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Abstract. Let (X;d) be a real metric linear space, with translation-invariant metric

d and G a linear subspace of X . In this paper we use functionals in the Lipschitz dual

of X to characterize those elements of G which are best approximations to elements

of X .

We also give simultaneous characterization of elements of best approximation and

also consider elements of �-approximation.

1 Introduction and Notation. Let (X;d) be a real metric linear space, with translation-

invariant metric d and G a linear subspace of X. For a given element x 2 X n G, a best

approximation to x from G is any element g0 in G satisfying

d(x; g0) = d(x;G) ;

where d(x;G) := inffd(x; g) : g 2 Gg { the distance from x to G. The (possibly empty) set

of all best approximations to x from G is denoted by PG(x): Thus,

PG(x) = fg 2 G : d(x; g) = d(x;G)g:

The mapping PG : X ! 2G which associates with each x in X its set of best approximations

in G is called the metric projection, or nearest point mapping, onto G.

The set G is called

(1) proximinal (or an existence set) if PG(x) is nonempty for each x in X;

(2) semi-Chebyshev (or a uniqueness set) if PG(x) contains at most one point for every

x in X;

(3) Chebyshev if G is both proximinal and semi-Chebyshev, i.e., each point in X has

exactly one best approximation in G.

One of the major problems in Approximation Theory is that of characterizing elements

of best approximation. That is, given an x 2 X nG, how does one characterize elements of

the set PG(x)?

In the setting of normed linear spaces (X; k � k), such a characterization can be found in

[2] or [7] in the case where G is a subspace of X, and in [1] in the case where G is a convex

set. The development of a fairly complete and uni�ed theory in normed linear spaces has

been made possible by the existence of non-trivial dual spaces.
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In [6], Pantelidis investigated, inter alia, the question of characterization of best approx-

imations in the setting of metric linear spaces. A characterization of best approximations

in (not necessarily linear) metric spaces was given by Must�at�a [3].

Let (X;d) be a real metric linear space. A mapping f : X ! R is

(a) subadditive if f(x + y) � f(x) + f(y) for all x; y 2 X;

(b) G-periodic if f(x + g) = f(x) for all x 2 X and all g 2 G.

Let x 2 X and r > 0. By
Æ

B(x; r) and B(x; r) we mean the sets

Æ

B(x; r) := fy 2 X : d(x; y) < rg; and B(x; r) := fy 2 X : d(x; y) � rg;

respectively.

Denote by

X
#

0 = f f : X ! R : kfkd <1; f(0) = 0; f subadditive g;

where

kfkd := sup
x2Xnf0g

jf(x)j

d(x; 0)
:

It is easy to show that k �kd de�nes a norm on X
#

0 . In fact, (X
#

0 ; k �kd) is a Banach algebra.

The space X
#

0 is called the Lipschitz dual of the space X. If X is a normed linear space,

then X� � X
#

0 .

Let G be a subspace of a metric linear space (X;d). Denote by

G? := ff 2 X
#

0 : f(g) = 0 for all g 2 Gg; and for x 2 X;

dG?(x; 0) := sup
f2G?nf0g

jf(x)j

kfkd
:

It is straightforward to show that for each x 2 X; dG?(x; 0) � d(x; 0). Note also that G?

is a linear subspace of X
#

0 .

Let us �rst highlight the following important fact:

Lemma 1.1. Let G be a subspace of X and f : X ! R be a subadditive function such

that f(0) = 0. Then f is G-periodic if and only if f(g) = 0 for all g 2 G.

Proof. Assume that f is G-periodic. Then, we have

f(g) = f(0 + g) = f(0) = 0 for all g 2 G:

Conversely, assume that f(g) = 0 for all g 2 G. Then for all x 2 X and all g 2 G, we have,

by subadditivity of f , that

f(x) = f(x + g � g) � f(x + g) + f(�g) = f(x + g) � f(x) + f(g) = f(x);

whence f(x + g) = f(x) for all x 2 X and all g 2 G. �
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2 Characterization of Elements of Best Approximation. In this section we give a

theorem that characterizes elements of best approximation from a linear subspace G of a

metric linear space (X;d). It sharpens that given by Pantelidis [6].

Pantelidis [6] gave the following characterization theorem of elements of best approxi-

mation in metric linear spaces.

