ON SIMPLE LEFT SYMMETRIC ALGEBRAS OVER A SOLVABLE LIE ALGEBRA

Akira MIZUHARA

Received June 6, 2002; revised June 28, 2002

Abstract

The structure of complete left symmetric algebras and that of simple left symmetric algebras over a solvable Lie algebra have been studied by many authors (cf.[K], [SEG], [B]).

In [SHI] the structure of left symmetric algebras with a principal idempotent was studied.

In this paper, we shall study the structure of left symmetric algebras with a principal idempotent in I (resp. a principal nilpotent in II) and give some examples of simple left symmetric algebras over a solvable Lie algebra in III.

I.[A] Let \mathcal{G} be a Lie algebra over a field K of characteristic 0 , and A a left symmetric algebra over \mathcal{G}.

A symmetric bilinear form B of A is called of Hessian type([SHI]) if the following equality holds:

$$
B(x y, z)+B(y, x z)=B(y x, z)+B(x, y z) \quad(x, y, z \in A)
$$

Denote by h the symmetric bilinear form of A defined by

$$
h(x, y)=\operatorname{Tr} R(x y) \quad(x, y \in A)
$$

where $R(x)$ (resp. $L(x)$) denotes the right (resp. left) multiplication of A by x. Then h is of Hessian type. It is called the canonical 2-form of A.

Denote by A^{\perp} the linear subspace of A defined by

$$
A^{\perp}=\{x \in A ; h(x, y)=0 \quad(y \in A)\}
$$

A is called non degenerate if $A^{\perp}=\{0\}$.
Let u be an element of $A . u$ is called a principal idempotent if
(1) $u u=u$, and
(2) u generates a left ideal $\langle u\rangle$ of A

For a principal idempotent u of A, denote by P a linear subspace of A defined by

$$
P=\{x \in A ; x u=0\} .
$$

Then P is a linear subspace of A containing $[P, P]$ and $A=\{u\} \oplus P$ as a linear space.
For $x, y \in P$, put

$$
x y=x * y+B(x, y) u
$$

[^0]where $x * y$ (resp. $B(x, y) u$) denote the P-component (resp. $\{u\}$ - component) of $x y$ in $\{u\} \oplus P$.

By a direct calculation, we obtain the following.

Theorem 1 Let $A=\{u\} \oplus P$ be a left symmetric algebra with a principal idempotent u. Then we have the following:
(1) $(P, *)$ is a left symmetric algebra.
(2) B is a symmetric bilinear form of $(P, *)$ of Hessian type.
(3) $D=L(u) \mid P$ is a derivation of $(P, *)$ stisfying the following relation:

$$
\begin{equation*}
B(x, y)=B(D x, y)+B(x, D y), \quad(x, y \in P) \tag{1}
\end{equation*}
$$

(4) $h(u, u)=1, h(u, P)=0, h=h^{*}+B$ on P,
where $h\left(r e s p . h^{*}\right)$ denote the canonical 2-form of $A(r e s p . P)$.

A pair (B, D) of a symmetric bilinear form B of Hessian type and a derivation D of $(P, *)$ satisfying the condition (1) is called compatible of 1 st kind.

For a given compatible pair (B, D) of 1 st kind of a left symmetric algebra $(P, *)$, define a binomial product on a linear space $A=\{u\} \oplus P$ as follows:

$$
\begin{gathered}
u u=u, u x=D x, x u=0 \\
x y=x * y+B(x, y) u \quad(x, y \in P) .
\end{gathered}
$$

Then we can easily prove that the algebra $A(P, B, D)$ defined above is a left symmetric algebra $A=\{u\} \oplus P$ with a principal idempotent u.

Assume that the underlying Lie algebra \mathcal{G} of a left symmetric algebra A is a solvable Lie algebra over the field C of all complex numbers. Then there exists an element u of A which generates a left ideal $\langle u\rangle$ of A, by Lie's theorem. Moreover we may assume that $u u=u$, or $u u=0$. Thus we obtain the following.

