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CHARACTERIZATION OF BEST APPROXIMATIONS IN METRIC
LINEAR SPACES
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ABSTRACT. Let (X, d) be a real metric linear space, with translation-invariant metric
d and G a linear subspace of X. In this paper we use functionals in the Lipschitz dual
of X to characterize those elements of (G which are best approximations to elements

of X.

We also give simultaneous characterization of elements of best approximation and
also consider elements of e-approximation.

1 Introduction and Notation. Let (X, d) be a real metric linear space, with translation-
invariant metric d and G a linear subspace of X. For a given element € X \ G, a best
approximation to x from G is any element gg in G satisfying

d(z,90) = d(z,G) ,

where d(z, G) := inf{d(z,¢) : ¢ € G} the distance from 2 to G. The (possibly empty) set
of all best approximations to z from G is denoted by Pg(z). Thus,

Po(z)={g€ G :d(z,g9) =d(z,G)}.

The mapping Pg : X — 2% which associates with each = in X its set of best approximations
in G is called the metric projection, or nearest point mapping, onto G.

The set G is called
(1) proximinal (or an existence set) if Pg(z) is nonempty for each z in X;

(2) semi-Chebyshev (or a uniqueness set) if Pg(z) contains at most one point for every
zin X;

(3) Chebyshev if G is both proximinal and semi-Chebyshev, i.e.. each point in X has
exactly one best approximation in G.

One of the major problems in Approximation Theory is that of characterizing elements
of best approximation. That is, given an @ € X \ G, how does one characterize elements of
the set Pg(x)?

In the setting of normed linear spaces (X, || - ||), such a characterization can be found in
[2] or [7] in the case where G is a subspace of X, and in [1] in the case where G is a convex
set. The development of a fairly complete and unified theory in normed linear spaces has
been made possible by the existence of non-trivial dual spaces.
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In [6], Pantelidis investigated, inter alia, the question of characterization of best approx-
imations in the setting of metric linear spaces. A characterization of best approximations
in (not necessarily linear) metric spaces was given by Mustata [3].

Let (X, d) be a real metric linear space. A mapping f: X - R is
(a) subadditive if f(z +y) < f(z) + f(y) for all z,y € X;
(b) G-periodic if f(z 4+ g) = f(z) for all # € X and all g € G.

Let x € X and r > 0. By é(m,r) and B(x,r) we mean the sets

o

B(z,r):={y € X :d(z,y) <r}, and B(a,r):={ye X :d(z,y) <r},

respectively.
Denote by
XF={f:X = R:|fla<oo; £(0) =0, fsubadditive },
where 7o)
x
[ flla = L a0
It is easy to show that ||-||4 defines a norm on X#. In fact, (Xg#, II-|l¢) is a Banach algebra.

The space XS‘;HE is called the Lipschitz dual of the space X. If X is a normed linear space,
then X™* C Xg#.

Let G be a subspace of a metric linear space (X, d). Denote by

G+ = {fe XS% : f(g) =0for all g € G}, and for z € X,
()]

dgi(z,0) = sup .
reai\foy IIflla

It is straightforward to show that for each z € X, dgi(z,0) < d(z,0). Note also that G+
is a linear subspace of X#.

Let us first highlight the following important fact:

Lemma 1.1. Let G be a subspace of X and f : X — R be a subadditive function such
that f(0) =0. Then f is G-periodic if and only if f(g) =0 for all g € G.

Proof. Assume that f is G-periodic. Then, we have
flg)=f(04¢9)=f(0)=0 for all g€ G.

Conversely, assume that f(g) = 0 for all g € G. Then for all z € X and all g € G, we have,
by subadditivity of f, that

fa) = flz+9—-9) < f@+9)+ f(=9) = flz +9) < f(z) + f(9) = f(2);
whence f(z +¢g) = f(z) for all 2 € X and all g € G. |
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2 Characterization of Elements of Best Approximation. In this section we give a
theorem that characterizes elements of best approximation from a linear subspace G of a
metric linear space (X, d). It sharpens that given by Pantelidis [6].

