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KUBO-ANDO THEORY FOR CONVEX FUNCTIONAL MEANS
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Abstract. Inspired by the geometric mean due to Atteia and Ra��ssouli, we discuss a

general theory of convex functional means on a Hilbert space like the Kubo-Ando theory

of operator means. Though our construction is based on the integral representation in

Kubo-Ando theory, it is an exact extension not only for operator means but also for

Atteia-Ra��ssouli's ones. We give an example where our geometric mean can be de�ned

even if their geometric one cannot. We show that our convex functional means satisfy

monotonicity, semi-continuity, homogeneity, subadditivity, joint concavity, transformer

inequality and normalization. One of outstanding properties of these means appeares in

those for constant functions, which suggests us to weights for operator means.

1. Introduction.

Since we met Ando's lecture note [2], we have been studying operator means, which is

now known as the Kubo-Ando theory. For positive operators on a (complex) Hilbert space

H, the theory of operator means is established axiomatically by Kubo and Ando [11]: An

(operator) connection m is a binary operation on positive operators satisfying the following

axioms:

monotonicity: A1 � A2 and B1 � B2 imply A1 m B1 � A2 m B2.

semi-continuity: An # A and Bn # B imply An m Bn # A m B.

transformer inequality: T �(A m B)T � (T �AT )m(T �BT ).

An operator mean is a connection m satisfying

normalization: A m A = A.

It is easy to show the transformer equality if T is invertible. In particular, we have:

homogeneity: �(A m B) = (�A)m(�B) for every positive number �.

For an operator meanm, the corresponding numerical function fm(x) = 1m x is operator

monotone:

0 � A � B implies fm(A) � fm(B):

This correspondencem 7! fm is bijective. In fact, if f is a continuous nonnegative opeartor

monotone functional on [0;1) with f(1) = 1, then a binary operation m de�ned by

A m B = A1=2f
�
A�1=2BA�1=2

�
A1=2

for positive invertible operators A and B induces an operator mean A m B. As in [7], the

operator meams bijectively correspond to the operator concave functionals on [0; 1] with

F (1=2) = 1=2 by

F (x) = (1� x) m x;
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which shows another construction of operator means by Izumino's method [8]. This fact

is also a bridge between means for operators and ones for positive forms by Pusz and

Woronowicz [14, 15], and two theories are essentially equivalent.

Recently, Atteia and Ra��ssouli introduced the geometric convex functional mean in [3]

which is characterized as the arithmetico-harmonic mean like the iteration method in [6].

As in [10] for example, the notion `Legendre-Fenchel conjugate' f� of a convex functional

f on a real vector space

f�(y�) = sup
x

hx; yi � f(x)

is considered as that of `inverse' in some sense. So they used essentially the harmonic mean

�h de�ned by

f�hg =

�
f� + g�

2

��
:

(In [16], they rede�ne these means on a complex Hilbert space.) Inspired by their convex

functional means, we introduce a class of convex functional means �m corresponding to the

operator means m and show similar properties of �m. Conversely we may de�ne a general

class �0 of convex functional means axiomatically satisfying these common properties for

�m like the Kubo-Ando theory [11]. Finally we see what subclass � corresponds to that of

operator means.

2. The class �.

For our discussion, we summerize properties of a class of convex functionals. Let f be a

lower-bounded convex functional on a (complex) Hilbert space H and

dom f = f x 2 H j f(x) <1 g
the domain of f . If dom f = H, then f is called �nite. Throughout this note, we assume

that f is proper, i.e., dom f is not empty. and f is lower semi-continuous, i.e., the epigraph

epi f = f (x; �) 2 H �R j f(x) � � g
of f is closed. Then let � = �(H) be the proper lower-bounded lower semi-continuous

convex functionals on H. An indicator 1C for a closed convex subset C of H is de�ned by

1C(x) = 0 if x 2 C and 1C(x) = 1 otherwise and it is a simple example in �. A typical

and important example in � is fA for a bounded linear positive operator A:

fA(x) =
1

2
hAx; xi :

The functional fA is called quadratic in the sense that f(
x) = j
j2f(x) for all complex

number 
. For a subspace C, the indicator 1C is also quadratic.

