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Abstract. It is proved �rst in this paper that all weakly ��-re�nable spaces which

were de�ned recently in [4] are irreducible for any in�nite cardinal �, i.e. any open

cover of such spaces has a minimal open re�nement. The special case � = @0 has

been proved before by J.C.Smith. A generalization of weakly ��-re�nable and weakly

Æ�-re�nable spaces is de�ned as weakly Æ��-re�nable and it is proved for � = @� that

any @�+1-compact, weakly Æ��-re�nable space has the Lindel�of number � @�. Thus

it is shown as a corollary that a regular, perfect, @1-compact T1 space is hereditarily

paracompact if it is weakly Æ�-re�nable.

0. Introduction and De�nitions

Let X be a topological space without any separation axiom. If G is a family of nonempty

open subsets of X which is not necessarily a cover, then the set fx 2 X : n < ord(x;G)g

may be empty but is always open and thus fx 2 X : ord(x;G) � ng is closed for each n 2 N.

As is well known ord(x;G) denotes the cardinality of the subfamily fG 2 G : x 2 Gg. For

any family A of subsets of X we brie
y write
S
A instead of

S
fA : A 2 Ag. We also write

A(B) in this paper exclusively for the family fA \ B : A 2 Ag for any subset B of X. A

sequence fGng
1

n=1
of open covers of X is called a �-cover i� for each x 2 X there exists an

nx 2 N such that ord(x;Gnx) < !0. The space X is called �-re�nable i� each open cover

of X has a �-cover re�nement. The property of �-re�nability is one of the most natural

generalizations of metacompactness and subparacompactness, the two most widely known

generalized covering properties after paracompactness. This concept has been de�ned in

1965 by Worrell and Wicke in [9]. They proved some interesting characterizations in that

paper including I) A topological space is paracompact and T2 i� it is collectionwise normal,

�-re�nable and T1; II) A topological space is developable i� it is essentially T1 (i.e. the

closures of any two singletons is either equal or disjoint), �-re�nable and has a base of

countable order. Spaces that are �-re�nable are also known as submetacompact.

A sequence fGng
1

n=1
of open families (which are not necessarily covers) ofX on the other

hand is called a weak �-cover (resp. weak Æ�-cover) i� 1) the family G =
S
1

n=1
Gn is an

open cover ofX and 2) for each x 2 X there exists an nx 2 N such that 0 < ord(x;Gnx) < !0
(resp. 0 < ord(x;Gnx) � !0). This sequence is called a weak �-cover (resp. weak Æ�-

cover) i� the following extra condition holds : 3) The countable open cover f
S
Gng

1

n=1

is point-�nite. Weakly �-re�nable , weakly Æ�-re�nable , weakly �-re�nable and

weakly Æ�-re�nable spaces can be de�ned similarly. Worrell and Wicke have proved in

1976 that III) Any weak Æ�-cover of a countably compact space has a �nite subcover, see

[8]. Thus they have obtained the following strong generalization of the well known theorem

of Arens and Dugundji : IV) A space is compact i� it is countably compact and weakly

Æ�-re�nable. Weakly �-re�nable (resp. weakly �-re�nable and weakly Æ�-re�nable ) spaces

were de�ned by Bennett and Lutzer (resp. by J.C. Smith) in the paper [1] (resp. [6]). As
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is well known an open cover U of a topological space X is called minimal i� X 6=
S
U 0

holds for any proper subfamily U 0 of U . Bennett and Lutzer have proved in [1] that V)

Quasi-developable spaces are weakly �-re�nable and Smith proved on the other hand in [6]

that VI) Any open cover of a weakly �-re�nable space has a minimal open re�nement, a

property which is called irreducibility by J.Boone in his paper [2].