Proposition 1 Let A be a left symmetric algebra over a solvable Lie algebra over C. Assume that the radical $R(A)=\{0\}$. Then there exists a principal idempotent u of A and a compatible pair (B, D) of 1 st kind satisfying the condition in Theorem 1.
[B] Let $A(P, B, D)$ be a left symmetric algebra $\{u\} \oplus P$ with a principal idempotent u corresponding a compatible pair (B, D) of $(P, *)$ of 1st kind.

It is clear that $B=0$ if and only if P is an ideal of $A=\{u\} \oplus P$.
Let A^{\prime} be an ideal of A. If $u+x(x \in P)$ is contained in A^{\prime}, then $u=(u+x) u$ is an element of A^{\prime}. Therefore we can easily prove the following.

Proposition 2 Let A^{\prime} be an ideal of a left symmetric algebra $A=A(P, B, D)=\{u\} \oplus P$ with a principal idempotent u. Then we have the following.
(1) $A^{\prime}=\{u\} \oplus Q$ is an ideal of A if and only if Q is an ideal of $(P, *)$ satisfying $D P \subset Q$.
(2) A linear subspace Q of P is an ideal of A if and only if Q is an ideal of $(P, *)$ satisfying $D Q \subset Q$ and $B(P, Q)=0$.

Let $A_{i}\left(P_{i}, B_{i}, D_{i}\right)(i=1,2)$ be a left symmetric algebra $\left\{u_{i}\right\} \oplus P_{i}$ with a principal idempotent u_{i} constructed by (P_{i}, B_{i}, D_{i}).
$P=P_{1} \oplus P_{2}$ as an algebra. Let D (resp. B) be a derivation (resp. a symmetric bilinear form) of P defined as follows:

$$
\begin{aligned}
& D \mid P_{i}=D_{i} \\
& \quad B \mid P_{i}=B_{i} \text { and } B\left(P_{1}, P_{2}\right)=0 .
\end{aligned}
$$

Then it is clear that (B, D) is a compatible pair of P of 1 st kind. The corresponding algebra $A=\{u\} \oplus P$ with a principal idempotent u is called the algebra constructed by the direct $\operatorname{sum} P=P_{1} \oplus P_{2}$.

A left symmetric algebra $A(P, B, D)$ with a principal idempotent u is called decomposable if there exist non trivial algebras P_{i} with a compatible pair $\left(B_{i}, D_{i}\right)(i=1,2)$ such that

$$
(P, B, D)=\left(P_{1}, B_{1}, D_{1}\right) \oplus\left(P_{2}, B_{2}, D_{2}\right)
$$

By the definition and the above proposition, we obtain the following.

Proposition 3 Let $A(P, B, D)$ be the left symmetric algebra constructed by the direct sum of $\left(P_{i}, B_{i}, D_{i}\right)(i=1,2)$. If both $\left(P_{i}, B_{i}, D_{i}\right)(i=1,2)$ are simple, then A is simple.
[C]
Proposition 4 Let \mathcal{G} be a solvable Lie algebra and $A=\{u\} \oplus P=A(P, B, D)$ a left symmetric algebra over \mathcal{G} with a principal idempotent u corresponding to a compatible pair (B, D) of 1 st kind of a left symmetric algebra P.

If D is non singular and B is non degenerate, then A is simple and non degenerate.

In fact, if D is non singular, then we have $P=[A, A]$. Thus we have

$$
\operatorname{Tr} R^{*}(x)=\operatorname{Tr} R(x)=0(x \in P)
$$

where R^{*} denotes the right multiplication of $(P, *)$. Therefore $(P, *)$ is a complete algebra over a nilpotent Lie algebra $[\mathcal{G}, \mathcal{G}]$. Moreover if B is non degenerate, then A is non degenerate, by Theorm 1 (4), and simple, by Proposition2.

A symmetric bilinear form B of $(P, *)$ is called a trace form if the following relation holds:

$$
B(x * y, z)=B(x, y * z)(x, y, z \in P)
$$

Lemma 1 If a left symmetric algebra $(P, *)$ is commutative, then
(1) $(P, *)$ is associative,
(2) a symmetric bilinear form B of P of Hessian type is a trace form, and
(3) $P(B)^{\perp}$ is an ideal of P, where $P(B)^{\perp}$ denotes a linear subspace of P defined by

$$
P(B)^{\perp}=\{x \in P ; B(x, y)=0(y \in P)\} .
$$

Proposition 5 If $(P, *)$ is commutative and complete, then $P(B)^{\perp}$ is an ideal of $A(P, B, D)$. Therefore if $A(P, B, D)$ is simple, then the symmetric bilinear form B is non degenerate.