Pantelidis [6] gave the following characterization theorem of elements of best approxi-
mation in metric linear spaces.

Theorem 2.1 [6]. Let G be a nonempty linear subspace of a metric linear space X, v €
X\ G, and go € G. Then gy € Pg(z) if and only if there exists an element f € Xf such
that

(i) 1f(z) = f(y)| < d(z,y) for all 2,y € X;
(i) flx +g) = f(x), v € X, g€ G or flg = 0;
(iii) f(z —go) = f(x) = d(x, go)-

It is easy to deduce from (i) that ||f|l < 1.
We show that the f € X# that works in Pantelidis’ theorem can be chosen fron an even

smaller set, namely, the set of all f € Xf of norm 1. This then gives a direct analogue of
a similar characterization in normed linear spaces [7].

Theorem 2.2 (Characterization of Best Approximations). Let G be a nonempty linear
subspace of a translation-invariant metric linear space X, v € X \ G, and go € G. Then
9o € Pg(x) if and only if there exists an element f € XS‘;HE such that

1) 1flla =1
(i) f(g) =0 for all g € G; and
(iii) f(z —go) = f(z) = d(z, g0).
Proof. “=": Assume that go € Pg(x). For all y € X, define
fly) = d(y,G).
We first show that f € X7, It is clear that f(g) = 0 for all g € G.

Let z € X\ {0}. Then |f(z)] = f(z) = d(z,G) < d(z,0), whence

consequently, sup F(2)]

sex\{o} 4(2,0)

Next, we show that f is subadditive. Let y,z € X. Then, by repeatedly using the fact
that d is translation-invariant, we have

<1< oo

= i f d N = i f d Yy — . ’7

fly+2) inf (y+29) ,nf (y—9.9" —2)
< 1 Yy — A r_ =] [ 1 . !
< gylgr,lgG[d(y 9,0) +d(0,9" = 2)] inf d(y,g) + nf, d(z.9")

)+ f(z)-

We have shown that || f||¢ < 1. We need to show that || f|¢ > 1. To that end, let € > 0 be
given. Then there is an element ¢g. € G such that

d(z,G) + e > d(z, ge).
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Since f is subadditive and f(g) = 0 for all ¢ € G, it follows from Lemma 1.1 that f is
G-periodic. Hence

[f(e —go)l = ()] = d(z,G) > d(w,9.) — € = d(x = g, 0) — €.

Therefore
d(x _9670) d(x _9670)
Since € is arbitrary, it follows that || f]]g > 1.
Using Lemma 1.1 again, we have that f(z — go) = f(2) = d(2,G) = d(=, go), which
verifies (iii).
“<”: Assume that there is an f € X# which satisfies (i), (ii), and (iii). For each ¢ € G,

d(z,g0) = f(x) = f(x —g) = |f(x = 9)| <||fllad(z — g,0) = d(x — g,0) = d(x,g).

Hence go € Pg(7). [ |

[ flla =

We now give a characterization of elements of best approximation in terms of the “an-
nihilator” G+ of the subspace G in X#. An analogous result in the setting of metric spaces
is due to Mustata [3].

Proposition 2.3. Let G be a nonempty linear subspace of a translation-invariant metric
linear space X, v € X \ G, and go € G. Then go € Pg(z) if and only if dg+ (2 — ¢o,0) =
d(z, go).

Proof. Assume that go € Pg(z). Since dg(z — go,0) < d(x — go,0) = d(z, go), it remains
to show that dgi(z — go,0) > d(x,go). By Theorem 2.2, there is an element f € X# such
that || f]la =1, f(g) =0 for all g € G and f(z — go) = f(v) = d(2,g0). It now follows that

[f (= = g0)|
[1f1la

Conversely, assume that dg. (2 — go,0) = d(z, go). Then, for each g € G,

d(l’,go) = sup M — sup M
recinvioy N flla reairior N flla

= dGL(;:C—g7O)gd(x—g,()):d(x7g).

dgs (‘T 790:0) 2 = d($,go).