Theorem 2.1 [6]. Let G be a nonempty linear subspace of a metric linear space X; x 2

X n G, and g0 2 G. Then g0 2 PG(x) if and only if there exists an element f 2 X
#

0 such

that

(i) jf(x) � f(y)j � d(x; y) for all x; y 2 X;

(ii) f(x + g) = f(x); x 2 X; g 2 G or f jG = 0;

(iii) f(x � g0) = f(x) = d(x; g0).

It is easy to deduce from (i) that kfkd � 1.

We show that the f 2 X
#

0 that works in Pantelidis' theorem can be chosen fron an even

smaller set, namely, the set of all f 2 X
#

0 of norm 1. This then gives a direct analogue of

a similar characterization in normed linear spaces [7].

Theorem 2.2 (Characterization of Best Approximations). Let G be a nonempty linear

subspace of a translation-invariant metric linear space X; x 2 X n G, and g0 2 G. Then

g0 2 PG(x) if and only if there exists an element f 2 X
#

0 such that

(i) kfkd = 1;

(ii) f(g) = 0 for all g 2 G; and

(iii) f(x � g0) = f(x) = d(x; g0).

Proof. \)": Assume that g0 2 PG(x). For all y 2 X, de�ne

f(y) = d(y;G):

We �rst show that f 2 X
#

0 . It is clear that f(g) = 0 for all g 2 G.

Let z 2 X n f0g. Then jf(z)j = f(z) = d(z;G) � d(z; 0), whence
jf(z)j

d(z; 0)
� 1, and

consequently, sup
z2Xnf0g

jf(z)j

d(z; 0)
� 1 <1.

Next, we show that f is subadditive. Let y; z 2 X. Then, by repeatedly using the fact

that d is translation-invariant, we have

f(y + z) = inf
g2G

d(y + z; g) = inf
g;g02G

d(y � g; g0 � z)

� inf
g;g02G

[d(y � g; 0) + d(0; g0 � z)] = inf
g2G

d(y; g) + inf
g02G

d(z; g0)

= f(y) + f(z):

We have shown that kfkd � 1. We need to show that kfkd � 1. To that end, let � > 0 be

given. Then there is an element g� 2 G such that

d(x;G) + � > d(x; g�):
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Since f is subadditive and f(g) = 0 for all g 2 G, it follows from Lemma 1.1 that f is

G-periodic. Hence

jf(x � g�)j = jf(x)j = d(x;G) > d(x; g�) � � = d(x � g�; 0)� �:

Therefore

kfkd �
jf(x � g�)j

d(x � g�; 0)
> 1�

�

d(x � g�; 0)
:

Since � is arbitrary, it follows that kfkd � 1.

Using Lemma 1.1 again, we have that f(x � g0) = f(x) = d(x;G) = d(x; g0), which

veri�es (iii).

\(": Assume that there is an f 2 X
#

0 which satis�es (i), (ii), and (iii). For each g 2 G,

d(x; g0) = f(x) = f(x � g) = jf(x � g)j � kfkdd(x � g; 0) = d(x � g; 0) = d(x; g):

Hence g0 2 PG(x). �

We now give a characterization of elements of best approximation in terms of the \an-

nihilator" G? of the subspace G in X
#

0 . An analogous result in the setting of metric spaces

is due to Must�at�a [3].

Proposition 2.3. Let G be a nonempty linear subspace of a translation-invariant metric

linear space X; x 2 X n G, and g0 2 G. Then g0 2 PG(x) if and only if dG?(x � g0; 0) =

d(x; g0):

Proof. Assume that g0 2 PG(x). Since dG?(x� g0; 0) � d(x� g0; 0) = d(x; g0), it remains

to show that dG?(x � g0; 0) � d(x; g0). By Theorem 2.2, there is an element f 2 X
#

0 such

that kfkd = 1, f(g) = 0 for all g 2 G and f(x � g0) = f(x) = d(x; g0). It now follows that

dG?(x � g0; 0) �
jf(x � g0)j

kfkd
= d(x; g0):

Conversely, assume that dG?(x � g0; 0) = d(x; g0). Then, for each g 2 G,

d(x; g0) = sup
f2G?nf0g

jf(x � g0)j

kfkd
= sup

f2G?nf0g

jf(x � g)j

kfkd

= dG?(x � g; 0) � d(x � g; 0) = d(x; g):

Hence, g0 2 PG(x). �

3 Simultaneous Characterization of Best Approximations. In this section we con-

sider the problem of simultaneous characterization of a set of elements of best approximation

in metric linear spaces. The corresponding theorem in normed space setting can be found

in [7] and in metric space setting in [5].