As the researchers on convex functionals have been discussing, the class � is stable

in certain algebraic and topological senses. First it is closed for an key operation called

Legendre-Fenchel conjugate f�. Here, to condider complex spaces, it is de�ned as

f�(y�) = sup
x2H

Re hx; yi � f(x);

where we write y� if y is considered as a functional on H. Then f� is also a lower semi-

continuous lower-bounded convex functional and f�� = (f�)� = f . Note that f� is lower

semi-continuous even if f is not. f�� is often called the closure of f , denote by clf , since

epi (f��) coincides with the closure of epi (f).

Moreover, note that the conjugate operation preserves the quadraticity and if it is induced

by a positive invertible operator, then the conjugate is by its inverse, which is con�rmed in

[16]:
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Lemma 2.1. If f is quadratic, then so is f� and f�
A
= fA�1 :

Proof. Here we show the former statement. Suppose f(
x) = j
j2f(x). Then

f�(
y�) = sup
x

Re hx; �
yi � f(x) = j
j2 sup
x

Re

�
1

�

x; y

�
� f

�
1

�

x

�
= j
j2f�(y�):

Thus this conjugate operation � is considered as the inverse in the sense that f�
A
= fA�1 .

The following properties are easily obtained: For f; g 2 � and every positive number � > 0,

we have

(1*) f � g implies f� � g�.

(2*) (f � �)� = f� � �.

(3*) (�f)�(�y�) = �f�(y�).

For a �nite dimensional case, the epi-convergence, which is characterized by

epi
�
lim
n!1

fn

�
= lim

n!1
(epi fn)

for a product topology in H �R, has been often discussed in this class � as in a standard

text like [17] or [10]. Moreover the Legendre-Fenchel conjugate preserves this convergence.

To extend this property to an in�nite dimensional case, Mosco [13] introduced the conver-

gence M-limn!1 fn, which is now called Mosco convergence, if the following conditions are

satis�ed:

(i) for each x 2 H, there exists xn 2 H with s-lim
n!1

xn = x and f(x) = lim
n!1

fn(xn),

(ii) f(x) � lim inf
n!1

fn(xn) for w-lim
n!1

xn = x.

Then it is also shown that

M-lim
n!1

fn = f if and only if M-lim
n!1

f�n = f�:

Considering such stability for �, Atteia and Ra��ssouli [3] introduced convex functional

means as the geometric mean is expressed by the limit in monotone convergence as the

arithmetico-harmonic one.

3. Parallel addition.

The parallel addition for operators is introduced by Anderson-DuÆn [1] and Fillmore-

Williams [5]. For invertible operators, it is represented by

A : B =
�
A�1 +B�1

��1
;

and in general it is characterized by the formula:

(�) hA : B x; xi = inf
y+z=x

hAy; yi + hBz; zi :

Typical extremal operator means are the arithmetic one A r B and the harmonic one

A ! B = 2(A : B). By L�owner's theory [12], Kubo and Ando [11] showed that the operator

means correspond also bijectively onto the Radon probability measures on [0;1] by the fol-

lowing integral representation: For an operator mean m, there exists the Radon probability

measure �m on [0;1] with

A m B = aA + bB +

Z
(0;1)

(tA) : B
1 + t

t
d�m(t)

where a = �m(f0g) and b = �m(f1g). Thus, roughly speaking, an operator mean is consid-

ered as a convex combination of the arithmetic mean and the harmonic one, or equivalently

the addition and the parallel addition.
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The above formula (�) suggests us that we can make the similar discussion in convex

functionals since the notion `inf-convolution' f � g is de�ned as

f � g(x) = inf
y+z=x

f(y) + g(z):

Unfortunately � is not closed under this operation. In fact,

dom (f � g) = dom (f) + dom (g);

and consequently

1C1 � 1C2 = 1C1+C2

but it is known that, in an in�nite space, C1 +C2 is not always closed even if both C1 and

C2 is closed. For example, for a bounded linear operator A on a Hilbert space H whose

range is not closed, put C1 = H � f0g and C2 = f(x;Ax)jx 2 Hg the graph of A. Then

both C1 and C2 are closed in H �H but C1 + C2 is not, see [9]. Thus f � g is not always

lower semi-continuous. Moreover, even if f �g is lower semi-continuous, we �nd it unsuitable

for a parallel addition for convex functionals in spite of the formula (�) since 2(f � f) 6= f

and 2f � g 6= f�hg if convex functions are not quadratic. However the following result is

known for a real case. Moreover we pay attention to the following useful method to prove

inequality or equality for parallel additions. So we give a proof of it:

Lemma 3.1. If f; g 2 �, then clf � g � (f � g)�� = (f� + g�)�.

