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ON MINIMAL OPEN REFINEMENTS
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ABSTRACT. It is proved first in this paper that all weakly xf-refinable spaces which
were defined recently in [4] are irreducible for any infinite cardinal k, i.e. any open
cover of such spaces has a minimal open refinement. The special case Kk = Ry has
been proved before by J.C.Smith. A generalization of weakly xf-refinable and weakly
8f-refinable spaces is defined as weakly d.8-refinable and it is proved for x = N, that
any Woqi-compact, weakly d,6-refinable space has the Lindel6f number < R,. Thus

it is shown as a corollary that a regular, perfect, Rj-compact 1 space is hereditarily
paracompact if it is weakly df-refinable.

0. Introduction and Definitions

Let X be a topological space without any separation axiom. If G is a family of nonempty
open subsets of X which is not necessarily a cover, then the set {z € X : n < ord(z,G)}
may be empty but is always open and thus {z € X : ord(z,§) < n} is closed for each n € N,
As is well known ord(z,G) denotes the cardinality of the subfamily {G € G : x € G}. For
any family A of subsets of X we briefly write | J A instead of [J{A : A € A}. We also write
A(B) in this paper exclusively for the family {AN B : A € A} for any subset B of X. A
sequence {G,}22 ; of open covers of X is called a 6-cover iff for each © € X there exists an
ny € N such that ord(z,G,,) < wo. The space X is called f-refinable iff each open cover
of X has a #-cover refinement. The property of 8-refinability is one of the most natural
generalizations of metacompactness and subparacompactness, the two most widely known
generalized covering properties after paracompactness. This concept has been defined in
1965 by Worrell and Wicke in [9]. They proved some interesting characterizations in that
paper including I) A topological space is paracompact and Tj iff it is collectionwise normal,
f-refinable and Ty; II) A topological space is developable iff it is essentially 7} (i.e. the
closures of any two singletons is either equal or disjoint), f-refinable and has a base of
countable order. Spaces that are f-refinable are also known as submetacompact.

A sequence {G, }52 ; of open families (which are not necessarily covers) of X on the other
hand is called a weak #-cover (resp. weak §6-cover) iff 1) the family G = Uzozl G, 1s an
open cover of X and 2) for each x € X there exists an n, € N such that 0 < ord(z,Gn,) < wy
(resp. 0 < ord(w,Gn,) < wg). This sequence is called a weak #-cover (resp. weak 86-
cover) iff the following extra condition holds : 3) The countable open cover {|JG,}72,
is point-finite. Weakly #-refinable , weakly #6-refinable , weakly f-refinable and
weakly d6-refinable spaces can be defined similarly. Worrell and Wicke have proved in
1976 that IIT) Any weak 66-cover of a countably compact space has a finite subcover, see
[8]. Thus they have obtained the following strong generalization of the well known theorem
of Arens and Dugundji : IV) A space is compact iff it is countably compact and weakly
§@-refinable. Weakly #-refinable (resp. weakly #-refinable and weakly 6-refinable ) spaces
were defined by Bennett and Lutzer (resp. by J.C. Smith) in the paper [1] (resp. [6]). As
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is well known an open cover U of a topological space X is called minimal iff X # (JU’
holds for any proper subfamily U’ of . Bennett and Lutzer have proved in [1] that V)
Quasi-developable spaces are weakly #-refinable and Smith proved on the other hand in [6]
that VI) Any open cover of a weakly #-refinable space has a minimal open refinement, a
property which is called irreducibility by J.Boone in his paper [2].

