THE SPECIAL COPRODUCT OF OCKHAM ALGEBRAS*

Luo Congwen

Received May 29, 2001; revised June 21, 2002

Abstract

In this paper we introduce an algebraic concept of the coproduct of Ockham algebras called the special coproduct. We show that if $L_{i} \in \operatorname{DMS}(i=1,2, \ldots, n)$ then the special coproduct of $L_{i}(i=1,2, \ldots, n)$ exists if and only if L_{1}, \ldots, L_{n} have isomorphic skeletons.

An Ockham algebra is an algebra $\langle L ; \vee, \wedge, f, 0,1\rangle$ of type $\langle 2,2,1,0,0\rangle$ such that $\langle L ; \vee, \wedge, 0,1\rangle$ is a bounded distributive lattice and f is a unary operation defined on L satisfying, for all $x, y \in L$,

$$
f(x \wedge y)=f(x) \vee f(y), f(x \vee y)=f(x) \wedge f(y), f(0)=1, f(1)=0
$$

In such an algebra $\langle L ; f\rangle$ the subset $S(L)=\{f(x) \mid x \in L\}$ is a subalgebra which we call the skeleton of L. The class of all Ockham algebras is a variety, denoted by O. Cleariy, if $L_{i} \in O(i=1, \ldots, n)$, the direct product $\prod_{i=1}^{n} L_{i}$, where the operation \sim is defined by $\left(x_{1}, \ldots, x_{n}\right)^{\sim}=\left(x_{1}^{\sim}, \ldots, x_{n}^{\sim}\right)$, is also an Ockham algebra.

The study of Ockham algebras has been initiated by J.Berman ${ }^{[2]}$ who gave particular attention to certain subvariety $K_{p, q}$ of Ockham algebra $\langle L ; f\rangle$ in which $f^{q}=f^{2 p+q}$. The subvariety of $K_{p, q}$ defined by the inequality $x \geq f^{2}(x)$ is denoted by $D M S$, and its members are called dual $M S$-algebras .

We recall that a mapping $h: X \rightarrow Y$, where X, Y are lattices, is a homomorphism if, for any $a, b \in X, h(a \wedge b)=h(a) \wedge h(b)$ and $h(a \vee b)=h(a) \vee h(b)$. Such an h is said to be an isomorphism if it is one-to-one. A mapping h is called a kernel if $h^{2}=h \leq i d$. Let $\langle L ; \sim\rangle,\langle M ; \sim\rangle$ be Ockham algebras. We say a lattice homomorphism $h: L \rightarrow M$ is an (Ockham) homomorphism if $(h(a))^{\sim}=h\left(a^{\sim}\right)$. Such an (Ockham) homomorphism h is an (Ockham) isomorphism if it is one-to-one,denoted by \simeq.

Here we introduce a particular algebraic concept of the coproduct of Ockham algebras which is called the special coproduct. We show that the special coproduct of Ockham algebras is a subalgebra of the direct product Ockham algebras. In particular, if $L_{i} \in D M S(i=$ $1,2, \ldots, n)$ then the special coproduct of $L_{1}, L_{2}, \ldots, L_{n}$ has isomorphic skeletons.

For later convenience we denote the category of bounded distributive lattices with 0 and 1 by $D_{0,1}$.

Definition. Let L_{1}, \ldots, L_{n} be bounded distributive lattices with 0 and 1 , and let the maps $f_{i j}: L_{i} \rightarrow L_{j}$ be lattice homomorphisms such that

1. $(\forall i) f_{i i}=i d_{L_{i}}$
2. $(\forall i, j, k) f_{i j} \geq f_{k j} \circ f_{i k}$
[^0]By the special coproduct of L_{1}, \ldots, L_{n} relative to the family of homomorphisms $f_{i j}$ we mean the subset $\sum_{i=1}^{n} L_{i}$ of $\prod_{i=1}^{n} L_{i}$ given by

$$
\sum_{i=1}^{n} L_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} L_{i}: x_{i}=\bigvee_{j=1}^{n} f_{j i}\left(x_{j}\right), \text { for any } i\right\}
$$