Proof. Since

(f� + g�)(y�) = sup
v;w

Re hv + w; yi � (f(v) + g(w))

� sup
v;w

Re hv + w; yi � (f � g)(v + w) = (f � g)�(y�);

we have (f� + g�)� � f � g�� by (1*). Conversely

f � g(x) = inf
y+z=x

f��(y) + g��(z)

= inf
y+z=x

�
sup
v

Re hy; vi � f�(v�)

�
+

�
sup
w

Re hz;wi � g�(w�)

�

� inf
y+z=x

�
sup
v

Re hy + z; vi � (f� + g�)(v�)

�
= sup

v

Re hx; vi � (f� + g�)(v�) = (f� + g�)�(x):

Taking the conjugation twice, we have (f �g)�� � (f�+g�)��� = (f�+g�)�. Thus (f �g)�� =
(f� + g�)�.

Considering these and (3*), we de�ne the parallel addition for f and g by

(f : g)(x) =
1

4
2

�
(f� + g�)

�
�
(x) � 1

4
(f� + g�)

�
(2x):

Note that a functional T f de�ned by T f(x) � f(Tx) for a bounded linear operator T also

belongs to � for f 2 �. By (3*), this implies the following formulae:

(f : g)(x) =
1

4
(f � g)��(2x) = 1

2

�
f� + g�

2

��
(x) =

1

2
(f�hg)(x):

Contrary to such di�erences, all of them are extensions for the parallel addition for

operators:

Theorem 3.2. If A and B are positive operators, then

fA : fB = fA � fB = (f�A + f�B)
� = fA:B :
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Proof. By the formula (�), we have

fA � fB(x) = inf
y+z=x

fA(y) + fB(z) =
1

2
inf

y+z=x
(hAy; yi + hBz; zi)

=
1

2
h(A : B)x; xi = fA:B(x);

so that fA � fB is lower semi-continuous and hence (f�
A
+ f�

B
)� = fA � fB = fA:B by Lemma

3.1. In addition,

fA : fB(x) =
1

4
(f�
A
+ f�

B
)�(2x) =

1

4
h(A : B)2x; 2xi = h(A : B)x; xi = fA:B(x):

Since the harmonic mean should be twice the parallel addition, we claim 2(f : f) = f .

In general, 2(f � f) = f does not always holds, but 2(f : f) = f does, which is the reason

we need the above de�nition:

Lemma 3.3. f : f =
1

2
f for all f 2 �.

Proof. By (3*), we have 2(f : f)(x) = 1
2
(2f�)�(2x) = 1

2
� 2f��(x) = f(x):

The following estimation, which shows that the parallel addition is an operation in �, is

obtained immediately by 4(f : g) = 2(f � g)�� � 2(f � g):
Theorem 3.4. If t 2 dom f and s 2 dom g for f; g 2 �, then

4(f : g)(x) � f(2x � s) + g(s) and 4(f : g)(x) � f(t) + g(2x� t):

In particular, f (resp, g) are normalized in the sense f(0) = 0, then

f : g(x) � 1

4
g(2x) (resp., f : g(x) � 1

4
f(2x):)

The last inequality is represented into a simple one if g (resp., f) is quadratic in the sense

that f(
x) = j
j2f(x) for every complex number 
:

f : g � g (resp., f : g � f):

We are very interseted in quadratic functionals, so we discuss them in the next section.