Hence, go € Pg(z). [ |

3 Simultaneous Characterization of Best Approximations. In this section we con-
sider the problem of simultaneous characterization of a set of elements of best approximation
in metric linear spaces. The corresponding theorem in normed space setting can be found
in [7] and in metric space setting in [5].

Theorem 3.1 (Simultaneous Characterization of Best Approxiamtions). Let G be a
nonempty linear subspace of a translation-invariant metric linear space X, v € X \ G, and
M C G. Then M C Pg(z) if and only if there exists an element f € Xf such that

(i) [[flla = 1;
(ii) f(g) =0 for all g € G; and
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(iii) f(z —m) = f(x) = d(x,m) for allm € M.

Proof. The proof is an immediate consequence of Theorem 2.2. ]

Following is a simultaneous characterization of best approximations in terms of the
annihilator Gt of the subspace G in X#. An analogous result in the setting of metric
spaces 1s due to Narang [5].

Proposition 3.2. Let G be a nonempty linear subspace of X, » € X \ G, and M C G.
Then M C Pg(x) if and only if dgi(x — m,0) = d(x,m) for all m € M.
Proof. The proof is similar to that of Proposition 2.3. |

4 Characterization of Semi-Chebyshev Subspaces. In this section we characterize
semi-Chebyshev subspaces of a metric linear space X using elements of the Lipschitz dual
X#. An analogous result in the normed space setting can be found in [7].

Theorem 4.1. Let G be a nonempty linear subspace of a translation-invariant metric
linear space (X, d). The following statements are equivalent:

(1) G is a semi-Chebyshev subspace of X;
(2) There do not exist f € Xg#, 21,29 € X with 21 — 29 € G\ {0} such that
(i) [[flla = 1;
(ii) f(g) =0 for all g € G and
(iii) f(x1) = d(x1,0) and f(x2) = d(x4,0);
(3) There do not exist f € XF, v € X, go € G\ {0} with properties (i), (ii) and
(iii)” f(x) = d(x,0) = d(z,go).

Proof. “(1) = (2)": If (2) fails, then there is an f € Xg#, points zy, x2 in X with
z1 — 22 € G\ {0} and satisfying conditions (i) - (iii) of (2). Let go = 21 — x2. Then, since
f 1s G-periodic and d is translation-invariant,

fler) = f(1 = go) = flw2) = d(22,0) = d(z1 — go,0) = d(x1, o)

Hence go € Pg(x1). Also, f(x1) = f(21 — 0) = d(x1,0) implies that 0 € Pg(x1). Since
1 # 3, 0 and go are two distinct best approximations to z1 in G. Hence G is not semi-
Chebyshev.

“(2) = (3)": If (3) fails, then there are elements f € X, z € X, go € G\ {0} with
properties (i), (ii) and (iii)". Let + = z; and @3 = © — go. Then go € G\ {0}, f(zy) =
d(z1,0) = d(x1,90), and

flz2) = f(z1 — go) = f(z1) = d(21,90) = d(x1 — g0,0) = d(x2,0).

Hence (2) fails.

“(3) = (1)”: Assume that G is not semi-Chebyshev. Then there are elements y € X \
G, g1, g2 € Pg(y) with g1 # ¢2. Let 2 =y —¢1 and go = g2 — ¢1. Then z € X \ G and
go € G\ {0}. Now

d(z,G) =d(y — 91,G) = d(y,G) = d(y, 1) = d(y, 92)-
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Therefore,
d(z,g0) = d(y — 91,92 — 1) = d(y, 92) = d(=, G).
That is, go € Pa(z), and

d(J“’G) = d(y:gl) = d(y - gl,O) = d(“t70)7

whence 0 € Pg(x). By Theorem 3.1, there isan f € Xg# such that || f|l« =1, f(g) =0 for
all g € G and f(x) = d(x,0) = d(z, go). Hence (3) fails. [ |

5 Elements of e-approximation. Let (X, d) be a metric linear space, G a subspace of
X and x € X. For € > 0, denote by

Pi(z):={g € G:d(z,9) <d(z,G) + €}.

