PROPERTIES OF A RUDIN'S ORTHOGONAL FUNCTION WHICH IS A LINEAR COMBINATION OF TWO INNER FUNCTIONS

Takahiko Nakazi *and Tord Watanabe

Received September 3, 2001; revised May 28, 2002

Abstract

Rudin's (orthogonal) function if ϕ is a function in H^{∞} and the different nonnegative powers of ϕ are orthogonal in H^{2}. When ϕ is a multiple of an inner function and $\phi(0)=0, \phi$ is a Rudin's function. Sundberg and Bishop showed that a Rudin's function is not necessarily a multiple of an inner function. We study a Rudin's function which is a linear combination of two inner functions or a polynomial of an inner function.

§1. Introduction.

For $1 \leq p \leq \infty, H^{p}$ denotes the usual Hardy space on the unit circle T and σ is a normalized Lebesgue measure on T. ϕ is called a Rudin's (orthogonal) function if ϕ is a function in H^{∞} and the different nonnegative powers of ϕ are orthogonal in H^{2}. Two inner functions f and g are called (statistically) independent if

$$
\int_{T} f^{\ell} \bar{g}^{s} d \sigma=0
$$

for all nonnegative integers $\ell, s,|\ell|+|s|>0$. W. Rudin posed two problems (see [3]) : R1. Is a Rudin's (orthogonal) function necessarily a multiple of an inner function? R2. Do there exist two (statistically) independent inner functions? R1 has been negatively solved by C. Sundberg [6] and C. Bishop [1]. It is shown in [3] that if R1 is valid, then so is R2. We don't know whether the converse is true or not. Under some conditions, R1 has been positively solved. That is, when ϕ is a univalent function [2] and ϕ is in the disc algebra with boundary function in $\operatorname{Lip} \alpha$ for some $\alpha>1 / 2$ [3].

In $\S 2$, we give a few properties two (statistically) independent inner functions must satisfy. In $\S 3$, we study a Rudin's (independent) function which is a linear combination of two inner functions. In $\S 4$, we show that a Rudin's (orthogonal) function is a multiple of an inner function when it is a polynomial of an inner function.

§2. Statistically independent inner functions

In this section, we give a few properties two (statistically) independent inner functions must satisfy.

[^0]Proposition 1. If f and g are independent inner functions, then neither f nor g is a finite Blashke product.
Proof. Let $H^{2}[g]$ be the closure of the set of all polynomials of g in H^{2}, then $f^{j} H^{2}[g]$ is orthogonal to $f^{\ell} H^{2}[g]$ if $j \neq \ell$ because f and g are independent inner functions. Set

$$
M=\sum_{j=0}^{\infty} \oplus f^{j} H^{2}[g]
$$

then M is a closed invariant subspace of H^{2} under the multiplication by f. It is known (cf. [5, p11]) that the dimension of $M \ominus f M$ is less than or equal to that of $H^{2} \ominus f H^{2}$. This implies that f can not be a finite Blaschke product.

Proposition 2. If f and g are independent inner functions, then the set of all polynomials of f and g is not dense in H^{2}.
Proof. Suppose the set of all polynomials of f and g is dense in H^{2}. Then

$$
H^{2}=\sum_{j=0}^{\infty} \oplus f^{j} H^{2}[g]=H^{2}[g] \oplus f H^{2}
$$

because f and g are independent. Hence for any $n \geq 1, g^{n}$ is orthogonal to $f H^{2}$ and so $f \bar{g}^{n} \in H_{0}^{2}=L^{2} \ominus \bar{H}^{2}$. Therefore $f=0$ because $f \in \bigcap_{n=0}^{\infty} g^{n} H^{2}=\{0\}$. This contradiction shows the proposition.