Let % be an infinite cardinal number. An open cover G of X is called a weak r6-
cover if G can be written as G = Ua<n G, so that the following two conditions hold: i)
Vo € X, Jo, < &, 0 < ord(z,G,,) < wp and ii) {{JGa ta<x is point-finite cover in X. This
type of covers and weakly xf-refinable spaces are constructed recently in [4]. S.Fast and
J.C.Smith have defined on the other hand in 1995 a weakly f-refinable normal T, space
which is not B(D,wyp)-refinable, where a topological space X is called B(D, \)-refinable
for any infinite ordinal number A iff every open cover of X has a refinement K = J, ., Ka
such that 1) each Uﬂ<a(U K3) is closed for any o < A and ii) each K, is relatively a closed-
discrete family in the open subspace Xo = X — Uz ,(UKp) (a < A), see [5]. D denotes
the relative discreteness of each K, in X, in the symbol B(D, \). This concept has been
defined in 1980 by J.C.Smith [7], after the joint paper of J.Chaber and H.Junnila [3]. He
proved among several results in [7] that every B(D,wy )-refinable space is weakly 6-refinable.
If one writes closed-locally finite instead of closed-discrete in condition ii) above then one
gets the weaker concept B(LF, \)-refinability. Several related papers on irreducibility can
also be found in the reference list of [7].

The aim of this paper is expressed in the abstract.

1. Results on irreducibility

We prove in this section that every open cover of any weak sf-refinable space has a
minimal open refinement whatever the infinite cardinal number « is, i.e. these spaces are
irreducible for any infinite k. We need first some preparatory propositions and lemmas. A
family A of subsets of X is called s-discrete if it can be written as the union J, ., Aa
of k¥ many discrete families of X. An Fy-subset of X is a subset which can be written as
the union x number of closed subsets of X. The dual concept of G, -subsets can be defined
similarly. X is called sk-perfect iff each open set in X is an Fj-set.

We start with the following basic results:

Lemma 1 (J.C.Smith, [6]) : IfU = {U, : a« € A} is a minimal open cover of X then
there exists a discrete family K = {K, : a € A} of non-empty closed subsets of X such that
Ko CUa —Upzo Us for each a € A.

Proof: Straightforward.

Proposition 1 : Let F' =, ., Ko be an F,-subset of X such that each union U,3<a Kp s
closed for each o < k. If there exists an open minimal cover Uy, (in X)) of KQ—Uﬂ<Q(U Ug)

for each a <k then U =, ., Ua has a minimal open refinement in X covering F.

Proof: This is nothing but Lemma 3.3 in [7].

Corollary 1 (J.C.Smith, [6]) : Let F =], _, K, be an F, subset of X and let {U,}32,
be a sequence of open families of X such that each Uy is a minimal cover of Kn—|J; .., (\UUk).

Then U = J,_, Un has an open refinement in X covers F minimally.

Corollary 2 : Let Fy C Fy and F; (i = 1,2) be closed and let Uy (resp. Us) be an open
family in X covering Fy (resp. Fy—|JU1) minimally. Then Uy Uly has an open refinement
in X covers Fy manimally.
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Proposition 2 : Let G be a collection of open sets in X. Suppose there exists a k-discrete
collection K = Uo‘<,< Ko of nonempty closed subsets of X such that K refines G and the
union U5<a(U Kg) is closed for each a < k. Then there exists an open refinement U of G
which covers the set | JK minimally.

Proof: Let Ko = {RKap @ f € Aq}. Choose a Ga g € G with Ky 3 C Ga,p for each
B € Ao, @ < k. Let Upg = Gog — [ U{Ko,s : & € Ag with 6§ # [} for each 8 € Ay and let
Uy ={Uop : B € Ao}. Now, let a < & and assume that {Us : § < a} have been already
constructed. Furthermore let A* = {8 € Ay : Ko 3 — .., (UUy) # 0}. For each 3 € A%,

let us define now

Uas = Gap — (| UJK)) U {Kas 16 € Ao — {B}})).

v<a

v<a

Let Uy = {Ua g : f € AL} By induction, {U, : @ < k} is now constructed. Note that it
satisfies Uq,<a(U K, C U7<Q(U U,) for each o < k. Here we set U = |, ., Uo. We show
that U is a refinement of G which covers | JKX minimally. Clearly, ¢ refines G. Pick any
¢ € UK. Find ag € & with z € |JKq, — <U7<00(U ICV)). Assume v ¢ |, ., (UUy). Take
Bo € Aoy with @ € Kqg g, Since v € Kag 5, — U, <o, (UUy), we have By € A . Hence it
follows that = € Ua, g, € Ua,. This implies that [JK C [JU. On the other hand, take any
Usp € Uy CU. Tt follows from § € A that K, g — U»\/<a(U U,) # 0. Tt is easily verified
that each member V € U with V # U, 3 does not meet this nonempty set. Therefore, I is
a minimal cover of [ J K.

