CONVERSES OF FURUTA TYPE INEQUALITIES

Eizaburo Kamei

Received April 24, 2002; revised June 3, 2002

Abstract

Let A and B be positive operators on a Hilbert space. We consider what kind of conditions induces the order between A and B. Such an attempt was done in recent works due to Yang and Ito. Based on their results, we prove that if $A^{t} \bigsqcup_{\frac{\gamma-t}{}}^{p-t} B^{p} \geq B^{\gamma}$ for $0<p<t$ and $p<\gamma$, then $A^{\beta} \geq B^{\beta}$ for $\beta=\min \{\gamma, t\}$, where the binary operation \sharp is used as a generalized formula of the geometric mean. Moreover we give an extension of Ito's theorem.

1. Introduction. Throughout this note, A and B are positive operators on a Hilbert space. An operator T is positive (resp. strictly positive, i.e., positive invertible), we use the notation $T \geq 0$ (resp. $T>0$). The α-power mean of A and B given by

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for } 0 \leq \alpha \leq 1
$$

is the essential tool in this note which is introduced by Kubo-Ando [15]. Similarly we use the notation $A h_{s} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{s} A^{\frac{1}{2}}$ for $s \in \mathbf{R}$ and $h_{s}=\sharp_{s}$ when $s \in[0,1]$.

We cite the mean theoretic expression of the Furuta inequality which is sometimes useful (cf.[2],[11]).

Furuta inequality:(cf.[6],[7]) If $A \geq B \geq 0$, then

$$
\begin{equation*}
A^{u} \sharp_{\frac{1-u}{p-u}} B^{p} \leq A \quad \text { and } \quad B \leq B^{u} \sharp_{\frac{1-u}{p-u}} A^{p} \tag{F}
\end{equation*}
$$

holds for $u \leq 0$ and $p \geq 1$.
It is natural to consider whether a similar inequality to (F) holds when the exponent of A transfers to the non-negative part. Firstly, Yoshino [17] pointed out that (F) type inequality holds. Afterward the domain was spreaded and attained to the following theorem.

Complementary theorem of the Furuta inequality:(cf. [4],[8],[9],[12]) If $A \geq B \geq 0$ with $A>0$, then the following inequalities hold:

$$
\begin{gather*}
A^{t}{h_{\frac{1-t}{p-t}} B^{p} \leq B \text { for } 0 \leq t<p \text { and } \frac{1}{2} \leq p \leq 1 .}^{A^{t} \mathfrak{h}_{\frac{2 p-t}{p-t}} B^{p} \leq B^{2 p} \quad \text { for } 0 \leq t<p \leq \frac{1}{2}} . \tag{CF1}
\end{gather*}
$$

[^0]In this note, we consider the coverses of the above theorem in some sense. Such a problem is initiated by Yang [16] and Ito [10] has given an including form of Yang's one as follows:

Theorem A. Let $A, B>0$ and $0<p<t$.

$$
\begin{equation*}
\text { If } A^{t} \mathfrak{b}_{\frac{\gamma-t}{p-t}} B^{p} \geq B^{\gamma} \text { for } p<\gamma \leq 2 p, \text { then } A^{\delta} \geq B^{\delta} \quad \text { for } \quad \delta=\min \{\gamma, t\} \tag{A}
\end{equation*}
$$

Our view point is to divide into two cases $t \geq \gamma$ and $t \leq \gamma$. Then we can obtain more precise result, by which the following theorem due to Ito [10] is extended.