A derivation D of P is called split if all eigen values of a linear endomorphism D of P are contained in the base field K.

For an eigen value λ of a split derivation D, denote by P_{λ} the linear subspace of P defined by

$$
P_{\lambda}=\left\{x \in P ;(D-\lambda i d)^{m} x=0, \text { for some positive integer } m\right\} .
$$

Then P is decomposed into the direct sum $P=\oplus_{\lambda} P_{\lambda}$ of weight spaces $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ satisfying $P_{\lambda} * P_{\mu} \subset P_{\lambda+\mu}$.

By Theorem 1,(3), we obtain the following.

Proposition 6 Let $A(P, B, D)$ be a left symmetric algebra corresponding to a compatible pair of a zero algebra P of 1 st kind with a split derivation D.

If A is simple and indecomposable, then
(1) B is non degenerate, and
(2) $P=P_{1 / 2}$ or $P=P_{\lambda} \oplus P_{1-\lambda}(\lambda \in K, \lambda \neq 1 / 2,0,1)$.
II.[A] Let \mathcal{G} be a Lie algebra over K, and A a left symmetric algebra over \mathcal{G}.

An element v of A is called principal nilpotent if
(1) $R(v)=0$, and
(2) $v \notin[A, A]$.

For a principal nilpotent v of A, there exists a linear subspace P of A of codimension 1 such that
(1) $P \supset[A, A]$, and
(2) $A=\{v\} \oplus P$ as a linear space.

For $x, y \in P$, put

$$
x y=x * y+C(x, y) v,
$$

where $x * y$ (resp. $C(x, y) v)$ denotes the P-component (resp. $\{u\}$ - component) of $x y$.
Then we have
(1) $[x, y]=x * y-y * x$,
(2) $C(x, y)=C(y, x)$.

Moreover we can easily prove the following.
Theorem 2 Let $A=\{v\} \oplus P$ be a left symmetric algebra with a principal nilpotent v. Then we have the following:
(1) $(P, *)$ is a left symmetric algebra.
(2) C is a symmetric bilinear form of $(P, *)$ of Hessian type.
(3) $D=L(v) \mid P$ is a derivation of $(P, *)$ satisfying the following relation:

$$
\begin{equation*}
C(D x, y)+C(x, D y)=0(x, y \in P) \tag{2}
\end{equation*}
$$

Conversely, let $(P, *)$ be a left symmetric algebra with a symmetric bilinear form C of Hessian type and a derivation D satisfying the above relation (2).

Define a bilinear product on a linear space $A=\{v\} \oplus P$ as follows:

$$
\begin{gathered}
v v=0, v x=D x, x v=0, \text { and } \\
x y=x * y+C(x, y) v(x, y \in P)
\end{gathered}
$$

Then it is clear that the algebra $A(P, C, D)$ with the above multiplication is a left symmetric algebra with a principal nilpotent $v .(C, D)$ is called a compatible pair of P of 2 th kind.

Proposition 7 Let $A(P, C, D)$ be a left symmetric algebra with a principal nilpotent v corresponding to a compatible pair (C, D) of 2 nd kind. Then A is complete if and only if $(P, *)$ is complete.

In fact, for $x \in P$, we have

$$
\operatorname{Tr} R(x)=\operatorname{Tr} R^{*}(x)
$$

where $R\left(\right.$ resp. $\left.R^{*}\right)$ denotes the right multiplication of $A(\operatorname{resp} .(P, *))$.
We can easily prove the following.
Proposition2' Let $A(P, C, D)$ be a left symmetric algebra with a principal nilpotent v corresponding to a compatible pair (C, D) of $2 n d$ kind.
(1) $A^{\prime}=\{v\} \oplus Q$ is an ideal of $A=\{v\} \oplus P$ if and only if Q is an ideal of $(P, *)$ satisfying $D Q \subset Q$.
(2) A linear subspace Q of P is an ideal of A if and only if Q is an ideal of $(P, *)$ satisfying $D Q \subset Q$ and $C(P, Q)=0$.