We can see from the definition that

$$
\left(x_{1}, \ldots, x_{n}\right) \in \sum_{i=1}^{n} L_{i} \Leftrightarrow(\forall i) x_{i}=\bigvee_{j=1}^{n} f_{j i}\left(x_{j}\right) \Leftrightarrow(\forall i)(\forall j) f_{i j}\left(x_{i}\right) \leq x_{j}
$$

It is then easy to see that $\sum_{i=1}^{n} L_{i}$ is a sublattice of $\prod_{i=1}^{n} L_{i}$ containing $(1, \ldots, 1)$ and $(0, \ldots, 0)$. We first show the following fact.

Theorem 1. Let $L_{1}, \ldots, L_{n} \in D_{0,1}$. Then L is the special coproduct of L_{1}, \ldots, L_{n} relative to homomorphisms $f_{i j}: L_{i} \rightarrow L_{j}$ if and only if there exist kernel homomorphisms h_{1}, \ldots, h_{n} on L such that $\bigvee_{i=1}^{n} h_{i}=i d_{L}$, where $\left(\bigvee_{i=1}^{n} h_{i}\right)(x)=\bigvee_{i=1}^{n} h_{i}(x)(\forall x \in L)$.
Proof. \Longrightarrow : Suppose that L is the special coproduct of L_{1}, \ldots, L_{n} relative to homomorphisms $f_{i j}: L_{i} \rightarrow L_{j}$. Then, for any $i, j, k, f_{i j}\left(x_{i}\right) \geq f_{k j}\left(f_{i k}\left(x_{i}\right)\right)$ and $\left(f_{j 1}\left(x_{j}\right), f_{j 2}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right)$ $\in \sum_{i=1}^{n} L_{i}($ for any $j)$. Define the mapping $h_{j}: \sum_{i=1}^{n} L_{i} \rightarrow \sum_{i=1}^{n} L_{i}$ by $h_{j}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right)$. It is clear that each h_{j} is a homomorphism, and the fact that $f_{i j}\left(x_{i}\right) \leq$ x_{j} (for any i, j). We have

$$
\begin{aligned}
h_{j}^{2}\left(x_{1}, \ldots, x_{n}\right) & =h_{j}\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right) \\
& =\left(f_{j 1}\left(f_{j j}\left(x_{j}\right)\right), \ldots, f_{j n}\left(f_{j j}\left(x_{j}\right)\right)\right) \\
& =\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right) \\
& =h_{j}\left(x_{1}, \ldots, x_{n}\right) \\
& \leq\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

thus $h_{j}^{2}=h_{j} \leq i d$, so h_{j} is a kernel. Finally,

$$
\left(\bigvee_{j=1}^{n} h_{j}\right)(x)=\bigvee_{j=1}^{n} h_{j}(x)=\left(\bigvee_{j=1}^{n} f_{j 1}\left(x_{j}\right), \ldots, \bigvee_{j=1}^{n} f_{j n}\left(x_{j}\right)\right)=\left(x_{1}, \ldots, x_{n}\right)
$$