4. Convex functional means via operator ones.

To consider general means, we show that the parallel addition has properties like operator

means:

Lemma 4.1. For f; g; h; k; fk; gk 2 � and � 2 (0; 1), the parallel addition satis�es

monotonicity: f � h and g � k imply f : g � h : k.

semi-continuity: fn # f and gn # g imply fn : gn # f : g.

subadditivity: (f + h) : (g + k) � f : g + h : k.

joint concavity: (�f + (1� �)h) : (�g + (1 � �)k) � �(f : g) + (1 � �)(h : k).

Proof. If f � h and g � k, then (1*) shows

4(f : g)(x) = (f� + g�)�(2x) � (h� + k�)�(2x) = 4(h : k)(x):

The semicontinuity is obtained by the fact that monotone convergence implies Mosco con-

vergence, see [4]. The subadditivity of inf-convolution follows from

2

�
(f + h) � (g + k)

�
(x) = inf

y+z=2x
(f + h)(y) + (g + k)(z)

� inf
y+z=2x

f(y) + g(z) + inf
y+z=2x

h(y) + k(z)

= 2(f � g)(x) + 2(h � k)(x):
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Taking double conjugate, we have

4(f + h) : (g + k) � 4(f : g) + 4(h : k):

Combining the homogeneity and the subadditivity, we have the joint concavity.

Since the product operation is lacking in the convex functionals, we use instead the

operation

Tf(x) = f(Tx)

for f 2 � and a (bounded linear) operator T on H. Then we show another inverse property

of conjugate:

Lemma 4.2. (Tf)
� =(T�1)� (f

�) for invertible T .

Proof. The required formula follows from

(T f)
�(y�) = sup

x

Re hx; yi � f(Tx) = sup
x

Re


Tx; (T�1)�y

�� f(Tx) = f((T�1)�y�):

Now, considering TfA = fT�AT , we can discuss the transformer inequality:

Lemma 4.3. For f; g 2 �, the parallel addition satis�es

transformer inequality: T (f : g) � (T f) : (T g).

transformer equality: T (f : g) = (Tf) : (T g) if T is invertible.

homogeneity: (�f : �g) = �(f : g) for � > 0.

quadratic preserving: If f and g is quadratic, then so is f : g.

Proof. Since the range of T is a subspace of H, we have

4T (f : g)(x) = 4(f : g)(Tx) �2 (f � g)(Tx) = inf
v+w=2Tx

f(v) + g(w)

� inf
y+z=2x

f(Ty) + g(Tz) =2 ((T f) � (T g)) (x);

which implies the required inequality by taking the conjugation twice. Since X(f + g) =X

f +Xg, Lemma 4.2 implies

4T (f : g)(x) =T ((f� + g�)�) (2x) = ((T�1)�(f
� + g�))

�
(2x)

= ((T f)
� + (T g)

�)�(2x) = 4(T f) : (Tg)(x):

The homogeneity follows from

4(�f : �g)(x) = ((�f)� + (�g)�)�(2x) =
�
�1=�f

� + �1=�g
�
��

(2x)

= �
�
1=�f

� +1=� g
�
��

(2x=�) = �� (f
� + g�)

�
(2x=�)

= � (f� + g�)
�
(2x) = 4�(f : g)(x):

and the quadraticity is preserved by

j
j2(f : g) = (j
j2f) : (j
j2g) = 
f : 
g = 
(f : g):

Now we can de�ne a class of convex functional means �m corresponding to that of

operator means m: First note that f; g 2 � does not always imply f + g 2 �. In fact, if

dom f \ dom g = ;, then f + g �1. So, we assume here

dom f \ dom g 6= ;
when we discuss means of functionals in �. Such a pair (f; g) is denoted by (f; g) 2 �2.

Let m be an operator mean in the sense of Kubo and Ando. Considering its integral

representation, we de�ne the convex functional mean �m associated with m by

(f �mg)(x) = af(x) + bg(x) +

Z
(0;1)

�
1+t

2

f : t 1+t
2t

g
�
(x)

4

1 + t
d�m(t):
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If f and g are quadratic, then we easily have

f �mg(x) = af(x) + bg(x) +

Z
(0;1)

�
(tf) : g

�
(x)

1 + t

t
d�m(t):

In fact, since sf(x) = f(sx) = s2f(x) for quadratic f and s > 0, we have�
1+t

2

f : t 1+t
2t

g
�
(x)

4

1 + t
=

�
(1 + t)2

4
f :

(1 + t)2

4t
g

�
(x)

4

1 + t
= (tf : g)

1 + t

t
:

The above modi�cation is needed for the normalization of the mean as we show in the

below.