Theorem B. Let $A, B, C>0$ and $0<p<t$. If $A^{t} \mathfrak{h}_{\frac{\gamma-t}{p-t}} B^{p} \geq B^{\gamma}$ for $p<\gamma \leq 2 p$ and $B \gg C$ (i.e., $\log B \geq \log C$), then for α such that $0 \leq \alpha \leq \min \{\gamma, t\}$,

$$
\begin{equation*}
C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{t} \geq C^{-r}{h_{\frac{\alpha+r}{}}^{p+r}} B^{p} \tag{B}
\end{equation*}
$$

holds for $r \geq 0$.
2. Theorems by Yang and Ito. First of all, we review Yang's results. Yang [16] had shown the following:

Let $A, B>0$.
(Y1) If $A^{t} \mathfrak{h}_{\frac{1-t}{p-t}} B^{p} \leq B$ for $1<p<2 p-1<t$, then $A^{\alpha} \geq B^{\alpha}$ for $0 \leq \alpha \leq 2 p-1$.

$$
\begin{equation*}
\text { If } A^{t} \mathfrak{h}_{\frac{2 p-t}{p-t}} B^{p} \geq B^{2 p} \text { for } 1<p<2 p<t, \text { then } A^{\alpha} \geq B^{\alpha} \text { for } 0 \leq \alpha \leq 2 p \tag{Y2}
\end{equation*}
$$

We here note that (A) interpolates (Y1) and (Y2), i.e., the case $\gamma=2 p$ is (Y2) clearly. On the other hand, the case $\gamma=2 p-1$ is (Y1). Actually, the assumption of (Y1) can be
 assumption in (A) is equivalent to $\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{1-p}{p-t}} \geq B^{p-1}$ and so is to $A^{t} \mathfrak{h}_{\frac{1-t}{p-t}} B^{p}=$ $B^{p}{h_{p-1}^{p-t}} A^{t} \leq B$.

From our view point, we give an interpretation on Yang and Ito's proposal. For $A, B>0$, we denote $A \gg B$ if $\log A \geq \log B$ and call it the chaotic order, which is weaker than the usual order because $\log x$ is an operator monotone function. On the chaotic order, we have the next Theorem C which is essential in our following discussion.

Theorem C. The chaotic order $A \gg B$ for $A, B>0$ if and only if

$$
\begin{equation*}
A^{u} \sharp_{\frac{\delta-u}{p-u}} B^{p} \leq B^{\delta} \quad \text { and } \quad A^{\delta} \leq B^{u} \sharp_{\frac{\delta-u}{p-u}} A^{p} \quad \text { for } \quad u \leq 0 \text { and } 0 \leq \delta \leq p . \tag{C}
\end{equation*}
$$

The above theorem is a generalization of our result in [3], we call it chaotic Furuta inequality.

Chaotic Furuta inequality(cf. [1],[3],[5],[13],[14]): If $A \gg B$ for $A, B>0$, then

$$
\begin{equation*}
A^{u} \not \sharp_{p-u}^{p-u} B^{p} \leq I \leq B^{u} \sharp_{\frac{-u}{p-u}} A^{p} \tag{FC}
\end{equation*}
$$

holds for $u<0$ and $p>0$.
Theorem 1. Let $A^{t} \mathfrak{h}_{\frac{\gamma-t}{p-t}} B^{p} \geq B^{\gamma}$ for $A, B>0,0<p<t$ and $p<\gamma$.

$$
\begin{align*}
& \text { If } \gamma \leq t \text {, then } A^{\gamma} \geq A^{t} \sharp_{\frac{\gamma-t}{p-t}} B^{p}\left(\geq B^{\gamma}\right) . \tag{1}\\
& \text { If } \gamma \geq t, \text { then } A^{t} \geq B^{t} \tag{2}
\end{align*}
$$

 equivalent to $\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{\gamma-p}{t-p}} \geq B^{\gamma-p}$. Since $\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{1}{t-p}} \gg B$, Theorem C implies that

$$
B^{-p} \not \sharp_{\frac{(\gamma-p)+p}{(t-p)+p}} B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}} \geq\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{\gamma-p}{t-p}} .
$$

So $I \not \sharp_{\tau} A^{t} \geq B^{\frac{p}{2}}\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{\gamma-p}{t-p}} B^{\frac{p}{2}}$ holds, that is,

$$
A^{\gamma} \geq B^{p} \forall_{\frac{\gamma-p}{t-p}} A^{t}=A^{t} \sharp_{\frac{\gamma-t}{p-t}} B^{p} .
$$