, and so $\bigvee_{j=1}^{n} h_{j}=i d_{L}$.
\Longleftarrow : Suppose now that there are kernel homomorphisms h_{1}, \ldots, h_{n} on L such that $\bigvee_{j=1}^{n} h_{j}=i d_{L}$. Write $L_{i}=I m h_{i}$, the image of h_{i}, and define $f_{i j}: L_{i} \rightarrow L_{j}$ by $f_{i j}\left(h_{i}(x)\right)=$ $h_{j}\left(h_{i}(x)\right)$, namely, $f_{i j}$ is induced by the restriction of h_{j} to $I m h_{i}$. Since $h_{i}^{2}=h_{i} \leq i d_{L_{i}}$ by the hypothesis, we have $f_{i i}=i d_{L_{i}}$ and $f_{k j} \circ f_{i k}\left(h_{i}(x)\right)=f_{k j}\left(h_{k}\left(h_{i}(x)\right)\right)=h_{j}\left(h_{k}\left(h_{i}(x)\right)\right) \leq$ $h_{j}\left(h_{i}(x)\right)=f_{i j}\left(h_{i}(x)\right)$, i.e., $f_{i j} \geq f_{k j} \circ f_{i k}$. It follows that $\sum_{i=1}^{n} L_{i}$ exists. Consider the homomorphism $h: L \rightarrow \sum_{i=1}^{n} L_{i}$ defined by $h(x)=\left(h_{1}(x), \ldots, h_{n}(x)\right)$. Observe that

$$
h(x)=h(y) \Rightarrow h_{i}(x)=h_{i}(y)(\text { for any } i) \Rightarrow x=\bigvee_{i=1}^{n} h_{i}(x)=\bigvee_{i=1}^{n} h_{i}(y)=y
$$

so h is injective. Now, for $\left(h_{1}\left(x_{1}\right), \ldots, h_{n}\left(x_{n}\right)\right) \in \sum_{i=1}^{n} L_{i}$, we have $h_{j}\left(x_{j}\right)=\bigvee_{i=1}^{n} f_{i j}\left(h_{i}\left(x_{i}\right)\right)$. Let $z=\bigvee_{i=1}^{n} h_{i}\left(x_{i}\right)$.Then $h_{j}(z)=h_{j}\left(\bigvee_{i=1}^{n} h_{i}\left(x_{i}\right)\right)=\bigvee_{i=1}^{n} h_{j}\left(h_{i}\left(x_{i}\right)\right)=\bigvee_{i=1}^{n} f_{i j}\left(h_{i}\left(x_{i}\right)\right)=h_{j}\left(x_{j}\right)$, whence

$$
h(z)=\left(h_{1}(z), \ldots, h_{n}(z)\right)=\left(h_{1}\left(x_{1}\right), \ldots, h_{n}\left(x_{n}\right)\right) .
$$

It follows that h is surjective and so $L \simeq \sum_{i=1}^{n} L_{i}$.
Corollary 1. $L \in D_{0,1}$ is the special coproduct of $L_{1}, L_{2} \in D_{0,1}$ if and only if L induces a pair of kernel homomorphisms h_{1}, h_{2} such that $h_{1} \vee h_{2}=1$.

Theorem 2. If $L_{1}, \ldots, L_{n} \in O$ then the special coproduct of L_{1}, \ldots, L_{n} relative to (Ockham) homomorphisms $f_{i j}: L_{i} \rightarrow L_{j}$ is a subalge bra of $\prod_{i=1}^{n} L_{i}$.
Proof. It suffices to show that $\left(x_{1}, \ldots, x_{n}\right) \in \sum_{i=1}^{n} L_{i}$ implies $\left(x_{1}^{\sim}, \ldots, x_{n}^{\sim}\right) \in \sum_{i=1}^{n} L_{i}$. Let $\left(x_{1}, \ldots, x_{n}\right) \in \sum_{i=1}^{n} L_{i}$. Then
$(\forall i)(\forall j) f_{i j}\left(x_{i}\right) \leq x_{j}$ and $(\forall i)(\forall j) f_{i j}\left(x_{i}^{\sim}\right) \geq x_{j}^{\sim}$.
We thus have

$$
(\forall i)(\forall j) f_{j i}\left(x_{j}^{\sim}\right)=f_{j i}\left(f_{j j}\left(x_{j}^{\sim}\right)\right) \geq f_{j i}\left(f_{i j}\left(f_{j i}\left(x_{j}^{\sim}\right)\right)\right) \geq f_{j i}\left(f_{i j}\left(x_{i}^{\sim}\right)\right) \geq f_{j i}\left(x_{j}^{\sim}\right) .
$$