Theorem 3.1 (Simultaneous Characterization of Best Approxiamtions). Let G be a

nonempty linear subspace of a translation-invariant metric linear space X; x 2 X nG, and

M � G. Then M � PG(x) if and only if there exists an element f 2 X
#

0 such that

(i) kfkd = 1;

(ii) f(g) = 0 for all g 2 G; and
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(iii) f(x �m) = f(x) = d(x;m) for all m 2M .

Proof. The proof is an immediate consequence of Theorem 2.2. �

Following is a simultaneous characterization of best approximations in terms of the

annihilator G? of the subspace G in X
#

0 . An analogous result in the setting of metric

spaces is due to Narang [5].

Proposition 3.2. Let G be a nonempty linear subspace of X; x 2 X n G, and M � G.

Then M � PG(x) if and only if dG?(x �m; 0) = d(x;m) for all m 2M .

Proof. The proof is similar to that of Proposition 2.3. �

4 Characterization of Semi-Chebyshev Subspaces. In this section we characterize

semi-Chebyshev subspaces of a metric linear space X using elements of the Lipschitz dual

X
#

0 . An analogous result in the normed space setting can be found in [7].

Theorem 4.1. Let G be a nonempty linear subspace of a translation-invariant metric

linear space (X;d). The following statements are equivalent:

(1) G is a semi-Chebyshev subspace of X;

(2) There do not exist f 2 X
#

0 ; x1; x2 2 X with x1 � x2 2 G n f0g such that

(i) kfkd = 1;

(ii) f(g) = 0 for all g 2 G and

(iii) f(x1) = d(x1; 0) and f(x2) = d(x2; 0);

(3) There do not exist f 2 X
#

0 ; x 2 X; g0 2 G n f0g with properties (i), (ii) and

(iii)' f(x) = d(x; 0) = d(x; g0).

Proof. \(1) ) (2)": If (2) fails, then there is an f 2 X
#

0 , points x1; x2 in X with

x1 � x2 2 G n f0g and satisfying conditions (i) - (iii) of (2). Let g0 = x1 � x2. Then, since

f is G-periodic and d is translation-invariant,

f(x1) = f(x1 � g0) = f(x2) = d(x2; 0) = d(x1 � g0; 0) = d(x1; g0):

Hence g0 2 PG(x1). Also, f(x1) = f(x1 � 0) = d(x1; 0) implies that 0 2 PG(x1). Since

x1 6= x2, 0 and g0 are two distinct best approximations to x1 in G. Hence G is not semi-

Chebyshev.

\(2) ) (3)": If (3) fails, then there are elements f 2 X
#

0 ; x 2 X; g0 2 G n f0g with

properties (i), (ii) and (iii)'. Let x = x1 and x2 = x � g0. Then g0 2 G n f0g, f(x1) =

d(x1; 0) = d(x1; g0), and

f(x2) = f(x1 � g0) = f(x1) = d(x1; g0) = d(x1 � g0; 0) = d(x2; 0):

Hence (2) fails.

\(3) ) (1)": Assume that G is not semi-Chebyshev. Then there are elements y 2 X n

G; g1; g2 2 PG(y) with g1 6= g2. Let x = y � g1 and g0 = g2 � g1. Then x 2 X n G and

g0 2 G n f0g. Now

d(x;G) = d(y � g1; G) = d(y;G) = d(y; g1) = d(y; g2):
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Therefore,

d(x; g0) = d(y � g1; g2 � g1) = d(y; g2) = d(x;G):

That is, g0 2 PG(x), and

d(x;G) = d(y; g1) = d(y � g1; 0) = d(x; 0);

whence 0 2 PG(x). By Theorem 3.1, there is an f 2 X
#

0 such that kfkd = 1; f(g) = 0 for

all g 2 G and f(x) = d(x; 0) = d(x; g0). Hence (3) fails. �

5 Elements of �-approximation. Let (X;d) be a metric linear space, G a subspace of

X and x 2 X. For � � 0, denote by

P �
G(x) := fg 2 G : d(x; g) � d(x;G) + �g:

Each element of P �
G(x) is called an �-approximation to x from G. Elements of P �

G(x)

are also referred to as good approximations.

