_{0}-quasihyponormal operator is ($\left.p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$-paranormal. Therefore there exists a $\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta+r_{0}}\right)$-paranormal operator T such that T is not $\left(p, r, \frac{p+r}{\delta+r}\right)$-paranormal for any $p>0$ and $r>0$ such that $-r<\delta \leq p<p_{0}$ by Theorem 5.

Remark. In [10], we introduced two families of classes of operators based on class A and paranormality as follows: An operator T belongs to class $\mathrm{A}(k)$ for $k>0$ if $\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \geq$ $|T|^{2}$, and also an operator T is absolute- k-paranormal for $k>0$ if $\left\||T|^{k} T x\right\| \geq\|T x\|^{k+1}$ for every unit vector $x \in H$. In [5], Fujii-Izumino-Nakamoto introduced p-paranormality for $p>0$ defined by $\left\||T|^{p} U|T|^{p} x\right\| \geq\left\||T|^{p} x\right\|^{2}$ for every unit vector $x \in H$, where $T=U|T|$ is the polar decomposition of T. It was pointed out in [20] that class $\mathrm{A}(k)$ equals class $\mathrm{A}(k, 1)$, and also it was shown in [21] that absolute- k-paranormality equals absolute- $(k, 1)$ paranormality and p-paranormality equals absolute- (p, p)-paranormality. We shall also get the results on inclusion relation among the families of these classes.

Corollary 10.

(i) For each $k_{0}>0$, there exists a class $A\left(k_{0}\right)$ operator T such that T does not belong to class $A(k)$ for any $0<k<k_{0}$.
(ii) For each $k_{0}>0$, there exists an absolute- k_{0}-paranormal operator T such that T is not absolute- k-paranormal for any $0<k<k_{0}$.
(iii) For each $p_{0}>0$, there exists a p_{0}-paranormal operator T such that T is not p paranormal for any $0<p<p_{0}$.

Proof of Corollary 10.
Proofs of (i) and (ii). By putting $p_{0}=k_{0}, r=1, \delta=0$ and $p=k$ in Corollary 7, we have (i) and (ii) since class $\mathrm{A}(k)$ equals class $\mathrm{F}(k, 1, k+1)$ and absolute- k-paranormality equals ($k, 1, k+1$)-paranormality.
Proof of (iii). By putting $p_{0}=r_{0}, \delta=0$ and $p=r$ in (iii) of Theorem 6, we have (iii) since p-paranormality equals ($p, p, 2$)-paranormality.

References

[1] A.Aluthge and D.Wang, Powers of p-hyponormal operators, J. Inequal. Appl., 3 (1999), 279-284.
[2] T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33 (1972), 169-178.
[3] R.G.Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[4] M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
[5] M.Fujii, S.Izumino and R.Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-Mc Carthy inequality, Nihonkai Math. J., 5 (1994), 61-67.
[6] M.Fujii, D.Jung, S.H.Lee, M.Y.Lee and R.Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon., 51 (2000), 395-402.
[7] M.Fujii and R.Nakamoto, Some classes of operators derived from Furuta inequality, Sci. Math., 3 (2000), 87-94.
[8] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[9] T.Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 126.
[10] T.Furuta, M.Ito and T.Yamazaki, A subclass of paranormal operators including class oflog-hyponormal and several related classes, Sci. Math., 1 (1998), 389-403.
[11] F.Hansen, An operator inequality, Math. Ann. 246 (1979/80), 249-250.
[12] M.Ito, Several properties on class A including p-hyponormal and log-hyponormal operators, Math. Inequal. Appl., 2 (1999), 569-578.
[13] M.Ito, On some classes of operators by Fujii and Nakamoto related to p-hyponormal and paranormal operators, Sci. Math., 3 (2000), 319-334.
[14] M.Ito and T.Yamazaki, Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $A^{p} \geq$ $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ and their applications, to appear in Integral Equations Operator Theory.
[15] D.Jung, M.Y.Lee and S.H.Lee, On classes of operators related to paranormal operators, Sci. Math. Jpn., 53 (2001), 33-43.
[16] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33 (1988), 883-886.
[17] K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141-146.
[18] A.Uchiyama, An example of a p-quasihyponormal operator, Yokohama Math. J., 46 (1999), 179-180.
[19] M.Uchiyama, Inequalities for semi bounded operators and their applications to log-hyponormal operators, preprint.
[20] T.Yamazaki, On powers of class $A(k)$ operators including p-hyponormal and log-hyponormal operators, Math. Inequal. Appl., 3 (2000), 97-104.
[21] T.Yamazaki and M.Yanagida, A further generalization of paranormal operators, Sci. Math., 3 (2000), 23-32.
[22] M.Yanagida, Powers of class $w A(s, t)$ operators associated with generalized Aluthge transformation, J . Inequal. Appl., 7 (2002), 143-168.

Department of Mathematical Information Science, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

E-mail address: m-ito@boat.zero.ad.jp

[^0]: 2000 Mathematics Subject Classification. Primary 47B20, 47 A 63.
 Key words and phrases. Class A operators, paranormal operators, class $\mathrm{F}(p, r, q)$ operators, (p, r, q) paranormal operators and p-quasihyponormal operators.

