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Abstract. � is called a Rudin's (orthogonal) function if � is a function in H1 and

the di�erent nonnegative powers of � are orthogonal in H2. When � is a multiple of

an inner function and �(0) = 0; � is a Rudin's function. Sundberg and Bishop showed

that a Rudin's function is not necessarily a multiple of an inner function. We study a

Rudin's function which is a linear combination of two inner functions or a polynomial

of an inner function.

x1. Introduction.

For 1 � p � 1; H
p denotes the usual Hardy space on the unit circle T and � is a

normalized Lebesgue measure on T: � is called a Rudin's (orthogonal) function if � is a

function in H
1 and the di�erent nonnegative powers of � are orthogonal in H

2. Two inner

functions f and g are called (statistically) independent ifZ
T

f
`�gsd� = 0

for all nonnegative integers `; s; j`j+ jsj > 0. W. Rudin posed two problems (see [3]) : R1.

Is a Rudin's (orthogonal) function necessarily a multiple of an inner function? R2. Do

there exist two (statistically) independent inner functions? R1 has been negatively solved

by C. Sundberg [6] and C. Bishop [1]. It is shown in [3] that if R1 is valid, then so is R2.

We don't know whether the converse is true or not. Under some conditions, R1 has been

positively solved. That is, when � is a univalent function [2] and � is in the disc algebra

with boundary function in Lip � for some � > 1=2 [3].

In x2, we give a few properties two (statistically) independent inner functions must

satisfy. In x3, we study a Rudin's (independent) function which is a linear combination of

two inner functions. In x4, we show that a Rudin's (orthogonal) function is a multiple of

an inner function when it is a polynomial of an inner function.

x2. Statistically independent inner functions

In this section, we give a few properties two (statistically) independent inner functions

must satisfy.
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Proposition 1. If f and g are independent inner functions, then neither f nor g is a �nite

Blashke product.

Proof. Let H2[g] be the closure of the set of all polynomials of g in H
2, then f

j
H

2[g] is

orthogonal to f`H2[g] if j 6= ` because f and g are independent inner functions. Set

M =

1X
j=0

�f jH2[g];

then M is a closed invariant subspace of H2 under the multiplication by f . It is known (cf.

[5, p11]) that the dimension of M 	 fM is less than or equal to that of H2 	 fH
2. This

implies that f can not be a �nite Blaschke product.

Proposition 2. If f and g are independent inner functions, then the set of all polynomials

of f and g is not dense in H
2.

Proof. Suppose the set of all polynomials of f and g is dense in H
2. Then

H
2 =

1X
j=0

�f jH2[g] = H
2[g]� fH

2

because f and g are independent. Hence for any n � 1; g
n is orthogonal to fH

2 and so

f�gn 2 H
2
0 = L

2 	 �H2. Therefore f = 0 because f 2

1\
n=0

g
n
H

2 = f0g. This contradiction

shows the proposition.

Proposition 3. If f and g are independent inner functions, then there exists a positive

integer n such that znf and z
n
g are not independent.

Proof. Suppose znf and z
n
g are independent for any positive integer n. For any integer

` � 1; f` is orthognal to z
n
g
`+1 for all n � 0. Put � = �fg, then �

`
g belongs to H

2 for all

integer ` � 0. By [3, p177], � belongs to H2. Similarly we can show that �� belongs to H
2.

Therefore � is constant and so g = �f for some constant � with absolute value 1. This

contradicts that f and g are independent.

x3. A linear combination of two inner functions

Let f and g be inner functions with f(0) = g(0) = 0 and let a and b complex numbers.

Put

�(a; b) = af + bg:

If f and g are independent, then for an arbitrary pair (a; b); �(a; b) is a Rudin's function.

Theorem 4 shows that the converse is not true formally.

Lemma 1. For some pair (a; b), if �(a; b) is a Rudin's function, then for any positive

integer ` � 2

b
`�a

Z
T

�fg`d� + a
`�b

Z
T

f
`�gd� = 0:
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Proof. Since (�`; �) = 0 for ` � 2;

`X
j=0

�
`

j

�
a
`�j�abj

Z
T

f
`�j�1

g
j
d� +

`X
j=0

�
`

j

�
a
`�j

b
j�b

Z
T

f
`�j

g
j�1

d� = 0

because �` =

`X
j=0

�
`

j

�
a
`�j

b
j
f
`�j

g
j . If 1 � j � `� 1, then f

`�j�1
g
j 2 H

1 and f
`�j

g
j�1 2

H
1. This implies that

Z
T

f
`�j�1

g
j
d� =

Z
T

f
`�j

g
j�1

d� = 0 because f(0) = g(0) = 0.