Corollary 3 (J.C.Smith, [6]) : Let K,, = {K(o,n) : o € A,} be a discrete family of
closed subsets and let U, = {U(a,n) : a € A,} be an open family such that K(a,n) C
Ula,n) for each n € N and o € A,. ThenU = |J;—, Un has an open refinement in X
covers the set |, (UK,) minimally.

Corollary 4 : Let K be a nonempty closed subset of X and let the family G of open subsets
of X be a cover for K. If there exists a r-discrete collection K = |, Ko of nonempty
closed subsets of X such that K refines G, covers K and of U5<Q(U Ks(K)) is closed for

each o < Kk, then there exists an open refinement of G covers K minimally.
Proof: Notice that K =, .(UKa(K)) = JK(K).

Remark 1 : Let G = Uoz<n Go be a weak kO-cover of X where G, = {Gaop : B € A}
Now we are going to define the following K,, ,, sets of X which are closed. They have an
important role in the proof of Proposition 3. Let

Kpm={reX:1) ord(x,G*) < norii) ord(z,G*) = n and Ja < k,0 < ord(z,Gq) < m}

where G* denotes the open cover {{J Gata<xr and n,m are positive integers. By hypothesis
G* is point-finite i.e. 0 < ord(z,G*) < wy for each # € X. Notice that K, ,, is closed since
if ¢ ¢ Ky, m, then we either have i) n < ord(z,G*) or ii) ord(z,G*) = n and m < ord(z, Ga, )
for each indice ap < k where v € | JGa, (k=1,2,...,n) holds; and z has evidently an open
nbhd missing K, y, in each cases. Notice also that

Knm C Kpme if m<m

and one can also easily notice that

Kno= Kpm={re X ord(z,G*) <n}

1

e
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is closed and contained in K,41,1. These notations are used in the next two propositions.
We utilize a method of J.C.Smith.

Proposition 3 : Let G, = {Gap: € Ao} for cach a <k and let G =, Ga be a weak
k0-cover of X. If G has a refinement Un,m covering Ky n minimally, then G also have open
refinements Uy m41 and Vi ma1 covering Kn my1 — | JUn m and Ky mi1 minimally.

Proof: During the proof the positive integers n and m are fixed. We suppose that K, p41—
Uy is nonempty since otherwise the statement is clear. Let us define

F(a,A) = ﬂ G@’B n Ag’m_i'_‘] n (IX’n’m+1 — Uun’m)

BeA

for each A € [A,]™T! where Agmyr = {z € X 1 0 < ord(z,G4) < m + 1} and let
Fo =A{F(a,A): A € [A,]"1'}. We claim that F = |J,., Fo is a s-discrete collection of
closed sets and covers Ky, ;41 — [ JUn,m. The covering assertion can be proved easily since
Knms1 —UUUnm € Knmg1 — Ko CH{2r € X ord(2,G%) = n and 3o < x,ord(z,G,) =
m + 1}. Now let us prove that the family F, is discrete. Take any point » € X. If
ord(z,G*) < n then = € Kym C UUnm, and if n < ord(z,G*) then z € X — K, ..
Therefore x has an open basic nbhd disjoint from K, ;my1 — JUn,m in both cases. Now let
us suppose that ord(z, G*) = n. If & € [ G, then there are suitable indexes o, ag, ..., o, all
different from o such that 2 € (), .;<,,(U Ga, ) and this intersection set is open and disjoint
from mﬁeA Ga,gNKy myr for each A € [AL]™T! since we evidently have ﬂﬂGA Go,s CUGa.
If # € UG, we should just examine the case m + 1 < ord(z,G,) since otherwise we would
have € Kpm C JUp m. If now m+ 1 < ord(x,Ga) holds then the open set {y € X :
m+1 < ord(y,Ga)} contains @ and disjoint from | J Fo. Finally if ord(z,Gs) = m + 1 holds
then there is a A, € [A4]™T?! such that « € (sea, Ga,p and this open set does not meet
the set F(a,A) for any A # A, A € [A,]™". One can easily and similarly observe that all
members F(a, A) of F, are actually closed. We now claim that each union