If � = 0, then P �
G(x) = PG(x). It is clear that for each � > 0 and each x 2 X the set

P �
G(x) is nonempty and

P �
G(x) = G \B(x; d(x;G) + �):

Let g0 2 G. Then g0 2 P �
G(x) if and only if G \

Æ

B(x; d(x; g0) � �) = ;.

The problem of �-approximation consists in characterizing the elements of P �
G(x) for

each x 2 X. Following the above observation, this is equivalent to characterizing those

elements g0 in G for which G \
Æ

B(x; d(x; g0) � �) = ;.

Theorem 5.1 (Characterization of elements of �-approximation). Let G be a nonempty

linear subspace of a translation-invariant metric linear space X; x 2 X n G, g0 2 G and

� > 0. Then g0 2 P �
G(x) if and only if there exists an element f 2 X

#

0 such that

(i) kfkd = 1;

(ii) f(g) = 0 for all g 2 G; and

(iii) f(x � g0) � d(x; g0) � �.

Proof. \)": Assume that g0 2 P �
G(x). We show that the function f : X ! R de�ned by

f(y) = d(y;G) for all y 2 X

satis�es conditions (i), (ii) and (iii). It follows from the proof of Theorem 2.2 that f satis�es

conditions (i) and (ii). Since g0 2 P �
G(x) and f is G-periodic, it follows that

f(x � g0) = f(x) = d(x;G) � d(x; g0)� �;

which veri�es (iii).

\(": Assume that there is an element f 2 X
#

0 which satis�es conditions (i), (ii) and

(iii). For all g 2 G, we have

d(x; g0) � f(x � g0) + � = f(x � g) + � � jf(x � g)j+ �

� kfkdd(x � g; 0) + � = d(x; g) + �:
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Taking the in�mum over all g 2 G, we get that d(x; g0) � d(x;G)+ �, whence g0 2 P �
G(x).�

We now give an alternative characterization of �-approximation in terms of the annihi-

lator G? of the subspace G.

Proposition 5.2 Let G be a nonempty linear subspace of a translation-invariant metric

linear space X; x 2 X n G, and g0 2 G. Then g0 2 P �
G(x) if and only if dG?(x � g0; 0) �

d(x; g0) � �:

Proof. Assume that g0 2 P �
G(x). Then by Theorem 5.1, there is an element f 2 X

#

0 such

that kfkd = 1, f(g) = 0 for all g 2 G and f(x � g0) � d(x; g0)� �. Thus,

dG?(x � g0; 0) �
jf(x � g0)j

kfkd
� f(x � g0) � d(x; g0)� �:

Conversely, assume that dG?(x � g0; 0) � d(x; g0)� �. Then, for each g 2 G,

d(x; g0) � sup
f2G?nf0g

jf(x � g0)j

kfkd
+ � = sup

f2G?nf0g

jf(x � g)j

kfkd
+ �

= dG?(x � g; 0) + � � d(x � g; 0) + � = d(x; g) + �:

Taking the in�mum over all g 2 G, we have that d(x; g0) � d(x;G) + � and, consequently,

g0 2 P �
G(x). �

The following simultaneous characterization of �-approximations holds.

Theorem 5.3. Let G be a nonempty linear subspace of a translation-invariant metric

linear space X; x 2 X nG, M � G and � > 0. Then M � P �
G(x) if and only if there exists

an element f 2 X
#

0 such that

(i) kfkd = 1;

(ii) f(g) = 0 for all g 2 G; and

(iii) f(x �m) � d(x;m) � � for all m 2M .

Proof. This is an immediate consequence of Theorem 5.1. �

The following simultaneous characterization of �-approximations in terms of the annihi-

lator G? of the subspace G holds.

Proposition 5.4. Let G be a nonempty linear subspace of X; x 2 X n G, and M � G.

Then M � P �
G(x) if and only if dG?(x �m; 0) � d(x;m) � � for all m 2M .
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