Therefore

�ab`
Z
T

�fg`d� + a
`�b

Z
T

f
`�gd� = 0:

Corollary 1. For some pair (a; b), if �(a; b) = az + bg is a Rudin's function where g is an

inner function with g(0) = 0, then a = 0; b = 0 or g = cz for some complex number c.

Proof. By Lemma 1,

a
`�b

Z
T

z
`�gd� = 0 (` � 2)

and so if a`�b 6= 0, then g = cz for some complex number c.

Theorem 4. For arbitrary pair (a; b); �(a; b) is a Rudin's function if and only ifZ
T

�fsgtd� =

Z
T

f
t�gsd� = 0

for all non-negative integers t; s; t � s+ 1.

Proof. When ` > k,

(�`; �k) =

0
@ `X

j=0

�
`

j

�
a
`�j

b
j
f
`�j

g
j
;

kX
i=0

�
k

i

�
a
k�i

b
i
f
k�i

g
i

1
A

=

tX
j=0

kX
i=0

�
`

j

��
k

i

�
a
`�j�ak�ibj�bi

Z
T

f
`�k+i�j

g
j�i

d�

=
X

�k�j�i<0

X
F (`; k; i; j) +

X
`�k<j�i�`

X
F (`; k; i; j)

where F (`; k; i; j) =

�
`

j

��
k

i

�
a
`�j�ak�ibj�bi

Z
T

f
`�k+i�j

g
j�i

d�. Because if j � i = 0 or 0 �

j � i � ` � k, then f
`�k+i�j

g
j�i 2 H

1 and so F (`; k; i; j) = 0. In the last line, note

the following. When �k � j � i < 0; t = ` � k + i � j>
6�

s if s = �(j � i). When

`� k<
6�

j � i � `; t = j � i>
6�

s if s = �(`� k + i� j). Hence

Z
T

f
`�k+i�j

g
j�i

d� =

Z
T

f
t�gsd� or

Z
T

�fsgtd�

where t � s+ 1.
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The `if' part of the theorem is clear by the fact noted above. We will prove the `only

if' part by induction about s. If s = 1, by Lemma 1 it holds because (a; b) is arbitrary.

Suppose it holds for 2 � s � n� 1, that is, for t � s+ 1Z
T

�fsgtd� =

Z
T

f
t�gsd� = 0:

Since � is a Rudin's function, (�`; �n) = 0 if ` > n. By the fact noted above,

(�`; �n) =
X

�n�j�i<0

X
F (`; n; i; j) +

X
`�n<j�i�`

X
F (`; n; i; j):

By the induction hypothesis,

(�`; �n) =
X

j�i=�n

X
F (`; n; i; j) +

X
j�i=`

X
F (`; n; i; j)

= F (`; n; n; 0) + F (`; n; 0; `):

In fact, when �(n� 1) � j � i < 0; t = `� n+ i� j>
6�

s = �(j � i) and so F (`; n; i; j) = 0.

When ` � n<
6�

j � i � �1; t = j � i>
6�

s = �(` � n + i � j) � n � 1 and so F (`; n; i; j) = 0.

Thus �
`

0

��
n

n

�
a
`�a0b0�bn

Z
T

f
`�gnd� +

�
`

`

��
n

0

�
a
0�anb`�b0

Z
T

�fng`d� = 0:

Since (a; b) is arbitrary, Z
T

f
`�gnd� =

Z
T

�fng`d� = 0:

Question. If �(a; b) = af + bg is a Rudin's function, then are f and g necessarily indepen-

dent inner functions?

Theorem 5. Let q and Q be inner functions with q(0) = 0 and Q(0) 6= 0. If f = q
s and

g = q
m
Q where m � s + 1; s � 1 and �(a; b) = af + bg is a Rudin's function, then a = 0

or b = 0.

Proof. We will prove the following claim :

a
`�b`�k

Z
T

f
`�g`�kd� = 0 (` � k):

Put k = m� s and ` =m, thenZ
T

f
`�g`�kd� =

Z
T

q
s`�m(`�k) �Q`�k

d� =

Z
T

�Qs
d� 6= 0

because s`�m(`� k) = 0. This implies a`�b`�k = 0.