U (U ‘Fﬁ(Kn,erl - UunM))

B<a
is closed for any a < k. For simplicity let us write K = Ky, yup1 — JUn m and E, =
U’5<a(f3(l&’)). Notice first that £, C K. Take any point « € X — E,. If v € X — K then
clearly this open set does not intersect E,. Suppose now that @+ € K — E,, and let us write
explicitly all indices ay,as,...,a, such that x € |JG,, for each 1 < i < n. Suppose some
of them, say, aq,a9,...,ar are less than o and all others are equal or greater than «. Our
first important observation is that = belongs to open

W, = ﬂ {ye X :m+1<ord(y,Ga;)}
1<i<k

which is certainly disjoint from (), <;<; (U Fa; (K)). In fact if ord(x, Ga, ) < m +1 holds for
instance, then we would have first ord(z,Gq,,) = m + 1 (by remembering ord(z,Gq, ) < m
yvields the contradiction # € K, 5 C Uy m) and then we would have the contradiction

v Fla, M) N K C|JFa, (K) € |J(JFs(K)) = Ea
B<a

for some appropriate subindex set A; € [A,,]™ "L, Since we also have o < ag4y,...,a < a,

and = € (Vi ci<,([UGa;), one can easily prove that the open set

wen () (UG

k<i<n



ON MINIMAL OPEN REFINEMENTS 295

does not intersect E,. Thus our claim has been proved now. Then G has an open refinement
in X covering K = K, ;41 — JUpn, m minimally by Corollary 4. The proposition follows
from Corollary 2.

Proposition 4 (Continued) : IfG has an open refinement U, ., covering K,, o, = Uizl Kpom

minimally, then G also have open refinements covering respectively Kny11 — |JUn o and
Kyt1,1 minimally.

Proof: Since
Kyp1q — Uuw C{r e X :ord(z,g*) =n+1 and Ja < k,ord(z,Gq) =1}

it is not difficult to prove that the family F, = {F(a,A) : A € [A,]'} is closed and discrete
in X for each o < k whereas

F(oz, A) = ﬂ GO,”@ n Aa,l n (I{n-ﬂ—l,l — Uun.’w)

BEA

for each A € [A,]" and Ayy = {2 € X : ord(2,G,) = 1}. Besides F = Uacr Fao is a
k-discrete family covering K411 — |JUn o and Uﬁ<a(U Fs(Knt11 —JUnw)) is closed for
any « < k. Thus the proof can be achieved just as in the above proposition.

Theorem 1 : Weakly xf-refinable spaces are irreducible.

Proof: Let a weak x-cover G = Ua<rk Ga of a weakly xB-refinable space X be given. Then
the set Ky 1 i.e. the set of all points » € X satisfying the condition

ord(z,G*) =1 and Ja, <k, ord(z,G,,) =1,

is closed as we have already noticed. Now let F(a,A) = ﬂ,@eA GapNAs1 NEKq; asin
the proof of Proposition 3 where A € [A,]' and A, = {2 € X : 0 < ord(2,G,) = 1}.
Then it is not difficult to observe that all unions (J;_ (U Fa(K1 1)) are closed for each
a <k, where F, = {F(a,A) : A € [Ay]'}. Thus K ; can be covered minimally by an open
refinement Uy 1 of G. The closed subsets K, », and K, o (n,m € N) defined in Remark 2
satisfy the inclusions K11 C K12 C ... C K1, CKy1 CKy2C...C Ky, CTK31C...
and besides X is the union of these sets. It is proved in Proposition 3 and Proposition
4 that there exists a sequence of open families Uy 1,U12,..., U1 w,Usz 1,... such that each
is a refinement of G and moreover Uy m41 (resp. Uny11) covers Ky myr — UUn,m (resp.
Kpt11— U, o) minimally. Thus this theorem follows after Corollary 1, i.e. G has an open
refinement covering X.