Remark. There exists an ideal A^{\prime} of $A(P, C, D)$ such that $v \notin A^{\prime}$ and $A^{\prime} \not \subset P$. (cf. Example (d). $A_{1}\left(P_{1}, C_{1}, D_{1}\right)$).

Let $A_{i}\left(P_{i}, C_{i}, D_{i}\right)(i=1,2)$ be a left symmetric algebra $\left\{v_{i}\right\} \oplus P_{i}$ with a principal nilpotent v_{i} constructed by $\left(P_{i}, C_{i}, D_{i}\right)$.

Put $P=P_{1} \oplus P_{2}$ as an algebra. Denote by D (resp.C) a derivation (resp. a symmetric bilinear form) of P defined as follows:

$$
\begin{aligned}
& D \mid P_{i}=D_{i} \\
& C \mid P_{i}=C_{i} \text { and } C\left(P_{1}, P_{2}\right)=0(i=1,2)
\end{aligned}
$$

Then it is clear that (C, D) is a compatible pair of P of 2 nd kind. The corresponding algebra $A=\{v\} \oplus P$ with a principal nilpotent v is called the algebra constructed by the direct sum $P=P_{1} \oplus P_{2}$.

A left symmetric algebra $A(P, C, D)$ with a principal nilpotent v is called decomposable if there exist non trival algebra $P_{i}(i=1,2)$ with a compatible pair $\left(C_{i}, D_{i}\right)$ of 2 nd kind such that $P=P_{1} \oplus P_{2}$

Proposition3' Let $A(P, C, D)$ be the algebra constructed by the direct sum $\left(P_{i}, C_{i}, D_{i}\right)$ $(i=1,2)$. If both the algebra $A_{i}\left(P_{i}, C_{i}, D_{i}\right)$ are simple, then A is simple.

Let $(P, *)$ be a complete left symmetric algebra over a nilpotent Lie algebra, and (C, D) a compatible pair of P of 2 nd kind. Denote by $A(P, C, D)$ the left symmetric algebra with a principal nilpotent v corresponding to (C, D). Then, by Proposition $7, A$ is complete. Moreover, by Propsition 2', if $D P=P$ and C is non degenerate, then A is simple. Thus we obtain the following.

Proposition 8 Let $(P, *)$ be a complete left symmetric algebra over a nilpotent Lie algebra, and $A(P, C, D)$ a left symmetric algebra with a principal nilpotent v corresponding to a compatible pair (C, D) of P of $2 n d$ kind.

If $D P=P$ and C is non degenerate, then A is complete and simple.

Corollary Assume that $(P, *)$ is a zero algebra. Then the following statements are mutually equivalent:
(1) $A(P, C, D)$ is complete and simple.
(2) $D P=P$ and C is non degenerate.
[B] Let \mathcal{G} be a complex Lie algebra, (V, ρ) a \mathcal{G}-module corresponding to a Lie homomorphism ρ of \mathcal{G} into the linear endomorphism ring $\operatorname{gl}(V)$ of V, and A a left symmetric algebra over \mathcal{G}.

We can easily prove the following.

Lemma 2 For any $\alpha, \beta \in C, x, y \in \mathcal{G}$ and $u \in V$, we have

$$
(\rho(x)-(\alpha+\beta) \mathrm{id})^{m}(\rho(y) u)=\sum_{k=0}^{m}\binom{m}{k} \rho\left((\mathrm{ad} x-\beta \mathrm{id})^{k} y\right)\left\{(\rho(x)-\alpha \mathrm{id})^{m-k} u\right\}
$$

Corollary For a left symmetric algebra A over \mathcal{G}. We have
(3) $(L(x)-(\alpha+\beta) \mathrm{id})^{m}(y z)=\sum_{k=0}^{m}\binom{m}{k} L\left((\operatorname{ad} x-\beta \mathrm{id})^{k} y\right)\left\{(L(x)-\alpha \mathrm{id})^{m-k} z\right\}$
for any $\alpha, \beta \in C, x, y, z \in A$.
Assume that \mathcal{G} is a solvable Lie algebra. Then, by Lie's theorem, there exists a base $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ of A such that $L(x)(x \in A)$ is expressed as a upper triangular matrix with respect to the base $\left\{x_{i}\right\}$. The base $\left\{x_{i}\right\}$ of A is called a canonical base of a left symmetric algebra A. Denote by $\left(L(x)_{i j}\right)_{1 \leq i, j \leq n}$ (resp. $\left.\left(R(x)_{i j}\right)_{1 \leq i, j \leq n}\right)$ the matrix representation of $L(x)$ (resp. $R(x))$ with respect to the canonical base $\left\{x_{i}\right\}$.