We will show the claim by induction about `. When ` = k, it is clear because f(0) = 0.

Suppose it holds for k � ` � n� 1. Since � is a Rudin's function,

(�n; �n�k) =

nX
j=0

n�kX
i=0

�
n

j

��
n� k

i

�
a
n�j�an�k�ibj�bi

Z
T

f
n�(n�k)+i�j�gi�jd� = 0:
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When i� j � 0, Z
T

f
n�(n�k)+i�j�gi�jd� = 0

because

f
n�(n�k)+i�j

g
j�i = q

sfn�(n�k)+i�jg�qm(i�j)
Q
j�i = q

sk+(m�s)(j�i)
Q
j�i

:

When 0 � i� j � (n� 1)� k, by the induction hypothesis,Z
T

f
n�(n�k)+i�j�gi�jd� = 0:

If we put i� j = s� k and k � s � n� 1, then n� (n� k) + i� j = s. Thus

0 = (�n; �n�k)

=

nX
j=0

n�kX
i=0

�
n

j

��
n� k

i

�
a
n�j�an�k�ibj�bi

Z
T

f
n�(n�k)+i�j�gi�jd�

=

�
n

0

��
n� k

n� k

�
a
n�a0b0�bn�k

Z
T

f
n�gn�kd�:

x4. Rudin's orthogonal function.

In this section, we study a Rudin's function � which is a polynomial of an inner function.

Theorem 5 determines a Rudin's function when � = aq
s+ bq

m
; m � s+1 and q is an inner

function with q(0) = 0. On the other hand, Theorem 6 solves aÆrmatively R1 when � is

a polynomial of an inner function. Proposition 7 gives another proof of Corollary 3 in [2]

and another one of Proposition 3 in x2.

Theorem 6. Let �0 be a Rudin's function and � =

nX
j=1

aj�
j

0 with an 6= 0. If � is a Rudin's

function, then � = an�
n

0 .

Proof. We may assume that � =

nX
j=1

aj�
j

0; an = 1 and n > 1. By induction, we will show

that a` = 0 for 1 � ` � n� 1. Suppose ` = 1. Since

�
n =

nX
i=0

�
n

i

�
(a1�0)

n�i

 
nX

k=2

ak�
k

0

!i

;

the smallest degree of �n is n because the smallest one of

�
n

i

�
(a1�0)

n�i

 
nX

k=2

ak�
k

0

!i

is

n+ i. On the other hand, the degree of � is n. Hence if � is a Rudin's function,

(�n; �) = a
n

1 = 0
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because �0 is a Rudin's function.

Suppose a1 = a2 = � � � = a` = 0 for ` < n� 1. Then since

�
n =

nX
i=0

�
n

i

�
(a`+1�

`+1
0 )(n�i)

 
nX

k=`+2

ak�
k

0

!
i

;

the smallest degree of �n is n(`+1) because the smallest one of

�
n

i

�
(a`+1�

`+1
0 )(n�i)

 
nX

k=`+2

ak�
k

0

!i

is (` + 1)(n � i) + (`+ 2)i = i+ n(`+ 1). On the other hand, since

�
`+1 =

`+1X
j=0

�
`+ 1

j

�
�
n(`+1�j)

0

 
n�1X

k=`+1

ak�
k

0

!j

;

the largest degree of �`+1 is n(`+1) because the largest one of

�
`+ 1

j

�
�
n(`+1�j)

0

 
n�1X

k=`+1

ak�
k

0

!j

is (n � 1)j + n(`+ 1� j) = n(`+ 1)� j. Hence if � is a Rudin's function,

(�n; �`+1) = (a`+1)
n(`+1) = 0

because �0 is a Rudin's function.

Proposition 7. If zn� is a Rudin's function for all n � 0, then � is a multiple of an inner

function.

Proof. Fix a positive integer k. For all n � 0; znk�k is orthogonal to z
n(k+1)

�
k+1 because

z
n
� is a Rudin's function. Thus �k is orthogonal to fzn�k+1g1

n=0. Put � = qh where q is

inner and h is outer. Then by the Beurling's theorem [5, p11], �k is orthogonal to q
k+1

H
2

and so �hk+1q 2 H
2 for all k � 0. By [4, p177], h is constant and so � is inner.
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