Each element of P§(z) is called an e-approximation to ¢ from G. Elements of P§(z)
are also referred to as good approximations.
It € = 0, then P5(x) = Pg(x). It is clear that for each € > 0 and each « € X the set
P& () is nonempty and
Pi(z) =GN B(z,d(z,G) + €).

Let go € G. Then go € P&(x) if and only if G N B(z,d(z,g90) — €) = 0.
The problem of e-approximation consists in characterizing the elements of P&(z) for
each x € X. Following the above observation, this is equivalent to characterizing those

elements go in G for which G N é(:}c d(z,g0) —€) = 0.

Theorem 5.1 (Characterization of elements of e-approximation). Let G be a nonempty
linear subspace of a translation-invariant metric linear space X, » € X \ G, go € G and
€ > 0. Then go € P5(v) if aud only if there exists an element f € X# such that

(i) 1flla = 1;
(ii) f(g) =0 for all g € G; and
(iii) f(z —go) = d(x,g0) — €.
Proof. “=": Assume that go € P&(x). We show that the function f: X — R defined by

fly) =d(y,G) forall y e X

satisfies conditions (i), (ii) and (iii). It follows from the proof of Theorem 2.2 that f satisfies
conditions (i) and (ii). Since go € P&(2) and f is G-periodic, it follows that

fz — go) = f(a) = d(x,G) > d(z,g0) — e,

which verifies (iii).
“&": Assume that there is an element f € Xf which satisfies conditions (i), (ii) and
(iii). For all g € G, we have

d(w,g90) < f(x —go) +¢ flz—g)+e<[flz—g)l+e

[Fllad(z = 9.0) + € = d(z, 9) + €.

IA
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Taking the infimum over all ¢ € G, we get that d(z, go) < d(z, G) + ¢, whence go € P& (z).H

We now give an alternative characterization of e-approximation in terms of the annihi-
lator G+ of the subspace G.

Proposition 5.2 Let G be a nonempty linear subspace of a translation-invariant metric
linear space X, v € X \ G, and go € G. Then go € P,(x) if and only if dgi(z — go,0) >
d(z,g0) —e.

Proof. Assume that gg € P5(z). Then by Theorem 5.1, there is an element f € Xg# such
that || f|l¢ =1, f(g) =0 for all g € G and f(x — go) > d(z,go) — €. Thus,

z —
dGJ. (l’ - (]00) 2 % 2 f(l’ _ gO) 2 d(iﬂ/go) e
Conversely, assume that dg.(z — go,0) > d(z,go) — €. Then, for each g € G,
d(L,go) S sup M-I—G: sup |f($*g>| ‘I’e
reatyoy ISl reairvgoy N flla

- dGJ_(fC*gjO)—FESd($*g70>+€:d($,g)+6.

Taking the infimum over all g € G, we have that d(z,g0) < d(z,G) + € and, consequently,
90 € P&(x). u

The following simultaneous characterization of e-approximations holds.

Theorem 5.3. Let G be a nonempty linear subspace of a translation-invariant metric
linear space X, 1 € X\ G, M C G and € > 0. Then M C P{(x) if and only if there exists
an element f € XS# such that

i) 1flla=1;
(ii) f(g) =0 for all g € G; and
(iii) f(z —m) > d(xz,m) — € for allm € M.

Proof. This is an immediate consequence of Theorem 5.1. |

The following simultaneous characterization of e-approximations in terms of the annihi-
lator G+ of the subspace G holds.

Proposition 5.4. Let G be a nonempty linear subspace of X, x € X \ G, and M C G.
Then M C P§(x) if and only if dgo(z —m,0) > d(xz,m) — € for all m € M.
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