Lemma 3 Let $\langle v\rangle$ be a left ideal of A generated by v with $v v=0$. Then we have $[L(v), R(v)]=$ 0.

In fact, since A is left symmetric, we have the following equality:

$$
[L(x), R(x)]=R(x) R(y)+R(x y)(x, y \in A) . \text { (4) }
$$

For a left ideal $\langle v\rangle$, there exists a canonical base $\left\{x_{i}\right\}$ of A such that $x_{1}=v$. With respect to the base $\left\{x_{i}\right\}$, denote by ϵ_{i} the (1,1)-component of $L\left(x_{i}\right)$. Then we have

$$
R(v)_{i j}=\left\{\begin{aligned}
\varepsilon_{i j}, & \text { if }(i, j)=(1, j) \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

By the assumption that $v v=0, \epsilon_{1}=0$ and $R(v)^{2}=0$. Thus, by (4), we obtain the desired equality.

For a left ideal $\langle v\rangle$ with $v v=0$, denote by $A^{\alpha}(v)$ (resp. $\left.\mathcal{G}^{\alpha}(v)\right)$ a linear subspace of $A(=\mathcal{G})$ defined by

$$
A^{\alpha}(v)=\left\{x \in A ;(L(v)-\alpha \text { id })^{m} x=0, \text { for some positive integer } m\right\}
$$

(resp. $\mathcal{G}^{\alpha}(v)=\left\{x \in A ;(\operatorname{ad} v-\alpha \mathrm{id})^{m} x=0\right.$, for some positive integer $\left.\left.m\right\}\right)$.
Proposition 9 Let A be a left symmetric algebra over a complex solvable Lie algebra \mathcal{G} and $\langle v\rangle$ a left ideal of A with $v v=0$. Then we have
(1) $A^{\alpha}(v)=\mathcal{G}^{\alpha}(v)$, for any $\alpha \in C$,
(2) $A(v)^{\alpha} A(v)^{\beta} \subset A^{\alpha+\beta}(v)$.

Therefore $A^{0}(v)\left(=\mathcal{G}^{0}(v)\right)$ is a subalgebra of A containing v.

Proof. (1) Since $[L(v), R(v)]=0$, by Lemma 4 , we obtain the equality.
(2) By (1) and the equality (3), Lemma 3, Corollary, we obtain the inclusion (2).

Now we quote the following ([K],[SEG]).

Lemma 4 Let A be a left symmetric algebra over a Lie algebra \mathcal{G}. Then the following statements (1), (2) and (3) (resp. (4) and (5)) are mutually equivalent:
(1) A is complete,
(2) $R(x)(x \in A)$ is nilpotent,
(3) $\operatorname{Tr} R(x)=0(x \in A)$.
(4) $L(x)(x \in A)$ is nilpotent,
(5) $R(x)(x \in A)$ is nilpotent and \mathcal{G} is a nilpotent Lie algebra.

Proposition 10 Let A be a left symmetric algebra over a complex solvable Lie algebra \mathcal{G}, $\langle v\rangle$ a left ideal of A with $v v=0$, and $A=\oplus_{\alpha} A^{\alpha}(v)$ the weight space decomposition of A with respect to $L(v)$.

If $A^{0}(v)$ is a proper subalgebra of A and $R(v) \mid A^{0}(v)=0$, then v is a principal nilpotent of A.

In fact, since $\langle v\rangle$ is a left ideal of A, we have

$$
A^{\alpha}(v) v=0(\alpha \notin 0),
$$

by Proposition 9. Therefore $R(v) \mid A^{0}(v)=0$ implies that $R(v)=0$.
Moreover since $A^{0}(v)\left(=\mathcal{G}^{0}(v)\right) \neq A, L(v)$ is not nilpotent, that is, $v \notin[\mathcal{G}, \mathcal{G}]$. Thus v is a principal nilpotent of A.