Proposition 3. If f and g are independent inner functions, then there exists a positive integer n such that $z^{n} f$ and $z^{n} g$ are not independent.
Proof. Suppose $z^{n} f$ and $z^{n} g$ are independent for any positive integer n. For any integer $\ell \geq 1, f^{\ell}$ is orthognal to $z^{n} g^{\ell+1}$ for all $n \geq 0$. Put $\phi=\bar{f} g$, then $\phi^{\ell} g$ belongs to H^{2} for all integer $\ell \geq 0$. By [3, p177], ϕ belongs to H^{2}. Similarly we can show that $\bar{\phi}$ belongs to H^{2}. Therefore ϕ is constant and so $g=\alpha f$ for some constant α with absolute value 1 . This contradicts that f and g are independent.

§3. A linear combination of two inner functions

Let f and g be inner functions with $f(0)=g(0)=0$ and let a and b complex numbers. Put

$$
\phi(a, b)=a f+b g
$$

If f and g are independent, then for an arbitrary pair $(a, b), \phi(a, b)$ is a Rudin's function. Theorem 4 shows that the converse is not true formally.

Lemma 1. For some pair (a, b), if $\phi(a, b)$ is a Rudin's function, then for any positive integer $\ell \geq 2$

$$
b^{\ell} \bar{a} \int_{T} \bar{f} g^{\ell} d \sigma+a^{\ell} \bar{b} \int_{T} f^{\ell} \bar{g} d \sigma=0
$$

Proof. Since $\left(\phi^{\ell}, \phi\right)=0$ for $\ell \geq 2$,

$$
\sum_{j=0}^{\ell}\binom{\ell}{j} a^{\ell-j} \bar{a} b^{j} \int_{T} f^{\ell-j-1} g^{j} d \sigma+\sum_{j=0}^{\ell}\binom{\ell}{j} a^{\ell-j} b^{i} \bar{b} \int_{T} f^{\ell-j} g^{j-1} d \sigma=0
$$

because $\phi^{\ell}=\sum_{j=0}^{\ell}\binom{\ell}{j} a^{\ell-j} b^{j} f^{\ell-j} g^{j}$. If $1 \leq j \leq \ell-1$, then $f^{\ell-j-1} g^{j} \in H^{\infty}$ and $f^{\ell-j} g^{j-1} \in$ H^{∞}. This implies that $\int_{T} f^{\ell-j-1} g^{j} d \sigma=\int_{T} f^{\ell-j} g^{j-1} d \sigma=0$ because $f(0)=g(0)=0$. Therefore

$$
\bar{a} b^{\ell} \int_{T} \bar{f} g^{\ell} d \sigma+a^{\ell} \bar{b} \int_{T} f^{\ell} \bar{g} d \sigma=0
$$

Corollary 1. For some pair (a, b), if $\phi(a, b)=a z+b g$ is a Rudin's function where g is an inner function with $g(0)=0$, then $a=0, b=0$ or $g=c z$ for some complex number c.
Proof. By Lemma 1,

$$
a^{\ell} \bar{b} \int_{T} z^{\ell} \bar{g} d \sigma=0 \quad(\ell \geq 2)
$$

and so if $a^{\ell} \bar{b} \neq 0$, then $g=c z$ for some complex number c.
Theorem 4. For arbitrary pair $(a, b), \phi(a, b)$ is a Rudin's function if and only if

$$
\int_{T} \bar{f}^{s} g^{t} d \sigma=\int_{T} f^{t} \bar{g}^{s} d \sigma=0
$$

for all non-negative integers $t, s, t \geq s+1$.
Proof. When $\ell>k$,

$$
\begin{aligned}
\left(\phi^{\ell}, \phi^{k}\right) & \left.=\left(\begin{array}{c}
\ell \\
j=0 \\
\ell \\
j
\end{array}\right) a^{\ell-j} b^{j} f^{\ell-j} g^{j}, \sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i} f^{k-i} g^{i}\right) \\
& =\sum_{j=0}^{t} \sum_{i=0}^{k}\binom{\ell}{j}\binom{k}{i} a^{\ell-j} \bar{a}^{k-i} b^{j} \bar{b}^{i} \int_{T} f^{\ell-k+i-j} g^{j-i} d \sigma \\
& =\sum_{-k \leq j-i<0} \sum F(\ell, k, i, j)+\sum_{\ell-k<j-i \leq \ell} \sum F(\ell, k, i, j)
\end{aligned}
$$