Corollary 5 (J.C.Smith, [6]) : Weakly 8-refinable spaces are irreducible.
Proof: Weakly f-refinable spaces are nothing but weakly No#-refinable spaces.

Remark 2 : Thus we have shown the following interesting result above: As long as
the open cover G* = {|JGa}a<x is point-finite and the basic condition (Vo € X, 3o, <
k,ord(x,Ga, ) < wo) is satisfied, it is completely irrelevant what the infinite cardinal num-
ber k actually is in the process of getting the conclusion of the existence of a minimal open
refinement of the open cover G = Uoz<){ Ga.

2. Results on Lindelo6f number

The primary aim of this section is to prove the Theorem 2 and Corollary 10.
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Remark 3 : If A is a subset in any topological space X and the open family G is a cover
for A then it is well known that there exists a maximal subset M4 of A by utilizing Zorn’s
Lemma such that M4 C A C st(Ma4,G) and st(2,G) N M4 = {z} for each v € M 4. This
set is evidently a discrete subset in X and is called a maximal distinguished subset of
A with respect to the open family G. The following lemma is important and useful in this
section. All topological spaces in this section are T7.

Lemma 2 (Continued) : My is a closed-discrete subset in X if there exists a closed set
K satisfying Ma C K C|JG.

Proof: Let us take any point #+ € X — M4. If £ € X — K then z evidently has an open
basic nbhd disjoint from M 4. If on the other hand © € X — M4 then by choosing a member
G € G satisfying © € G one can easily define an open basic nbhd U, of = contained in G
and disjoint with M4 since G N M4 is finite and therefore closed in the Tj space X (we
even have |[GNMy| < 1) and 2 ¢ GN M4. Thus X — M4 is in fact open.

One should remember here that a topological space is called R,-compact iff every
closed-discrete subset A of X has cardinality less than N,. As is well known A is closed-
discrete iff the derived set A%, i.e. the set of the all limit points of A in X, is empty, and X
is Ry-compact iff every net which is directed by an index set with cardinality X, has at least
one adherent point. The cardinal number R, will be written briefly as x in Theorem 2 and
thereafter. Thus «t denotes as usual its immediate successor Nqy1; w, denotes the least
ordinal number having the cardinality R,. The Lindel6f number L(X) of a topological
space X on the other hand, as is well known, is the least infinite cardinal number having
the property that every open cover of X has a subcover with cardinality < L(X). Thus
X is a Lindeldf space iff L(X) = Rg. It is not difficult to observe that X is R,-compact if
L(X) <R,. Let us give now the definition of the basic concepts of this section.

Definition: An open cover § = UQ<K Go is called a weak §.6-cover iff i) each G, is
an open family, ii) for each @ € X there exists an a, < k such that ord(z,G,,) < wo,
iil) G* = {{UGa o<k is point-finite. A topological space X called weakly ¢, 60-refinable iff
every open cover of X has a weak §,6-cover refinement. These concepts generalize evidently
both weakly rxf-refinable spaces and weakly d6-refinable spaces. On the other hand X is
called weakly 4.60-refinable iff each open cover of X has a weak §.0-cover refinement

where an open cover G = UO,<N G, is called a weak d,6-cover iff conditions i) and ii) hold.

Theorem 2 : An R, yi-compact weakly §,.0-refinable space X has the Lindeléf number
L(X) <R,.