Corollary 1 If $A^{0}(v)$ is a complete, proper subalgebra of A over a nilpotent Lie algebra, then v is a principal nilpotent of A.

In fact, if $A^{0}(v)$ is a complete algebra over a nilpotent Lie algebra, then, by Lemma 5 , $L(x) \mid A^{0}\left(x \in A^{0}(v)\right)$ is nilpotent. Therefore we have $R(v) \mid A^{0}(v)=0$.

Corollary 2 If $\operatorname{dim} A^{0}(v)=1$, then A is complete and v is a principal nilpotent of A.

In fact, if $\operatorname{dim} A^{0}(v)=1$, then v is a principal nilpotent, by Corollary 1 . Moreover any element x of $A^{\alpha}(v)(\alpha \neq 0)$ is contained in the derived Lie algebra $[\mathcal{G}, \mathcal{G}]$. Therefore we have $\operatorname{Tr} R(x)=0(x \in A)$.

Corollary 3 Assume that A is complete. If $A^{0}(v)$ is a proper subalgebra of A and the underlying Lie algebra of $A^{0}(v)$ is nilpotent, then v is a principal nilpotent of A.

In fact, since A is complete, $A^{0}(v)$ is also complete, by lemma 4. If the underlying Lie algebra of a complete subalgebra $A^{0}(v)$ is nilpotent, then $L(x) \mid A^{0}(v)\left(x \in A^{0}(v)\right)$ is nilpotent, by Lemma 4 . Therefore $R(v) \mid A^{0}(v)=0$.
[C] Let $A_{i}\left(P_{i}, C_{i}, D_{i}\right)(i=1,2)$ be a left symmetric algebra with a principal nilpotent v_{i} constructed by a compatible pair $\left(C_{i}, D_{i}\right)$ of P_{i} of 2 nd kind, and $A(P, C, D)$ the left symmetric algebra with a pincipal nilpotent v constructed by the direct sum $P=P_{1} \oplus P_{2}$. Then $\{v\} \oplus Q_{1} \oplus Q_{2}\left(Q_{i} \subset P_{i}\right)$ is a left ideal of A if and only if $\left\{v_{i}\right\} \oplus Q_{i}(i=1,2)$ is a left ideal of A_{i}. Moreover we have

$$
\begin{aligned}
& \operatorname{Tr} R\left(x_{i}\right)=\operatorname{Tr} R_{i}^{*}\left(x_{i}\right), \text { and } \\
& h\left(x_{i}, y_{i}\right)=h_{i}^{*}\left(x_{i}, y_{i}\right)\left(x_{i}, y_{i} \in P_{i}\right),
\end{aligned}
$$

where R (resp. R_{i}^{*}) denotes the right multiplication of A (resp. $\left(P_{i}, *\right)$) and h (resp. h_{i}^{*}) denotes the canonical 2 -form of A (resp. $\left(P_{i}, *\right)$). Thus we obtain the following.

Proposition 11 Let $A_{i}\left(P_{i}, C_{i}, D_{i}\right)(i=1,2)$ be a left symmetric algebra with a principal nilpotent v_{i}, and $A(P, C, D)$ the left symmetric algebra with a principal nilpotent v construted by the direct sum $P=P_{1} \oplus P_{2}$.
(1) The radical $R(A)$ of A is expressed as

$$
R(A)=\{v\} \oplus Q_{1} \oplus Q_{2}
$$

where Q_{i} is a D_{i}-invariant left ideal of $\left(P_{i}, *\right)$ such that $R\left(A_{i}\right)=\left\{v_{i}\right\} \oplus Q_{i}(i=1,2)$.
(2) $\left(P_{i}, *\right)$ is non degenerate if and only if

$$
R\left(A_{i}\right)=A_{i}^{\perp}=\left\{v_{i}\right\}
$$

where A_{i}^{\perp} denotes the orthogonal complement of A_{i} with respect to the canonical 2form h_{i} of $A_{i}(i=1,2)$.