Let � be an in�nite cardinal number. An open cover G of X is called a weak ��-

cover if G can be written as G =
S
�<�

G� so that the following two conditions hold: i)

8x 2 X; 9�x < �; 0 < ord(x;G�x) < !0 and ii) f
S
G�g�<� is point-�nite cover in X. This

type of covers and weakly ��-re�nable spaces are constructed recently in [4]. S.Fast and

J.C.Smith have de�ned on the other hand in 1995 a weakly �-re�nable normal T2 space

which is not B(D;!0)-re�nable, where a topological space X is called B(D;�)-re�nable

for any in�nite ordinal number � i� every open cover of X has a re�nement K =
S
�<�

K�

such that i) each
S
�<�

(
S
K�) is closed for any � < � and ii) each K� is relatively a closed-

discrete family in the open subspace X� = X �
S
�<�

(
S
K�) (� < �), see [5]. D denotes

the relative discreteness of each K� in X� in the symbol B(D;�). This concept has been

de�ned in 1980 by J.C.Smith [7], after the joint paper of J.Chaber and H.Junnila [3]. He

proved among several results in [7] that every B(D;!0)-re�nable space is weakly �-re�nable.

If one writes closed-locally �nite instead of closed-discrete in condition ii) above then one

gets the weaker concept B(LF; �)-re�nability. Several related papers on irreducibility can

also be found in the reference list of [7].

The aim of this paper is expressed in the abstract.

1. Results on irreducibility

We prove in this section that every open cover of any weak ��-re�nable space has a

minimal open re�nement whatever the in�nite cardinal number � is, i.e. these spaces are

irreducible for any in�nite �. We need �rst some preparatory propositions and lemmas. A

family A of subsets of X is called �-discrete if it can be written as the union
S
�<�

A�

of � many discrete families of X. An F�-subset of X is a subset which can be written as

the union � number of closed subsets of X. The dual concept of G�-subsets can be de�ned

similarly. X is called �-perfect i� each open set in X is an F�-set.

We start with the following basic results:

Lemma 1 (J.C.Smith, [6]) : If U = fU� : � 2 �g is a minimal open cover of X then

there exists a discrete family K = fK� : � 2 �g of non-empty closed subsets of X such that

K� � U� �
S
� 6=�

U� for each � 2 �.

Proof: Straightforward.

Proposition 1 : Let F =
S
�<�

K� be an F�-subset of X such that each union
S
�<�

K� is

closed for each � < �. If there exists an open minimal cover U� (in X) of K��
S
�<�

(
S
U�)

for each � < � then U =
S
�<�

U� has a minimal open re�nement in X covering F .

Proof: This is nothing but Lemma 3.3 in [7].

Corollary 1 (J.C.Smith, [6]) : Let F =
S
1

n=1
Kn be an F� subset of X and let fUng

1

n=1

be a sequence of open families of X such that each Un is a minimal cover of Kn�
S
k<n

(
S
Uk).

Then U =
S
1

n=1
Un has an open re�nement in X covers F minimally.

Corollary 2 : Let F1 � F2 and Fi (i = 1; 2) be closed and let U1 (resp. U2) be an open

family in X covering F1 (resp. F2�
S
U1) minimally. Then U1[U2 has an open re�nement

in X covers F2 minimally.
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Proposition 2 : Let G be a collection of open sets in X. Suppose there exists a �-discrete

collection K =
S
�<�

K� of nonempty closed subsets of X such that K re�nes G and the

union
S
�<�

(
S
K�) is closed for each � < �. Then there exists an open re�nement U of G

which covers the set
S
K minimally.

Proof: Let K� = fK�;� : � 2 ��g. Choose a G�;� 2 G with K�;� � G�;� for each

� 2 ��, � < �. Let U0;� = G0;� �
S
fK0;Æ : Æ 2 �0 with Æ 6= �g for each � 2 �0 and let

U0 = fU0;� : � 2 �0g. Now, let � < � and assume that fU� : � < �g have been already

constructed. Furthermore let ��
�
= f� 2 �� : K�;� �

S

<�

(
S
U
) 6= ;g. For each � 2 ��

�
,

let us de�ne now

U�;� = G�;� � ((
[

<�

(
[

K
)) [ (
[
fK�;Æ : Æ 2 �� � f�gg)):

Let U� = fU�;� : � 2 ��
�
g. By induction, fU� : � < �g is now constructed. Note that it

satis�es
S

<�

(
S
K
) �

S

<�

(
S
U
) for each � < �. Here we set U =

S
�<�

U�. We show

that U is a re�nement of G which covers
S
K minimally. Clearly, U re�nes G. Pick any

x 2
S
K. Find �0 2 � with x 2

S
K�0

�
�S


<�0
(
S
K
)
�
. Assume x 62

S

<�0

(
S
U
). Take

�0 2 ��0 with x 2 K�0;�0
. Since x 2 K�0;�0

�
S

<�0

(
S
U
), we have �0 2 ��

�0
. Hence it

follows that x 2 U�0;�0 2 U�0 . This implies that
S
K �

S
U . On the other hand, take any

U�;� 2 U� � U . It follows from � 2 ��
�
that K�;� �

S

<�

(
S
U
) 6= ;. It is easily veri�ed

that each member V 2 U with V 6= U�;� does not meet this nonempty set. Therefore, U is

a minimal cover of
S
K.

