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PROPERTIES OF A RUDIN’S ORTHOGONAL FUNCTION WHICH IS A
LINEAR COMBINATION OF TWO INNER FUNCTIONS
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ABSTRACT. ¢ is called a Rudin’s (orthogonal) function if ¢ is a function in H* and
the different nonnegative powers of ¢ are orthogonal in H?. When ¢ is a multiple of
an inner function and ¢(0) = 0, ¢ is a Rudin’s function. Sundberg and Bishop showed
that a Rudin’s function is not necessarily a multiple of an inner function. We study a
Rudin’s function which is a linear combination of two inner functions or a polynomial
of an inner function.

§1. Introduction.

For 1 < p < oo, H? denotes the usual Hardy space on the unit circle T and o is a
normalized Lebesgue measure on 7. ¢ is called a Rudin’s (orthogonal) function if ¢ is a
function in H° and the different nonnegative powers of ¢ are orthogonal in H2. Two inner
functions f and g are called (statistically) independent if

/ flg*do =0
T

for all nonnegative integers €, s, |¢| + |s| > 0. W. Rudin posed two problems (see [3]) : RI.
Is a Rudin’s (orthogonal) function necessarily a multiple of an inner function? R2. Do
there exist two (statistically) independent inner functions? R1 has been negatively solved
by C. Sundberg [6] and C. Bishop [1]. It is shown in [3] that if R1 is valid, then so is R2.
We don’t know whether the converse is true or not. Under some conditions, R1 has been
positively solved. That is, when ¢ is a univalent function [2] and ¢ is in the disc algebra
with boundary function in Lip o for some a > 1/2 [3].

In §2, we give a few properties two (statistically) independent inner functions must
satisfy. In §3, we study a Rudin’s (independent) function which is a linear combination of
two inner functions. In §4, we show that a Rudin’s (orthogonal) function is a multiple of
an inner function when it is a polynomial of an inner function.

§2. Statistically independent inner functions

In this section, we give a few properties two (statistically) independent inner functions
must satisfy.
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Proposition 1. If f and g are independent inner functions, then neither f nor g is a finite
Blashke product.

Proof. Let H?[g] be the closure of the set of all polynomials of ¢ in H?, then f7H?[g] is
orthogonal to fH?[g] if j # ¢ because f and g are independent inner functions. Set

M=) @&f H[g],

J=0

then M is a closed invariant subspace of H? under the multiplication by f. It is known (cf.
[5, pl1]) that the dimension of M & fM is less than or equal to that of H?* & fH?. This
implies that f can not be a finite Blaschke product.

Proposition 2. If f and g are independent inner functions, then the set of all polynomaials
of f and ¢ is not dense in H?.

Proof. Suppose the set of all polynomials of f and g is dense in H2. Then
H* =) af'Hg) = H'[g] & fH*
7=0

because f and ¢ are independent. Hence for any n > 1, ¢" is orthogonal to fH? and so

fg" € H} = L? & H?. Therefore f = 0 because f € (Wg”H2 = {0}. This contradiction
n=0
shows the proposition.

Proposition 3. If f and g are independent inner functions, then there erists a positive
integer n such that 2™ and z"g are not independent.

Proof. Suppose z" f and z"¢ are independent for any positive integer n. For any integer
0> 1, f*is orthognal to z"¢g**! for all n > 0. Put ¢ = fg, then ¢*g belongs to H? for all
integer ¢ > 0. By [3, p177], ¢ belongs to H?. Similarly we can show that ¢ belongs to H?.
Therefore ¢ is constant and so g = «af for some constant « with absolute value 1. This
contradicts that f and ¢ are independent.