So $(\forall i)(\forall j) f_{j i}\left(x_{j}^{\sim}\right)=f_{j i}\left(f_{i j}\left(x_{i}^{\sim}\right)\right) \leq f_{i i}\left(x_{i}^{\sim}\right)=x_{i}^{\sim}$ and $(\forall i)(\forall j) f_{i j}\left(x_{i}^{\sim}\right)=x_{j}^{\sim}$. It follows that $(\forall j) \bigvee_{i=1}^{n} f_{i j}\left(x_{i}^{\sim}\right)=x_{j}^{\sim}$, whence $\left(x_{1}^{\sim}, \ldots, x_{n}^{\sim}\right) \in \sum_{i=1}^{n} L_{i}$.
Corollary 2. If $L_{1}, \ldots, L_{n} \in K_{p, q}$ then the special coproduct of L_{1}, \ldots, L_{n} relative to (Ockham) homomorphisms $f_{i j}: L_{i} \rightarrow L_{j}$ belongs to $K_{p, q}$.

Observe that Theorem 1 carries over to Ockham algebras. In fact, it suffices to replace all the bounded disreibutive lattices by Ockham algebras, and all the homomorphisms in $D_{0,1}$ by Ockham homomorphisms. That the lattice homomorphisms $h_{j}: \sum_{i=1}^{n} L_{i} \rightarrow \sum_{i=1}^{n} L_{i}$ given by $h_{j}\left(x_{1}, \ldots, x_{n}\right)=\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right)$ are Ockham homomorphisms follows from the fact $(\forall i)(\forall j) f_{i j}\left(x_{i}^{\sim}\right)=x_{j}^{\sim}$, for then

$$
\text { (*) } \begin{aligned}
\left(h_{j}\left(x_{1}, \ldots, x_{n}\right)\right)^{\sim} & =\left(f_{j 1}\left(x_{j}^{\sim}\right), \ldots, f_{j n}\left(x_{j}^{\sim}\right)\right) \\
& =\left(x_{1}^{\sim}, \ldots, x_{n}^{\sim}\right) \\
& =h_{j}\left(x_{1}^{\sim}, \ldots, x_{n}^{\sim}\right) .
\end{aligned}
$$

We now give a descripition of some properies of the special coproduct of Ockham algebras.
Theorem 3. Let $L_{1}, \ldots, L_{n} \in O$ and let $\sum_{i=1}^{n} L_{i}$ be the special coproduct of L_{1}, \ldots, L_{n} relative to (Ockham) homomorphisms $f_{i j}: L_{i} \rightarrow L_{j}$. Then there exist kernel homomorphisms $h_{k}: \prod_{i=1}^{n} L_{i} \rightarrow \sum_{i=1}^{n} L_{i}$ such that $\bigvee_{k=1}^{n} h_{k}=i d$ and $L_{k} \simeq \operatorname{Imh}_{k}(k=1, \ldots, n)$. Moreover, $S\left(I m h_{i}\right) \simeq S\left(I m h_{j}\right)(\forall i, j)$.
Proof. Let $L_{j}^{*}=\left\{\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right) \mid x_{j} \in L_{j}\right\}(j=1, \ldots, n)$. Write $y_{i}=f_{j i}\left(x_{j}\right)$. Then $y_{i}=f_{j i}\left(x_{j}\right) \geq f_{k i}\left(f_{j k}\left(x_{j}\right)\right)=f_{k i}\left(y_{k}\right)(\forall j, k)$, and then each L_{j}^{*} is a subalgebra of
$\sum_{i=1}^{n} L_{i}$. Since $f_{j j}\left(x_{j}\right)=x_{j}$, it is easy to see that $L_{j} \simeq L_{j}^{*}$ by $x_{j} \rightarrow\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right)$. Define the mapping $h_{j} \prod_{i=1}^{n} L_{i} \rightarrow \sum_{i=1}^{n} L_{i}$ by $h_{j}\left(x_{1}, \ldots, x_{n}\right)=\left(f_{j 1}\left(x_{j}\right), \ldots, f_{j n}\left(x_{j}\right)\right)$. Then $I m h_{j}=L_{j}^{*} \simeq L_{j}$. Arguing as in the proof of Theorem 1 we have $h_{j}^{2}=h_{j} \leq i d$ and $\bigvee_{j=1}^{n} h_{j}=i d$. Finally, we can see from $\left(^{*}\right)$ above that $S\left(I m h_{j}\right) \simeq S\left(\sum_{i=1}^{n} L_{i}\right)$.
Theorem 4. Let L_{1}, \ldots, L_{n} be $D M S$-algebras having isomorphic skeletons. Then the special coproduct of L_{1}, \ldots, L_{n} exists, and moreover, it can be simultaneously (Ockham) isomorphically embedded by each L_{i}.
Proof. Assume that $\alpha_{i}: S\left(L_{i}\right) \rightarrow S\left(L_{1}\right)$ is an (Ockham) isomorphism. Let $f_{i i}=i d_{L_{i}}(\forall i)$, and for $i \neq j$ define $f_{i j}: L_{i} \rightarrow L_{j}$ by $f_{i j}\left(x_{i}\right)=\alpha_{j}^{-1}\left(\alpha_{i}\left(x_{i}^{\sim \sim}\right)\right)\left(\forall x_{i} \in L_{i}\right)$. Then these $f_{i j}$ are (Ockham) homomorphisms. Observe that