For the arithmetic mean �r, the measure is decided by a = b = 1=2 and �r((0;1)) = 0.

For the harmonic mean �!, we have �! = Æf1g, the Dirac measure. For the geometric mean

�], the corresponding measure �] is decided by

d�](t) =
sin �

2

�
p
t(1 + t)

dt:

Here we denote the geometric operator mean by ].

By the above lemmas, we have fundamental properties similarly to operator means, which

forms basic part of an extension of the Kubo-Ando theory:

Theorem 4.4. For (f; g); (h; k); (fk ; gk) 2 �2, � > 0 and � 2 (0; 1), a convex functional

mean �m for an operator mean m is LBPL preserving and has the following properties:

monotonicity: f � h and g � k imply f�mg � h�mk.

semi-continuity: fn # f and gn # g imply fn�mgn # f�mg.
homogeneity: (�f)�m(�g) = �(f�mg).

subadditivity: (f + h)�m(g + k) � f�mg + h�mk.

joint concavity: (�f + (1� �)h)�m(�g + (1 � �)k) � �(f�mg) + (1� �)(h�mk).

transformer inequality: T (f�mg) � (T f)�m(T g).

normalization: f�mf = f .

quadratic preserving: If f and g is quadratic, then so is f�g.

Proof. It suÆces to show the normalization. By Lemma 4.3, we have

4

1 + t

�
1+t

2

f : t 1+t
2t

f
�
(x) =

1

1 + t

��
1+t

2

f
��

+
�
t 1+t
2t

f
����

(2x)

=
1

1 + t

��
1+t

2

f
��

+ t
�
1+t

2

f
����

(2x) =
1

1 + t

�
(1 + t)

�
1+t

2

f
����

(2x)

=
��

1+t

2
f
����� 2

1 + t
x

�
=
�

2
1+t

f�
��� 2

1 + t
x

�

= 1+t

2

(f��)

�
2

1 + t
x

�
= f��(x) = f(x):

Since �m is a probability measure, we have f�mf = f .

Considering constant functions mI where I(x) � 1, we have:

Corollary 4.5. If (f; g) 2 �2, then f�mg is also lower bounded;

f; g �m implies f�mg �m;

and belongs to �. In particular, f; g � 0 implies f�mg � 0.

Recalling that

A m B = A1=2f
�
A�1=2BA�1=2

�
A1=2

for operator mean m for invertible operators, we reconstruct convex functional ones:
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Corollary 4.6. If A is invertible, then

fAmB = A1=2fIm(A�1=2BA�1=2) =
�
A1=2fI

�
�m

�
A1=2fA�1=2BA�1=2

�
:

Here we discuss constant functions I including an extension of Corollary 4.5. Before

considering means for constant functions generally, we give a case of the parallel addition:

Lemma 4.7. (f + tI) : (g + tI) = f : g + tI, tI : sI =
t+ s

4
I for t; s 2 R and f 2 �.

Proof. Observing the proof of the subadditivity, we easily have the former. By (tI)� =

1f0g � tI, we have

4(tI : sI) =
�
(tI)� + (sI)�

��
=
�
1f0g � (t+ s)I

��
= (t+ s)I:

Thereby we have the additivity, or translation invariance of constants:

Theorem 4.8. If c is a real number, m is an operator mean and (f; g) 2 �2, then

(f + cI)�m(g + cI) = f�mg + cI:

Proof. We obtain the result by

(f + cI)�m(g + cI)(x)

= a(f + cI)(x) + b(g + cI)(x) +

Z
(0;1)

�
1+t

2

(f + cI) : t 1+t
2t

(g + cI)
�
(x)

4

1 + t
d�m(t)

= af(x) + bg(x) + (a + b)c

Z
(0;1)

��
1+t

2

f + cI
�
:
�
t 1+t
2t
g + tcI

��
(x)