§3. A linear combination of two inner functions

Let f and g be inner functions with f(0) = ¢(0) = 0 and let @ and b complex numbers.
Put

¢(a,b) = af + bg.
If f and ¢ are independent, then for an arbitrary pair («,b), ¢(a,b) is a Rudin’s function.
Theorem 4 shows that the converse is not true formally.
Lemma 1. For some pair (a,b), if &(a,b) is a Rudin’s function, then for any positive
integer £ > 2
b(&/ fgtdo —)—alb/ ffgdo = 0.
T T
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Proof. Since (¢*,6) = 0 for £ > 2,

¢, ¢ .
> <£> af—iabf/ fFrtgldo +> <£> af—fbfé/ fligi=lde =0
= M T i=o M T
oy o
because ¢ = Z <> a1 <§<0—1, then f/7 gl € H® and fl-igi—! ¢
=0

H™>. This implies that /fé_j_lgjda = /ff_jgj_lda = 0 because f(0) = ¢(0) = 0.
T T
Therefore
ab’ / fgtdo + a‘b / flgde = 0.
JT JT

Corollary 1. For some pair (a,b), if ¢(a,b) = az 4+ by is a Rudin’s function where g is an
inner function with g(0) =0, then a =0, b=0 or g = cz for some complex number c.

Proof. By Lemma 1,
a‘d / gdo =0 (0>2)
JT

and so if a’b # 0, then g = ¢z for some complex number c.
Theorem 4. For arbitrary pair (a,b), ¢(a,b) is a Rudin’s function if and only if

/ Fogtdo = / Flgtdo = 0
T T

for all non-negative integers t,s, t > s+ 1.

Proof. When 0 >k,

ik ! 14 f—517 pl—7 7 : EN keiyiphei
(6", ¢%) Zja'b;f gy (et T
L

7=0 7
t ok

=Y () (Bt [ g
im0 im0 M/ \! JT

= Y D Flkig+ D D F(LEij)
—k<j—i<0 (—k<j—i<t

where F({,k,i,7) = () <‘>aejaklbjbl/f€k+ljgjlda. Because if j —7 =0 or 0 <
J ? T

j—1 < {—Fk, then ff=FFi=igi=t ¢ H* and so F({,k,i,j) = 0. In the last line, note
the following. When —k < j—1 < 0, t = £ —k +1 —j?s if s = —(j — ). When

Z—kilj—z‘gf, t:,j—iisifsz—(f—k—l—i—j). Hence

/fsz+ifjgj*idg:/ftgsdo or /fsgtda
Jr T T

where t > s + 1.
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The ‘if” part of the theorem is clear by the fact noted above. We will prove the ‘only
if’ part by induction about s. If s = 1, by Lemma 1 it holds because (a,b) is arbitrary.
Suppose it holds for 2 < s <n —1, that is, fort > s+ 1

/ fPglde = / flg*do = 0.
JT T

Since ¢ is a Rudin’s function, (¢¢, ¢") = 0 if ¢ > n. By the fact noted above,

(0" = > D Fllinij)+ > > F(lnij)
—n<j—i<0 —n<j—i<e
By the induction hypothesis,

(06" = > D F(lLnij)+ Y Y F(ln,ij)

j—i=—n j—i=t
= F(t,n,n,0)+ F(,n,0,10).
In fact, when —(n —1)<j—i<0,t=0—n+1—j>s=—(j — i) and so F({,n,i,5) = 0.
, 2 ‘
W’henlifnijf‘igfl, t:jfi?s:f(ﬁf‘n—l—ifj)SnflandsoF(ﬁ,n,i,j):O

Thus . ’
n aédObOBn/ ffgnda—l- n aoa’n,bKBO/ J?n,gfdo_ = 0.
Since (a,b) is arbitrary,
/ ftg"do = / frgtde = 0.
T T

Question. If ¢(a,b) = af + by is a Rudin’s function, then are f and g necessarily indepen-
dent inner functions?

Theorem 5. Let g and Q be inner functions with ¢(0) =0 and Q(0) # 0. If f = ¢° and
g=q"Q where m > s+ 1, s > 1 and ¢(a,b) = af + bg is a Rudin’s function, then a =0
or b=0.