$$
\begin{aligned}
(i \neq j, k \neq i, k \neq j) f_{k j}\left(f_{i k}\left(x_{i}\right)\right) & =f_{k j}\left(\alpha_{k}^{-1}\left(\alpha_{i}\left(x_{i}^{\sim \sim}\right)\right)\right) \\
& =\alpha_{j}^{-1}\left(\alpha_{k}\left(\alpha_{k}^{-1}\left(\alpha_{i}\left(x_{i}^{\sim \sim \sim \sim}\right)\right)\right)\right) \\
& =\alpha_{j}^{-1}\left(\alpha_{i}\left(x_{i}^{\sim \sim}\right)\right) \\
& =f_{i j}\left(x_{i}\right) .
\end{aligned}
$$

and

$$
f_{k i}\left(f_{i k}\left(x_{i}\right)\right)=f_{k i}\left(\alpha_{k}^{-1}\left(\alpha_{i}\left(x_{i}^{\sim \sim}\right)\right)\right)=\alpha_{i}^{-1}\left(\alpha_{k}\left(\alpha_{k}^{-1}\left(\alpha_{i}\left(x_{i}^{\sim \sim}\right)\right)\right)\right)=x_{i}^{\sim \sim} \leq x_{i}
$$

It follows that these $f_{i j}$ satisfy (1) and (2) in the definition above, and hence the special coproduct of L_{1}, \ldots, L_{n} relative to $f_{i j}$ exists.

Define now $g_{i}: L_{i} \rightarrow \sum_{i=1}^{n} L_{i}$ by $g_{i}\left(x_{i}\right)=\left(f_{i 1}\left(x_{i}\right), \ldots, f_{i n}\left(x_{i}\right)\right)$. We can see from the proof of Theorem 3 that each g_{i} is a homomorphism and is injective. Consequently, under g_{i}, each L_{i} can be (Ockham) isomorphically embeded into $\sum_{i=1}^{n} L_{i}$. By Theorem 3 and 4 we have immediately the following interesting fact.
Corollary 3. Let L_{1}, \ldots, L_{n} be DMS-algebras. Then the special coproduct of L_{1}, \ldots, L_{n} exists if and only if L_{1}, \ldots, L_{n} have isomorphic skeletons .
Example 1. Let L be a $D M S$-algebra. Define $L_{1}=L_{2}=L$ and let $f_{11}=f_{12}=f_{22}=$ $i d, f_{21}(x)=x^{\sim \sim}(\forall x \in L)$. Then the conditions (1) and (2) in the definition above are satisfied, and so we can form the DMS-algebra