Proof : Let G = Ua<,€ G, be a weak §,.0-cover of the R, 41-compact space X. We first
prove the following claim: If the closed set F,, = {z € X : ord(z,G*) < n} (n € N) is
covered by a subfamily U, of G satisfying |[i,,| < R, then F},1; is also covered by a similar
subfamily. Here G* denotes, as in the above definition, the open cover {|JGuo}a<xk. Let us

define now
K(A) = (Foy1 — Uun) n ﬂ (U Ga)

aEA

for each A € [w,]"t!. It is not difficult to observe that each K(A) is closed in X for any
A € [wa]™ T in fact any point @ € X — K(A) has an open basic nbhd disjoint from K(A) if
€ X —(Fpp1—UUn) or x € (Foy1 —JUn)— K(A) since we evidently have F,,11 —|JU, C
{z € X :ord(2,G*) = n+1}. It isnot difficult to observe that K, 41 = {K(A) : A € [wa]" T}
is actually a discrete family in X. Now let for each A = {ca; : 1 <i <n+1} and a; € A,
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M(A, ;) be a maximal distinguished subset of {x € K(A) : 0 < ord(z,G,,) < wo} with
respect to Gqo,. Bach M(A, ;) set is closed-discrete in X after Lemma 3 since M (A, o;) C
K(A) € |JGq,. Furthermore we have

n+1 n+1
U M(A, i) € K(A) € [ st(M(A, ai), Ga).
=1 =1

Thus each K(A) € K41 can be covered by a subfamily of G having cardinality < ¥,. Since

Fopr € JUn U J{E(A) 1 A € [wa]"T}

our claim is established now. Consequently the theorem follows easily since Fy can evidently
be covered by a subfamily ; C G with |U;]| < R, and we furthermore have X = Unm:1 F,.

As an immediate consequence of Theorem 2, we have the following generalization of

J.C.Smith [6, Theorem 3.6]:
Corollary 6 : Any Nq-compact weakly 6.0-refinable Ty space is Lindelof.
Corollary 7 : Every countably compact weakly 8,.0-refinable Ty space is compact.

Proposition 5 : An N, 41-compact weakly §,0-refinable space X has the Lindeldf number
L(X) <R, if every closed set in X is a Gy-set.

Proof : Let {Gala<xk be a weak 6,6-cover for X and let each |G, be written as the
union UB<I{ Ko, p where each K, g is closed for each o < k and 3 < k. Let Fy g(~) be the
maximal distinguished subset of

Eop(v)={r € Ko p3:0<ord(z,Gy) <Ry} (v < k)

with respect to G, which is closed-discrete in X as we have shown in Lemma 3. Then we
have Ko, 5 = UW,<K Eq 5(7) and Eq 3(7) C st(Fa (), G+). It is not difficult to see now that
the cardinality of this star set is not greater than R,. Thus each I, s satisfles | Ko 5| < R,.

Theorem follows now.

Corollary 8 (J.C.Smith, [6]) : Every weak 86-cover of a perfect Ny-compact Ty space
has a countable subcover.

Proposition 6 : FEvery subspace in any k-perfect, Roy1-compact, weakly §,0-refinable Ty
space has Lindelof number < R,.

Proof : Let X be a T} space possessing all the properties of the hypothesis. It is certainly
sufficient to prove L(Xy) < N, for any non-empty open subspace Xg of X. Let Xy be the
union Ua<,€ K, of the closed subsets K, of X and let A C Xy be a subset whose derived
set in the subspace X is empty. Then we have UQ<K(‘4d NK,) = AYN X, =0, and thus
|Ko N A| < & for each a < &, since (K, N A)? C K, N AY. Thus A = Uacn(AN Ky)
has cardinality < k. It is also straightforward to observe that Xy is a weakly §,6-refinable
subspace. Therefore this proposition follows from Proposition 4.

Corollary 9 (J.C.Smith, [6]) : Any perfect, Ri-compact, weakly 66-refinable Ty space is
hereditarily Lindelof.
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Corollary 10 : Any perfect Ry-compact weakly 66-refinable reqular Ty space is hereditarily
paracompact and thus hereditarily irreducible.

Proof : It is well known that every regular Lindelof 77 space is paracompact.
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