Next we prove (2). $A^{t}{h_{\frac{\gamma-t}{p-t}}} B^{p}=B^{p}{h_{\frac{p-\gamma}{p-t}}}^{t} \geq B^{\gamma}$ is equivalent to

$$
B^{\frac{p}{2}}\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{p-\gamma}{p-t}} B^{\frac{p}{2}} \geq B^{\gamma}, \text { so }\left(B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}}\right)^{\frac{p-\gamma}{p-t}} \geq B^{\gamma-p}
$$

We have $B^{-\frac{p}{2}} A^{t} B^{-\frac{p}{2}} \geq B^{t-p}$ by Löwner-Heinz inequality since $\frac{p-\gamma}{p-t} \geq 1$, so that $A^{t} \geq B^{t}$.
3. An extension of Ito's theorm. Ito [10] has shown Theorem B cited in $\S 1$ which also includes Yang's one [16] as the cases $\gamma=2 p-1$ and $\gamma=2 p$. Theorem B has the following extension.

Theorem 2. Let $A, B, C>0$ with $B \gg C$ and $0<p<t$.
(1) If $A^{\gamma} \geq B^{\gamma}$ for $p<\gamma \leq \min \{t, 2 p\}$, then for given $r \geq 0$,

$$
C^{-r} \not \sharp_{\frac{\alpha+r}{t+r}} A^{t} \geq C^{-r} \mathfrak{h}_{\frac{\alpha+r}{p+r}} B^{p}
$$

holds for $-r \leq \alpha \leq \gamma$.
(2) If $A^{t} \geq B^{t}$, then for given $r \geq 0$,

$$
C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{t} \geq C^{-r} \vdash_{\frac{\alpha+r}{p+r}} B^{p}
$$

holds for $-r \leq \alpha \leq \min \{t, 2 p\}$.
Proof. First of all, we remark that $A h_{s}\left(A h_{t} B\right)=A h_{s t} B$ for $s, t \in \mathbf{R}$ and $A, B \geq 0$. The case (1) is obtained by applying Theorem C to both $A \gg C$ and $B \gg C$ and the monotone property of operator means for $A^{\gamma} \geq B^{\gamma}$ as follows: In the case $-r \leq \alpha \leq p$,

$$
\begin{aligned}
C^{-r} \sharp_{\frac{\alpha+r}{}}^{t+r} A^{t} & =C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}}\left(C^{-r} \sharp_{\frac{\gamma+r}{}}^{t+r} A^{t}\right) \geq C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}} A^{\gamma} \\
& \geq C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}} B^{\gamma}=C^{-r} \sharp_{\frac{\alpha+r}{p+r}}\left(C^{-r} \sharp_{\frac{p+r}{\gamma+r}} B^{\gamma}\right) \geq C^{-r} \sharp_{\frac{\alpha+r}{}}^{p+r} B^{p} .
\end{aligned}
$$

In the case $p \leq \alpha \leq \gamma \leq t$, since $B \mathfrak{h}_{-s} C=B\left(B^{-1} h_{s} C^{-1}\right) B$, we have

$$
\begin{aligned}
& C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{t}=C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}}\left(C^{-r} \sharp_{\frac{\gamma+r}{t+r}} A^{t}\right) \geq C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{\gamma} \\
& \geq C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}} B^{\gamma} \geq B^{\alpha}=B^{p}\left(B^{-p} \not \sharp_{\frac{\alpha-p}{p}} I\right) B^{p} \geq B^{p}\left(B^{-p} \sharp_{\frac{\alpha-p}{p}}\left(B^{-p} \not \sharp_{p+r}^{p+r} C^{r}\right)\right) B^{p} \\
& =B^{p}\left(B^{-p} \sharp_{\frac{\alpha-p}{p+r}} C^{r}\right) B^{p}=B^{p} \hbar_{\frac{p-\alpha}{p+r}} C^{-r}=C^{-r}{h_{\frac{\alpha+r}{}}^{p+r}} B^{p} .
\end{aligned}
$$

The first and Third inequalities follow from (C) because $A \gg C$, the second one follows from the monotone property of means and the final one is given by (FC).