$$
L+L=\left\{(x, y) \in L \times L \mid y^{\sim \sim} \leq x \leq y\right\}
$$

which then induces a pair of kernel homomorphisms h_{1}, h_{2} such that $h_{1} \vee h_{2}=i d$. More specifically, taking L to be the algebra S_{9} described by

$$
\left\{\begin{array}{l}
1=0^{\sim} \\
b \\
a=a^{\sim}=b^{\sim} \\
0=1^{\sim}
\end{array}\right.
$$

we have $S_{9}+S_{9}=\{(0,0),(a, a),(a, b),(b, b),(1,1)\}$, and so $S_{9}+S_{9}$ is isomorphic to the following $D M S$-algebra

$$
\left\{\begin{array}{l}
1=0^{\sim} \\
x \\
y \\
z=z^{\sim}=y^{\sim}=x^{\sim} \\
0=1^{\sim}
\end{array}\right.
$$

and the homomorphisms h_{1} and h_{2} are given by

$$
h_{1}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}\right) \text { and } h_{2}\left(x_{1}, x_{2}\right)=\left(x_{2}^{\sim \sim}, x_{2}\right)
$$

So $\operatorname{Im} h_{1}=\{(0,0),(a, a),(b, b),(1,1)\}$ and $\operatorname{Im} h_{2}=\{(0,0),(a, a),(a, b),(1,1)\}$.The corresponding partitions are then

$$
h_{1} \sim\{\{0\},\{y, z\},\{x\},\{1\}\} \text { and } h_{2} \sim\{\{0\},\{x, y\},\{z\},\{1\}\},
$$

thus proving that $h_{1} \vee h_{2}=i d$.
Example 2. Let L be a $D M S$-algebra. Define $L_{1}=L_{2}=L$ and let $f_{11}=f_{22}=i d, f_{12}(x)=$ $f_{21}(x)=x^{\sim \sim}(\forall x \in L)$. Then the conditions (1) and (2) in the definition above are satisfied, and so the special coproduct relative to $f_{i j}(i, j=1,2)$ is as follows:

$$
L+L=\left\{(x, y) \in L \times L \mid x^{\sim \sim}=y^{\sim \sim}\right\}
$$

More specifically, taking $L=S_{9}$ as in Example 1, we have
$S_{9}+S_{9}=\{(0,0),(a, a),(a, b),(b, a),(b, b),(1,1)\}$,
which is isomorphic to the $D M S$-algebra

The associate kernel homomorphisms have the partitions

$$
h_{1} \sim\{\{0\},\{\alpha, \beta\},\{\delta, \gamma\},\{1\}\} \text { and } h_{2} \sim\{\{0\},\{\alpha, \gamma\},\{\beta, \delta\},\{1\}\}
$$

thus proving that $h_{1} \vee h_{2}=i d$.

References

[1] G.Birkhoff, Lattice Theory, 3rd.American Math Soc., Providence, RI, 1967.
[2] J.Berman, Distributive lattices with an additional unary operation, Aequationes Math., 1977,16:165-171.
[3] H.P.Sankappanavar, Distributive lattices with a dual endomorphism, Zeitschr.f.Math.Logic.Grundlag.Math.,1985,31:385-392.
[4] R.Beazer,On some small varieties of Ockham algebras, Glasgow Math.j.,1984,25:175-181.

Department of Mathematics, Three Gorges University Yichang 443000, P.R.China

[^0]: 2000 Mathematics Subject Classification. 06D30.
 Key words and phrases. Ockham Algebra, Special Coproduct, Skeleton.
 ${ }^{*}$ The research is supported by the Natural Science Foundation of Hubei Province in China