4

1 + t
d�m(t)

= af(x) + bg(x) + (a + b)c

Z
(0;1)

�
1+t

2

f : t 1+t
2t

g +
c+ tc

4
I

�
(x)

4

1 + t
d�m(t)

= (f�mg)(x) + (a + b)c+ c

Z
(0;1)

d�m(t) = (f�mg)(x) + c:

This theorem shows that convex functional means are reduced to the case for positive

functionals by translation. Recall that the order m � n as operator means is de�ned by

AmB � AnB for all positive operators A and B. By the de�nition via integral representa-

tion, we immediately have a map m 7! �m is order-preserving for positive functionals, and

hence for all functionals in �:

Corollary 4.9. If m � n as operator means, then f�mg � f�ng for all (f; g) 2 �2.

Now we have a formula for means of constant functions:

Theorem 4.10. If r and s are real numbers and m is an operator mean, then

(rI)�m(sI) =

 Z
[0;1]

1

1 + t
d�m(t)

!
rI +

 Z
[0;1]

t

1 + t
d�m(t)

!
sI:

In particular, if m is symmetric, then (rI)�m(sI) =
r + s

2
I.
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Proof. By Lemma 4.7, we have

(rI)�m(sI)(x) = arI(x) + bsI(x) +

Z
(0;1)

�
1+t

2
(rI) : t 1+t

2t
(sI)

�
(x)

4

1 + t
d�m(t)

= ar + bs +

Z
(0;1)

(rI) : (tsI)(x)
4

1 + t
d�m(t)

= ar + bs +

Z
(0;1)

r + ts

1 + t
d�m(t)

=

 Z
[0;1]

1

1 + t
d�m(t)

!
r +

 Z
[0;1]

t

1 + t
d�m(t)

!
s:

By the above, we can de�ne the weight W(�m) by

W(�m) =

Z
[0;1]

t

1 + t
d�m(t):

In fact, we can con�rm that the nonsymmetric degree for the weighted arithmetic, geometric

or harmonic mean is equal to its weight respectively.

5. Quadratic functionals.

To observe the di�erence between operator means and convex functional ones, we con�rm

basic properties for quadratic functionals f in � and discuss when a convex functional mean

is associated by some operator mean. Note that f(0) = 0, f(x) = f(�x) and hence f is

nonnegative by

f(x) =
f(x) + f(�x)

2
� f(0) = 0:

Now we characterize its local boundedness, which is rather `boundedness' for functionals:

Lemma 5.1. Every quadratic functional f 2 � is locally bounded in the sense sup
kxk=1

f(x) <

1 if and only if f is continuous at 0. In this case, f is �nite.

Proof. Suppose f is not locally bounded. Then there exist a sequence of unit vectors xn
with f(xn) > n3. Putting yn = 1

n
xn, we have yn ! 0 by kynk = 1=n while f(yn)!1 by

f(yn) =
1

n2
f(xn) > n:

Conversely suppose there exists M > 0 with sup
x6=0 f(x=kxk) �M . Then

0 � f(x) = kxk2f
�

x

kxk

�
�Mkxk2;

and hence xn ! 0 implies f(xn)! 0 = f(0).

Here we give a proper example in an in�nite space which is not locally bounded. Let

H = `2 with an orthonormal basis fekg. Putting

f

 
1X
n=1


nen

!
=

1X
n=1

n3j
nj2;

we have f is not locally bounded and hence not continuous at 0. In fact, xn = (1=n)en ! 0

while f(xn)!1.

Note that the parallel addition is quadratic preserving:

Lemma 5.2. If f and g are quadratic functionals in �, then so is f : g.
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Proof. Since f and g are quadratic, then

2(f � g)(
x) = inf
y+z=2x

f(
y) + g(
z) = j
j2 inf
y+z=2x

f(y) + g(z) = j
j2 2(f � g)(x):

Taking the conjugation twice, we have 4(f : g)(
x) = 4j
j2(f : g)(x).

A quadratic functional f 2 � is called a PL functional if f satis�es

parallelogram law: f(x + y) + f(x � y) = 2
�
f(x) + f(y)

�
:

For example, consider f(x) = kxk2
p
for the p-(semi)norm on H. Then f is PL functional if

and only if p = 2.