Similarly the case (2) gives (B) as follows:
If $-r \leq \alpha \leq p$, then

$$
C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{t}=C^{-r} \sharp_{\frac{\alpha+r}{p+r}}\left(C^{-r} \sharp_{\frac{p+r}{}}^{t+r} A^{t}\right) \geq C^{-r} \sharp_{\frac{\alpha+r}{p+r}} A^{p} \geq C^{-r} \sharp_{\frac{\alpha+r}{p+r}} B^{p} .
$$

If $0<p \leq \alpha \leq \min \{t, 2 p\}$, then

$$
\begin{aligned}
& C^{-r} \mathfrak{h}_{\frac{\alpha+r}{p+r}} B^{p}=B^{p}{\natural_{p-\alpha}^{p+r}} C^{-r}=B^{p}\left(B^{-p} \not \sharp_{\frac{\alpha-p}{p+r}} C^{r}\right) B^{p} \\
= & B^{p}\left(B^{-p} \not \sharp_{\frac{\alpha-p}{p}}^{p}\left(B^{-p} \sharp \frac{p}{p+r} C^{r}\right)\right) B^{p} \\
\leq & B^{p}\left(B^{-p} \not \sharp_{\frac{\alpha-p}{p}} I\right) B^{p}=B^{\alpha} \leq A^{t} \sharp_{\frac{t-\alpha}{t-p}} B^{p} \leq A^{\alpha} \leq C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{t} .
\end{aligned}
$$

The first inequality follows from (FC), the second and third ones are mean property and the final one is (C) because $A \gg C$.

Acknowledgement. The author would like to express his thanks to the colleagues of the Saturday semminar in Osaka Kyoiku University for their warm and critical discussions.

References

[1] T.Ando, On some operator inequalities, Math. Ann., 279(1987), 157-159.
[2] M.Fujii, Furuta's inequality and its mean theoretic approach, J.Operator Theory, 23(1990), 67-72.
[3] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Alg. Appl., 179(1993), 161-169.
[4] M.Fujii, T.Furuta and E.Kamei, Complements to the Furuta inequality, Proc. Japan Acad., 70(1994), Ser.A, 239-242.
[5] M.Fujii, J.F.Jiang and E.Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc., 125(1997), 3655-3658.
[6] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc.,101(1987), 85-88.
[7] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65(1989), 126.
[8] T.Furuta, T.Yamazaki and M.Yanagida, Equivalence relations among Furuta-type inequalities with negative powers, Sci. Math., 1(1998), 223-229.
[9] T.Furuta, T.Yamazaki and M.Yanagida, On a conjecture related to Furuta-type inequalities with negative powers, Nihonkai Math. J., 9(1998), 213-218.
[10] M.Ito, Some order preserving inequality via Furuta inequality, Sci. Math. Japon., 55(2002), 25-32.
[11] E.Kamei, A satellite to Furuta's inequality, Math. Japon.,33(1988), 883-886.
[12] E.Kamei, Complements to the Furuta inequality, II, Math. Japon., 45(1997), 15-23.
[13] E.Kamei, Chaotic order and Furuta inequality, Sci. Math. Japon., 53(2001), 221-225.
[14] E.Kamei and M.Nakamura, Remark on chaotic Furuta inequality, Sci. Math. Japon., $53(2001), 535-539$.
[15] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann.,246(1980), 205224.
[16] C.Yang, An order preserving inequality via Furtuta inequality, Sci. Math. Japon., 54(2001), 241-247.
[17] T.Yoshino, Introduction to Operator Theory, Pitman Research Note in Math. Ser., 300, Longman Scientific and Technical, 1993.

Maebashi Institute of Technology,
Kamisadori, Maebashi, Gunma, 371-0816, Japan
e-mail: kamei@maebashi-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A63 and 47A64.
 Key words and phrases. Positive operators, Operator mean, Löwner-Heinz inequality, Furuta inequality, Chaotic order.