Proof. We will prove the following claim :
a‘btk / flgt *do =0 (£ >k).
JT

Put k = m — s and ¢ = m, then

/ffngkdaz/qslfm(f*k)Qf*kdg: / Q*do #0
T T T

because s¢ —m({ — k) = 0. This implies a‘b* % = 0.
We will show the claim by induction about ¢. When ¢ =k, it is clear because f(0) = 0.
Suppose it holds for £k < ¢ <n — 1. Since ¢ is a Rudin’s function,

n n—k
(qﬁn?gbn*k) — Z Z (2’) (77 Z )an]ankzb]bz/ fnf(nfk)+17]glfjdo_ =0.
. T

7=0 =0
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When ¢+ — 5 <0,
/ .fn_(n_k)+i_‘j'(7i_jd0' -0
T

because

fnf(nka»ifjgjfi — qs{nf(nfk)+i7j}qm(i7j)iji — q£k+(m75)(jfi)Qj7i.
When 0 <7 — 7 < (n—1)—k, by the induction hypothesis,
/ fnf(nfk)+i7j§i7jd0_ —0.
T

Hweputi—j=s—kandk<s<n-—1 thenn—(n—k)+7—j=s Thus

0 = ((#)n,(bn—k)

n n—k

_ Z Z (”) <” - k) anfj&nfkfibjbi/ fnf(nfk)+i7j§ifjd0_
J ! T

j=0 i=0

_ n n—k n=0707n—k n-n—=k
= <0>(n_k>aabb /ng do.

§4. Rudin’s orthogonal function.

In this section, we study a Rudin’s function ¢ which is a polynomial of an inner function.
Theorem 5 determines a Rudin’s function when ¢ = ag® 4+ b¢™, m > s+ 1 and ¢ is an inner
function with ¢(0) = 0. On the other hand, Theorem 6 solves affirmatively R1 when ¢ is
a polynomial of an inner function. Proposition 7 gives another proof of Corollary 3 in [2]
and another one of Proposition 3 in §2.

Theorem 6. Let ¢g be a Rudin’s function and ¢ = Zajgbé with an, # 0. If ¢ is a Rudin’s
j=1
function, then ¢ = a,ég.

Proof. We may assume that ¢ = Za]- qﬁé, an, = 1 and n > 1. By induction, we will show
i=1
that ag =0 for 1 </ <n — 1. Suppose ¢ = 1. Since

" = z": (T;)(alﬁbO)"_i (2”: ak¢§>i7

=0 k=2

the smallest degree of ¢™ is n because the smallest one of (ﬁ)(alqﬁo)"_i (E akqb’g) is
1
k=2
n + 1. On the other hand, the degree of ¢ is n. Hence if ¢ is a Rudin’s function,

(¢",¢) =ay =0
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because ¢p is a Rudin’s function.

Suppose a1 = a3 = -+ =ay = 0 for £ < n — 1. Then since
n __ = n (+1\(n—1t) - k
o —Z (i>(a'f+1¢0 ) ( Z akéo) )
=0 k=(+2

the smallest degree of ¢™ is n(f+1) because the smallest one of (n) (aes1 ¢é+1)("7i) ( Z ak(bg>
i
k=042
is(l+1)(n—0)+ (¢l +2)i =i+ n(l+1). On the other hand, since

(41 (11 n—1 7
[ ¢ n(l+1—j ,
s =3 (e (5 wt)

=0 k=¢+1

_ 7
(41 o &=
the largest degree of ¢**1 is n((+1) because the largest one of ( + )aﬁg(Hl 2 < Z akgbg)
J
k={+1
is(n=1)+n(l+1—=j)=n(l+1)—j. Hence if ¢ is a Rudin’s function,

(6", ") = (ap)" TV =0

because ¢¢ 1s a Rudin’s function.
Do

Proposition 7. If z"¢ is a Rudin’s function for alln > 0, then ¢ is a multiple of an inner
function.

Proof. Fix a positive integer k. For all n > 0, z"F¢F is orthogonal to z*F+Dgk+1 hecause
2" is a Rudin’s function. Thus ¢F is orthogonal to {z"¢*T1}2% . Put ¢ = gh where q is
inner and A is outer. Then by the Beurling’s theorem [5, p11], ¢* is orthogonal to ¢*+' H?
and so h¥t'q € H? for all k > 0. By [4, pl177], h is constant and so ¢ is inner.
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