It is easy to see the conjugate preserves PL functionals:

Lemma 5.3. If f is a PL functional, then so is f�.

Proof. For a PL functional f 2 �, we have

f�(x + y) + f�(x � y) = sup
v;w

Re hx+ y; vi � f(v) + hx � y;wi � f(w)

= sup
z1;z2

Re hx+ y; z1 + z2i + hx� y; z1 � z2i � (f(z1 + z2) + f(z1 � z2))

= 2 sup
z1;z2

Re hx; z1i+ hy; z2i � f(z1) � f(z2) = 2 (f�(x) + f�(y)) :

In general, locally bounded PL functionals have good properties:

Lemma 5.4. A locally bounded PL functional f 2 � is �nite, positive and continuous.

Proof. It suÆces to show the continuity. The parallelogram law shows

f(x � 2y) + f(x) = 2 (f(x � y) + f(y)) ;

Considering the di�erence of both sides, we have

f(x + 2y) � f(x � 2y) = 2 (f(x + y)� f(x � y)) :

Then, it follows inductively that

f(x + y)� f(x � y) =
1

2
(f(x + 2y)� f(f � 2y)) = � � � = 1

2k

�
f(x + 2ky) � f(f � 2ky)

�
:

For a �xed vector x, any small number " > 0 and the bound M = supkzk=1 f(z), there

exists K > 0 with
M

2K
(kxk + 1) <

"

2
:

For a sequence yn ! 0, there exists a number N with kynk < 1=2K for all n � N . Then

jf(x + yn)� f(x � yn)j =
1

2K
jf(x + 2Kyn) � f(x � 2Kyn)j

� 1

2K

�
jf(x + 2Kyn)j+ jf(x � 2Kyn)j

�
� M

2K

�
kx + 2Kynk+ kx � 2Kynk

�
� 2M

2K

�
kxk + 2Kkynk

�
<

2M

2K
(kxk+ 1) < ":

Thus f(x + yn)� f(x � yn)! 0 as n!1. Moreover, by the continuity at 0,

f(x + yn) + f(x � yn) = 2 (f(x) + f(yn)) ! 2f(x);

and consequently f(x + yn)! f(x), which shows the continuity.
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As usual, we can identfy a continuous PL functional with a quadratic one for positive

operators:

Lemma 5.5. If f is a locally bounded PL functional in �, then it is the quadratic functional

fA for some positive operator A on H.

Proof. Note that f is continuous. So, similarly to the von Neumann-Jordan theorem, we

can de�ne a continuous positive sesquilinear form � by the polarization identity

4�(x; y) = f(x + y) � f(x � y) + if(x + iy) � if(x � iy):

Thereby there exists a bounded linear positive operator A as its Radon-Nikodym type

derivative with f = fA.

One of the outstanding properties of the parallel addition is LBPL preserving in the sense

that f : g is a locally bounded PL functional in � if f and g are so:

Lemma 5.6. The parallel addition are LBPL preserving.

Proof. By Lemma 5.3, the parallel addition is also PL preserving. The local boundedness

follows from Theorem 3.4 and Lemma 5.1.

Theorem 5.7. Convex functional means associated by operator ones are LBPL preserving.

Finally, like the Kubo-Ando theory, we attempt to de�ne convex functional means ax-

iomatically. Let �0 be the class of convex functional means f�g 2 � for (f; g) 2 �2 which

satis�es the monotonicity, semi-continuity, homegeneity, transformer inequality and normal-

ization. This class �0 is worth considering by the following result for constant functionals

corresponding to Theorem 4.10:

Theorem 5.8. F = (�I)�(�I) is a constant functional for � 2 �0.

Proof. By the transformer equality for invertible T , we have

F = (�I)�(�I) = (T (�I)) � (T (�I)) = T ((�I)�(�I)):

For all nonzero vectors x and y, we can take an invertible operator T with Tx = y, and

consequently F (x) = C for some C 2 R for all nonzero vectors x. Suppose F 6= CI. Then,

by F 2 �, we have F (0) = C and F (x) =1 for x 6= 0. Then, by the homogeneity,

Fn(x) �
��
n
I
�
�

�
�

n
I

�
(x) =

1

n
F (x) =1

for all nonzero x while the semicontinuity implies Fn # 0I, which is the contradiction.