Corollary 3 (J.C.Smith, [6]) : Let Kn = fK(�; n) : � 2 �ng be a discrete family of

closed subsets and let Un = fU(�; n) : � 2 �ng be an open family such that K(�; n) �

U(�; n) for each n 2 N and � 2 �n. Then U =
S
1

n=1
Un has an open re�nement in X

covers the set
S
1

n=1
(
S
Kn) minimally.

Corollary 4 : Let K be a nonempty closed subset of X and let the family G of open subsets

of X be a cover for K. If there exists a �-discrete collection K =
S
�<�

K� of nonempty

closed subsets of X such that K re�nes G, covers K and if
S
�<�

(
S
K�(K)) is closed for

each � < �, then there exists an open re�nement of G covers K minimally.

Proof: Notice that K =
S
�<�

(
S
K�(K)) =

S
K(K).

Remark 1 : Let G =
S
�<�

G� be a weak ��-cover of X where G� = fG�;� : � 2 ��g.

Now we are going to de�ne the following Kn;m sets of X which are closed. They have an

important role in the proof of Proposition 3. Let

Kn;m = fx 2 X : i) ord(x;G�) < n or ii) ord(x;G�) = n and 9� < �; 0 < ord(x;G�) � mg

where G� denotes the open cover f
S
G�g�<� and n;m are positive integers. By hypothesis

G� is point-�nite i.e. 0 < ord(x;G�) < !0 for each x 2 X. Notice that Kn;m is closed since

if x 62 Kn;m, then we either have i) n < ord(x;G�) or ii) ord(x;G�) = n andm < ord(x;G�k )

for each indice �k < � where x 2
S
G�k (k = 1; 2; : : : ; n) holds; and x has evidently an open

nbhd missing Kn;m in each cases. Notice also that

Kn;m � Kn;m0 if m � m0

and one can also easily notice that

Kn;! =

1[
m=1

Kn;m = fx 2 X : ord(x;G�) � ng
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is closed and contained in Kn+1;1. These notations are used in the next two propositions.

We utilize a method of J.C.Smith.

Proposition 3 : Let G� = fG�;� : � 2 ��g for each � < � and let G =
S
�<�

G� be a weak

��-cover of X. If G has a re�nement Un;m covering Kn;m minimally, then G also have open

re�nements Un;m+1 and Vn;m+1 covering Kn;m+1 �
S
Un;m and Kn;m+1 minimally.

Proof: During the proof the positive integers n andm are �xed. We suppose that Kn;m+1�S
Un;m is nonempty since otherwise the statement is clear. Let us de�ne

F (�;�) =
\
�2�

G�;� \A�;m+1 \ (Kn;m+1 �
[
Un;m)

for each � 2 [��]
m+1 where A�;m+1 = fx 2 X : 0 < ord(x;G�) � m + 1g and let

F� = fF (�;�) : � 2 [��]
m+1g. We claim that F =

S
�<�

F� is a �-discrete collection of

closed sets and covers Kn;m+1 �
S
Un;m. The covering assertion can be proved easily since

Kn;m+1 �
S
Un;m � Kn;m+1 �Kn;m � fx 2 X : ord(x;G�) = n and 9� < �; ord(x;G�) =

m + 1g. Now let us prove that the family F� is discrete. Take any point x 2 X. If

ord(x;G�) < n then x 2 Kn;m �
S
Un;m, and if n < ord(x;G�) then x 2 X � Kn;!.

Therefore x has an open basic nbhd disjoint from Kn;m+1�
S
Un;m in both cases. Now let

us suppose that ord(x;G�) = n. If x 62
S
G� then there are suitable indexes �1; �2; : : : ; �n all

di�erent from � such that x 2
T
1�k�n

(
S
G�k) and this intersection set is open and disjoint

from
T
�2�

G�;�\Kn;m+1 for each � 2 [��]
m+1 since we evidently have

T
�2�

G�;� �
S
G�.