where $F(\ell, k, i, j)=\binom{\ell}{j}\binom{k}{i} a^{\ell-j} \bar{a}^{k-i} b^{i} \bar{b}^{i} \int_{T} f^{\ell-k+i-j} g^{j-i} d \sigma$. Because if $j-i=0$ or $0 \leq$ $j-i \leq \ell-k$, then $f^{\ell-k+i-j} g^{j-i} \in H^{\infty}$ and so $F(\ell, k, i, j)=0$. In the last line, note the following. When $-k \leq j-i<0, t=\ell-k+i-j>s$ if $s=-(j-i)$. When $\ell-k<j-i \leq \ell, t=j-i>s$ if $s=-(\ell-k+i-j)$. Hence

$$
\int_{T} f^{\ell-k+i-j} g^{j-i} d \sigma=\int_{T} f^{t} \bar{g}^{s} d \sigma \quad \text { or } \quad \int_{T} \bar{f}^{s} g^{t} d \sigma
$$

where $t \geq s+1$.

The 'if' part of the theorem is clear by the fact noted above. We will prove the 'only if' part by induction about s. If $s=1$, by Lemma 1 it holds because (a, b) is arbitrary. Suppose it holds for $2 \leq s \leq n-1$, that is, for $t \geq s+1$

$$
\int_{T} \bar{f}^{s} g^{t} d \sigma=\int_{T} f^{t} \bar{g}^{s} d \sigma=0
$$

Since ϕ is a Rudin's function, $\left(\phi^{\ell}, \phi^{n}\right)=0$ if $\ell>n$. By the fact noted above,

$$
\left(\phi^{\ell}, \phi^{n}\right)=\sum_{-n \leq j-i<0} \sum F(\ell, n, i, j)+\sum_{\ell-n<j-i \leq \ell} \sum F(\ell, n, i, j)
$$

By the induction hypothesis,

$$
\begin{aligned}
\left(\phi^{\ell}, \phi^{n}\right) & =\sum_{j-i=-n} \sum F(\ell, n, i, j)+\sum_{j-i=\ell} \sum F(\ell, n, i, j) \\
& =F(\ell, n, n, 0)+F(\ell, n, 0, \ell) .
\end{aligned}
$$

In fact, when $-(n-1) \leq j-i<0, t=\ell-n+i-j>s=-(j-i)$ and so $F(\ell, n, i, j)=0$.

Thus

$$
\binom{\ell}{0}\binom{n}{n} a^{\ell} \bar{a}^{0} b^{0} \bar{b}^{n} \int_{T} f^{\ell} \bar{g}^{n} d \sigma+\binom{\ell}{\ell}\binom{n}{0} a^{0} \bar{a}^{n} b^{\ell} \bar{b}^{0} \int_{T} \bar{f}^{n} g^{\ell} d \sigma=0 .
$$

Since (a, b) is arbitrary,

$$
\int_{T} f^{\ell} \bar{g}^{n} d \sigma=\int_{T} \bar{f}^{n} g^{\ell} d \sigma=0
$$

Question. If $\phi(a, b)=a f+b g$ is a Rudin's function, then are f and g necessarily independent inner functions?