To connect convex functional means to operator ones, we consider a subclass � of �0 in

which � is LBPL preserving. Let �0 be the locally bounded PL functionals in �. Restricting

ourselves to �0, we have a �nal theorem like the Kubo-Ando theory (Here the order is de�ned

as in Corollary 4.9) :

Theorem 5.9. The map, m! �m

���
�0

, gives an order-preserving bijection from the class of

operator means onto �
���
�0

.

Proof. Let � 2 �. Since � is LBPL preserving, then fA�fB is also locally bounded PL

functional and hence equal to fC for some positive operator C, say A m B. Then the binary

operation m on positive operators satis�es also the monotonicity, the semi-continuity, the

transformer inequality and the normalization in the operator sense, that is,m is an operator

mean by the Kubo-Ando theory [11]. The injectivity is clear since all functionals belong to

�0 here.
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Finally, we pay attention to the relation to Atteia and Ra��ssouli's means [3]: Their

harmonic mean f�hg is de�nd using the conjugates by

f�hg =

�
f� + g�

2

��
;

which is also available in a complex space in [16]. On the other hand, our harmonic mean

f�!g is 2(f : g); so that, they coincide. Thereby their convex functional means which are

based on this harmonic one belongs to our class � at least when we discuss functionals in

�0. For example, recall that their geometric mean � in [3] is de�ned also as the arithmetico-

harmonic mean:

Theorem 5.10. If f and g belong to �0, then f�g = f�]g.

Proof. The mean f�g is de�ned as s-lim
n!1

f
ng = s-lim
n!1

f
�ng by the following sequence:

f
0g = f�rg; f

�

0g = f�!g; f
ng = (f
n�1g)�r(f

�

n�1g); f

�

n
g = (f
n�1g)�!(f


�

n�1g):

Clearly, we have 
n and 
�
n
are convex functional means associated with the corresponding

operator means rn and !n. Thus they have the integral representation with the corre-

sponding measure �rn
and �!n . Moreover they are determined only for operators. Since

fA�fB = fA]B = fA�]fB, we have they coinside.

In [16], the geometrico-harmonic mean f�ghg also intorduced, which is equal to �gh
associated with the geometrico-harmonic operator mean gh for quadratic convex functionals

with the same domain in �0. Clearly other means in [3] coincide with our ones for convex

functionals with the same domain. But the following example shows that our means can be

de�ned even if dom f 6= dom g. Thus we have an exact extension for their convex functional

means, even for the geometric mean:

Example. Let C and D be one-dimensional subspaces orthogonal each other. Then E =

C +D is the closed (2-dimensional) subspace. Thereby, similarly to the paragraph before

Lemma 3.1, we have and hence

1C : 1D =
1

4
1(C+D)=2 = 1E=2 = 1E;

so that

g1 � 1C�h1D = 1E

by s1C = 1C for all s > 0. On the other hand, it is easy to see

1C + 1D = 1C\D = 1f0g and hence f1 � 1C�a1D = 1f0g

for the aritmetic mean �a. Thereby

g2 � f1�hg1 = 1f0g+E = 1E = g1 and f2 � f1�ag2 = 1f0g\E = 1f0g = f1:

Thus this procedure shows fn = f1 6= g1 = gn for all n, and hence they cannot coincide and

their geometric mean cannot be de�ned.

On the other hand, since

1+t

2

1C : t 1+t
2t

1D = 1 2
1+t

C : 1 2t
1+t

D = 1C : 1D = 1E

for all t > 0, then our geometric mean �] is

(1C�]1D)(x) =

Z
(0;1)

1E(x)
4

1 + t
d�](t) =

Z
(0;1)

1E(x)d�](t) = 1E:

Moreover this computation shows that

1C�m1D = 1E
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if the measure �m for an operator mean m satis�es �m(f0g) = �m(f1g) = 0 like the

geometric operator mean ].
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