If x 2
S
G� we should just examine the case m+ 1 � ord(x;G�) since otherwise we would

have x 2 Kn;m �
S
Un;m. If now m + 1 < ord(x;G�) holds then the open set fy 2 X :

m+1 < ord(y;G�)g contains x and disjoint from
S
F�. Finally if ord(x;G�) =m+1 holds

then there is a �x 2 [��]
m+1 such that x 2

T
�2�x

G�;� and this open set does not meet

the set F (�;�) for any � 6= �x, � 2 [��]
m+1. One can easily and similarly observe that all

members F (�;�) of F� are actually closed. We now claim that each union
[
�<�

(
[

F�(Kn;m+1 �
[

Un;m))

is closed for any � < �. For simplicity let us write K = Kn;m+1 �
S
Un;m and E� =S

�<�
(F�(K)). Notice �rst that E� � K. Take any point x 2 X �E�. If x 2 X �K then

clearly this open set does not intersect E�. Suppose now that x 2 K �E� and let us write

explicitly all indices �1; �2; : : : ; �n such that x 2
S
G�i for each 1 � i � n. Suppose some

of them, say, �1; �2; : : : ; �k are less than � and all others are equal or greater than �. Our

�rst important observation is that x belongs to open

Wx =
\

1�i�k

fy 2 X :m+ 1 < ord(y;G�i )g

which is certainly disjoint from
T
1�i�k

(
S
F�i(K)). In fact if ord(x;G�1 ) �m+1 holds for

instance, then we would have �rst ord(x;G�1) = m + 1 (by remembering ord(x;G�1) � m

yields the contradiction x 2 Kn;m �
S
Un;m) and then we would have the contradiction

x 2 F (�1;�1) \K �
[

F�1(K) �
[
�<�

(
[

F�(K)) = E�

for some appropriate subindex set �1 2 [��1]
m+1. Since we also have � < �k+1; : : : ; � < �n

and x 2
T
k<i�n

(
S
G�i), one can easily prove that the open set

Wx \
\

k<i�n

(
[

G�i)
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does not intersect E�. Thus our claim has been proved now. Then G has an open re�nement

in X covering K = Kn;m+1 �
S
Un;m minimally by Corollary 4. The proposition follows

from Corollary 2.

Proposition 4 (Continued) : If G has an open re�nement Un;! covering Kn;! =
S
1

m=1
Kn;m

minimally, then G also have open re�nements covering respectively Kn+1;1 �
S
Un;! and

Kn+1;1 minimally.

Proof: Since

Kn+1;1 �
[
Un;! � fx 2 X : ord(x;G�) = n+ 1 and 9� < �; ord(x;G�) = 1g

it is not diÆcult to prove that the family F� = fF (�;�) : � 2 [��]
1g is closed and discrete

in X for each � < � whereas

F (�;�) =
\
�2�

G�;� \A�;1 \ (Kn+1;1 �
[
Un;!)

for each � 2 [��]
1 and A�;1 = fx 2 X : ord(x;G�) = 1g. Besides F =

S
�<�

F� is a

�-discrete family covering Kn+1;1�
S
Un;! and

S
�<�

(
S
F�(Kn+1;1�

S
Un;!)) is closed for

any � < �. Thus the proof can be achieved just as in the above proposition.

Theorem 1 : Weakly ��-re�nable spaces are irreducible.

Proof: Let a weak ��-cover G =
S
�<�

G� of a weakly ��-re�nable space X be given. Then

the set K1;1 i.e. the set of all points x 2 X satisfying the condition

ord(x;G�) = 1 and 9�x < �; ord(x;G�x) = 1;

is closed as we have already noticed. Now let F (�;�) =
T
�2�

G�;� \ A�;1 \ K1;1 as in

the proof of Proposition 3 where � 2 [��]
1 and A�;1 = fx 2 X : 0 < ord(x;G�) = 1g.