Theorem 5. Let q and Q be inner functions with $q(0)=0$ and $Q(0) \neq 0$. If $f=q^{s}$ and $g=q^{m} Q$ where $m \geq s+1, s \geq 1$ and $\phi(a, b)=a f+b g$ is a Rudin's function, then $a=0$ or $b=0$.
Proof. We will prove the following claim :

$$
a^{\ell} \bar{b}^{\ell-k} \int_{T} f^{\ell} \bar{g}^{\ell-k} d \sigma=0 \quad(\ell \geq k)
$$

Put $k=m-s$ and $\ell=m$, then

$$
\int_{T} f^{\ell} \bar{g}^{\ell-k} d \sigma=\int_{T} q^{s \ell-m(\ell-k)} \bar{Q}^{\ell-k} d \sigma=\int_{T} \bar{Q}^{s} d \sigma \neq 0
$$

because $s \ell-m(\ell-k)=0$. This implies $a^{\ell} \bar{b}^{\ell-k}=0$.
We will show the claim by induction about ℓ. When $\ell=k$, it is clear because $f(0)=0$. Suppose it holds for $k \leq \ell \leq n-1$. Since ϕ is a Rudin's function,

$$
\left(\phi^{n}, \phi^{n-k}\right)=\sum_{j=0}^{n} \sum_{i=0}^{n-k}\binom{n}{j}\binom{n-k}{i} a^{n-j} \bar{a}^{n-k-i} b^{j} \bar{b}^{i} \int_{T} f^{n-(n-k)+i-j} \bar{g}^{i-j} d \sigma=0
$$

When $i-j \leq 0$,

$$
\int_{T} f^{n-(n-k)+i-j} \bar{g}^{i-j} d \sigma=0
$$

because

$$
f^{n-(n-k)+i-j} g^{j-i}=q^{s\{n-(n-k)+i-j\}} \bar{q}^{m(i-j)} Q^{j-i}=q^{s k+(m-s)(j-i)} Q^{j-i}
$$

When $0 \leq i-j \leq(n-1)-k$, by the induction hypothesis,

$$
\int_{T} f^{n-(n-k)+i-j} \bar{g}^{i-j} d \sigma=0
$$

If we put $i-j=s-k$ and $k \leq s \leq n-1$, then $n-(n-k)+i-j=s$. Thus

$$
\begin{aligned}
0 & =\left(\phi^{n}, \phi^{n-k}\right) \\
& =\sum_{j=0}^{n} \sum_{i=0}^{n-k}\binom{n}{j}\binom{n-k}{i} a^{n-j} \bar{a}^{n-k-i} b^{j} \bar{b}^{i} \int_{T} f^{n-(n-k)+i-j} \bar{g}^{i-j} d \sigma \\
& =\binom{n}{0}\binom{n-k}{n-k} a^{n} \bar{a}^{0} b^{0} \bar{b}^{n-k} \int_{T} f^{n} \bar{g}^{n-k} d \sigma .
\end{aligned}
$$

§4. Rudin's orthogonal function.

In this section, we study a Rudin's function ϕ which is a polynomial of an inner function. Theorem 5 determines a Rudin's function when $\phi=a q^{s}+b q^{m}, m \geq s+1$ and q is an inner function with $q(0)=0$. On the other hand, Theorem 6 solves affirmatively R 1 when ϕ is a polynomial of an inner function. Proposition 7 gives another proof of Corollary 3 in [2] and another one of Proposition 3 in $\S 2$.

Theorem 6. Let ϕ_{0} be a Rudin's function and $\phi=\sum_{j=1}^{n} a_{j} \phi_{0}^{j}$ with $a_{n} \neq 0$. If ϕ is a Rudin's function, then $\phi=a_{n} \phi_{0}^{n}$.
Proof. We may assume that $\phi=\sum_{j=1}^{n} a_{j} \phi_{0}^{j}, a_{n}=1$ and $n>1$. By induction, we will show that $a_{\ell}=0$ for $1 \leq \ell \leq n-1$. Suppose $\ell=1$. Since

$$
\phi^{n}=\sum_{i=0}^{n}\binom{n}{i}\left(a_{1} \phi_{0}\right)^{n-i}\left(\sum_{k=2}^{n} a_{k} \phi_{0}^{k}\right)^{i}
$$