Then it is not diÆcult to observe that all unions
S
�<�

(
S
F�(K1;1)) are closed for each

� < �, where F� = fF (�;�) : � 2 [��]
1g. Thus K1;1 can be covered minimally by an open

re�nement U1;1 of G. The closed subsets Kn;m and Kn;! (n;m 2 N) de�ned in Remark 2

satisfy the inclusions K1;1 � K1;2 � : : : � K1;! � K2;1 � K2;2 � : : : � K2;! � K3;1 � : : :

and besides X is the union of these sets. It is proved in Proposition 3 and Proposition

4 that there exists a sequence of open families U1;1;U1;2; : : : ;U1;!;U2;1; : : : such that each

is a re�nement of G and moreover Un;m+1 (resp. Un+1;1) covers Kn;m+1 �
S
Un;m (resp.

Kn+1;1�
S
Un;!) minimally. Thus this theorem follows after Corollary 1, i.e. G has an open

re�nement covering X.

Corollary 5 (J.C.Smith, [6]) : Weakly �-re�nable spaces are irreducible.

Proof: Weakly �-re�nable spaces are nothing but weakly @0�-re�nable spaces.

Remark 2 : Thus we have shown the following interesting result above: As long as

the open cover G� = f
S
G�g�<� is point-�nite and the basic condition (8x 2 X;9�x <

�; ord(x;G�x) < !0) is satis�ed, it is completely irrelevant what the in�nite cardinal num-

ber � actually is in the process of getting the conclusion of the existence of a minimal open

re�nement of the open cover G =
S
�<�

G�.

2. Results on Lindel�of number

The primary aim of this section is to prove the Theorem 2 and Corollary 10.
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Remark 3 : If A is a subset in any topological space X and the open family G is a cover

for A then it is well known that there exists a maximal subset MA of A by utilizing Zorn's

Lemma such that MA � A � st(MA;G) and st(x;G) \MA = fxg for each x 2 MA. This

set is evidently a discrete subset in X and is called a maximal distinguished subset of

A with respect to the open family G. The following lemma is important and useful in this

section. All topological spaces in this section are T1.

Lemma 2 (Continued) : MA is a closed-discrete subset in X if there exists a closed set

K satisfying MA � K �
S
G.

Proof: Let us take any point x 2 X �MA. If x 2 X �K then x evidently has an open

basic nbhd disjoint fromMA. If on the other hand x 2 K�MA then by choosing a member

G 2 G satisfying x 2 G one can easily de�ne an open basic nbhd Ux of x contained in G

and disjoint with MA since G \MA is �nite and therefore closed in the T1 space X (we

even have jG \MAj � 1) and x 62 G \MA. Thus X �MA is in fact open.

One should remember here that a topological space is called @�-compact i� every

closed-discrete subset A of X has cardinality less than @�. As is well known A is closed-

discrete i� the derived set Ad, i.e. the set of the all limit points of A in X, is empty, and X

is @�-compact i� every net which is directed by an index set with cardinality @� has at least

one adherent point. The cardinal number @� will be written brie
y as � in Theorem 2 and

thereafter. Thus �+ denotes as usual its immediate successor @�+1; !� denotes the least

ordinal number having the cardinality @�. The Lindel�of number L(X) of a topological

space X on the other hand, as is well known, is the least in�nite cardinal number having

the property that every open cover of X has a subcover with cardinality � L(X). Thus

X is a Lindel�of space i� L(X) = @0. It is not diÆcult to observe that X is @�-compact if

L(X) � @�. Let us give now the de�nition of the basic concepts of this section.

De�nition: An open cover G =
S
�<�

G� is called a weak Æ��-cover i� i) each G� is

an open family, ii) for each x 2 X there exists an �x < � such that ord(x;G�x) � !0,

iii) G� = f
S
G�g�<� is point-�nite. A topological space X called weakly Æ��-re�nable i�

every open cover of X has a weak Æ��-cover re�nement. These concepts generalize evidently

both weakly ��-re�nable spaces and weakly Æ�-re�nable spaces. On the other hand X is

called weakly Æ��-re�nable i� each open cover of X has a weak Æ��-cover re�nement

where an open cover G =
S
�<�

G� is called a weak Æ��-cover i� conditions i) and ii) hold.

Theorem 2 : An @�+1-compact weakly Æ��-re�nable space X has the Lindel�of number

L(X) � @�.