the smallest degree of ϕ^{n} is n because the smallest one of $\binom{n}{i}\left(a_{1} \phi_{0}\right)^{n-i}\left(\sum_{k=2}^{n} a_{k} \phi_{0}^{k}\right)^{i}$ is $n+i$. On the other hand, the degree of ϕ is n. Hence if ϕ is a Rudin's function,

$$
\left(\phi^{n}, \phi\right)=a_{1}^{n}=0
$$

because ϕ_{0} is a Rudin's function.
Suppose $a_{1}=a_{2}=\cdots=a_{\ell}=0$ for $\ell<n-1$. Then since

$$
\phi^{n}=\sum_{i=0}^{n}\binom{n}{i}\left(a_{\ell+1} \phi_{0}^{\ell+1}\right)^{(n-i)}\left(\sum_{k=\ell+2}^{n} a_{k} \phi_{0}^{k}\right)^{i}
$$

the smallest degree of ϕ^{n} is $n(\ell+1)$ because the smallest one of $\binom{n}{i}\left(a_{\ell+1} \phi_{0}^{\ell+1}\right)^{(n-i)}\left(\sum_{k=\ell+2}^{n} a_{k} \phi_{0}^{k}\right)^{i}$ is $(\ell+1)(n-i)+(\ell+2) i=i+n(\ell+1)$. On the other hand, since

$$
\phi^{\ell+1}=\sum_{j=0}^{\ell+1}\binom{\ell+1}{j} \phi_{0}^{n(\ell+1-j)}\left(\sum_{k=\ell+1}^{n-1} a_{k} \phi_{0}^{k}\right)^{j}
$$

the largest degree of $\phi^{\ell+1}$ is $n(\ell+1)$ because the largest one of $\binom{\ell+1}{j} \phi_{0}^{n(\ell+1-j)}\left(\sum_{k=\ell+1}^{n-1} a_{k} \phi_{0}^{k}\right)^{j}$ is $(n-1) j+n(\ell+1-j)=n(\ell+1)-j$. Hence if ϕ is a Rudin's function,

$$
\left(\phi^{n}, \phi^{\ell+1}\right)=\left(a_{\ell+1}\right)^{n(\ell+1)}=0
$$

because ϕ_{0} is a Rudin's function.

Proposition 7. If $z^{n} \phi$ is a Rudin's function for all $n \geq 0$, then ϕ is a multiple of an inner function.
Proof. Fix a positive integer k. For all $n \geq 0, z^{n k} \phi^{k}$ is orthogonal to $z^{n(k+1)} \phi^{k+1}$ because $z^{n} \phi$ is a Rudin's function. Thus ϕ^{k} is orthogonal to $\left\{z^{n} \phi^{k+1}\right\}_{n=0}^{\infty}$. Put $\phi=q h$ where q is inner and h is outer. Then by the Beurling's theorem [5, p11], ϕ^{k} is orthogonal to $q^{k+1} H^{2}$ and so $\bar{h}^{k+1} q \in H^{2}$ for all $k \geq 0$. By [4, p177], h is constant and so ϕ is inner.

References

[1] C. Bishop, Orthogonal functions in H^{∞}, in preprint
[2] P. S. Bourdon, Rudin's orthogonality problem and the Nevanlinna counting function, Proc.Amer.Math.Soc. 125(1997), 1187-1192
[3] J. A. Cima, B.Korenblum and M.Stessin, Composition isometries and Rudin's problems, in preprint
[4] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969
[5] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford Math. Monographs, 1985
[6] C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, in preprint

> Department of Mathematics
> Hokkaido University
> Sapporo 060-0810, Japan
> nakazi @ math.sci.hokudai.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 30D55, 46J15.
 Key words and phrases. Hardy space, inner function, orthogonal, polynomial .
 *This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