Proof : Let G =
S
�<�

G� be a weak Æ��-cover of the @�+1-compact space X. We �rst

prove the following claim: If the closed set Fn = fx 2 X : ord(x;G�) � ng (n 2 N) is

covered by a subfamily Un of G satisfying jUnj � @� then Fn+1 is also covered by a similar

subfamily. Here G� denotes, as in the above de�nition, the open cover f
S
G�g�<�. Let us

de�ne now

K(�) = (Fn+1 �
[
Un) \

\
�2�

(
[

G�)

for each � 2 [!�]
n+1. It is not diÆcult to observe that each K(�) is closed in X for any

� 2 [!�]
n+1; in fact any point x 2 X �K(�) has an open basic nbhd disjoint from K(�) if

x 2 X�(Fn+1�
S
Un) or x 2 (Fn+1�

S
Un)�K(�) since we evidently have Fn+1�

S
Un �

fx 2 X : ord(x;G�) = n+1g. It is not diÆcult to observe thatKn+1 = fK(�) : � 2 [!�]
n+1g

is actually a discrete family in X. Now let for each � = f�i : 1 � i � n + 1g and �i 2 �,
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M(�; �i) be a maximal distinguished subset of fx 2 K(�) : 0 < ord(x;G�i) � !0g with

respect to G�i. Each M(�; �i) set is closed-discrete in X after Lemma 3 since M(�; �i) �

K(�) �
S
G�i . Furthermore we have

n+1[
i=1

M(�; �i) � K(�) �

n+1[
i=1

st(M(�; �i);G�i):

Thus each K(�) 2 Kn+1 can be covered by a subfamily of G having cardinality � @�. Since

Fn+1 �
[

Un [
[
fK(�) : � 2 [!�]

n+1g

our claim is established now. Consequently the theorem follows easily since F1 can evidently

be covered by a subfamily U1 � G with jU1j � @� and we furthermore have X =
S
1

n=1
Fn.

As an immediate consequence of Theorem 2, we have the following generalization of

J.C.Smith [6, Theorem 3.6]:

Corollary 6 : Any @1-compact weakly Æ��-re�nable T1 space is Lindel�of.

Corollary 7 : Every countably compact weakly Æ��-re�nable T1 space is compact.

Proposition 5 : An @�+1-compact weakly Æ��-re�nable space X has the Lindel�of number

L(X) � @� if every closed set in X is a G�-set.

Proof : Let fG�g�<� be a weak Æ��-cover for X and let each
S
G� be written as the

union
S
�<�

K�;� where each K�;� is closed for each � < � and � < �. Let F�;�(
) be the

maximal distinguished subset of

E�;�(
) = fx 2 K�;� : 0 < ord(x;G
) � @�g (
 < �)

with respect to G
 which is closed-discrete in X as we have shown in Lemma 3. Then we

have K�;� =
S

<�

E�;�(
) and E�;�(
) � st(F�;�(
);G
). It is not diÆcult to see now that

the cardinality of this star set is not greater than @�. Thus each K�;� satis�es jK�;�j � @�.

Theorem follows now.

Corollary 8 (J.C.Smith, [6]) : Every weak Æ�-cover of a perfect @1-compact T1 space

has a countable subcover.

Proposition 6 : Every subspace in any �-perfect, @�+1-compact, weakly Æ��-re�nable T1
space has Lindel�of number � @�.

Proof : Let X be a T1 space possessing all the properties of the hypothesis. It is certainly

suÆcient to prove L(X0) � @� for any non-empty open subspace X0 of X. Let X0 be the

union
S
�<�

K� of the closed subsets K� of X and let A � X0 be a subset whose derived

set in the subspace X0 is empty. Then we have
S
�<�

(Ad \K�) = Ad \X0 = ;, and thus

jK� \ Aj � � for each � < �, since (K� \ A)
d � K� \ A

d. Thus A =
S
�<�

(A \ K�)

has cardinality � �. It is also straightforward to observe that X0 is a weakly Æ��-re�nable

subspace. Therefore this proposition follows from Proposition 4.

Corollary 9 (J.C.Smith, [6]) : Any perfect, @1-compact, weakly Æ�-re�nable T1 space is

hereditarily Lindel�of.
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Corollary 10 : Any perfect @1-compact weakly Æ�-re�nable regular T1 space is hereditarily

paracompact and thus hereditarily irreducible.

Proof : It is well known that every regular Lindel�of T1 space is paracompact.
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