Corollary Assume that $\left(P_{1}, *\right)$ is complete and $\left(P_{2}, *\right)$ is non degenerate. Then we have the following:
(1) $R(A)=\{v\} \oplus P_{1}$, and
(2) if $D_{2} \neq 0$, then $R(A)=\{v\} \oplus P_{2}$ is not an ideal of A.

Remark. Using the above corollary, we can construct a left symmetric algebra A over a solvable Lie algebra whose radical $R(A)$ is not an ideal of A. Therefore a theroem stated in my paper[M1] is a fault (cf. Example (d)).
III. Let $(P, *)$ be a left symmetric algebra over K. We shall give some examples of compatibale pair $(B, D)($ resp. $(C, D))$ of 1st kind (resp. 2nd kind).
(a) $P\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$: a zero algebra with a base $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$.

$$
\begin{equation*}
D x_{i}=\frac{1}{2} x_{i}, B\left(x_{i}, x_{j}\right)=\delta_{i j} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
D x_{i}=\frac{1}{2} x_{i} \tag{2}
\end{equation*}
$$

$$
B\left(x_{i}, x_{j}\right)= \begin{cases}0, & \text { if } i+j \neq m+1 \\ 1, & \text { if } i+j=m+1\end{cases}
$$

(3)

$$
\begin{aligned}
& D x_{i}=\frac{1}{2} x_{i}+x_{i-1}, \\
& \qquad B\left(x_{i}, x_{j}\right)= \begin{cases}0, & \text { if } i+j \neq m+1 \\
(-1)^{i-1}, & \text { if } i+j=m+1\end{cases}
\end{aligned}
$$

where m is an odd integer and $x_{0}=0$.
The corresponding algebra $A(P, B, D)$ are simple and non degenerate([SHI],[B] for (1)).
(b) $P\left\{x_{i}, y_{i}\right\}_{1 \leq i \leq m}$: a zero algebra with a base $\left\{x_{i}, y_{i}\right\}_{1 \leq i \leq m}$.
(1) $D x_{i}=\lambda x_{i}, D y_{i}=(1-\lambda) y_{i}\left(\lambda \in K, \lambda \neq \frac{1}{2}, 0,1\right)$

$$
B\left(x_{i}, x_{j}\right)=0, B\left(y_{i}, y_{j}\right)=0, B\left(x_{i}, y_{j}\right)=\delta_{i j}
$$

(2) $D x_{i}=\lambda x_{i}+x_{i-1}, D y_{i}=(1-\lambda) y_{i}+y_{i-1}\left(\lambda \in K, \lambda \neq \frac{1}{2}, 0,1\right)$, $B\left(x_{i}, x_{j}\right)=0, B\left(y_{i}, y_{j}\right)=0$,

$$
B\left(x_{i}, y_{j}\right)= \begin{cases}0, & \text { if } i+j \neq m+1 \\ (-1)^{i-1}, & \text { if } i+j=m+1\end{cases}
$$

(3) $D x_{i}=\lambda x_{i}, D y_{i}=-\lambda y_{i}(\lambda \in K, \lambda \neq 0)$,

$$
C\left(x_{i}, x_{j}\right)=0, C\left(y_{i}, y_{j}\right)=0, C\left(x_{i}, y_{j}\right)=\delta_{i j}
$$

(4) $D x_{i}=\lambda x_{i}+x_{i-1}, D y_{i}=-\lambda y_{i}+y_{i-1}(\lambda \in K, \lambda \neq 0)$, $C\left(x_{i}, x_{j}\right)=0, C\left(y_{i}, y_{j}\right)=0$,

$$
C\left(x_{i}, y_{j}\right)= \begin{cases}0, & \text { if } i+j \neq m+1 \\ (-1)^{i-1}, & \text { if } i+j=m+1\end{cases}
$$

where m is an odd integer and $x_{0}=y_{0}=0$, for (2) and (4).
Both the algebra $A(P, B, D)(1)$ and (2) are simple and non degenerate. Both the algebra $A(P, B, D)(3)$ and (4) are complete and simple ([B] for (1),(3)).
(c) $P\left\{w_{1}, w_{2}, w_{3}\right\}:$ a complete algebra with the following multiplication table.

P	w_{1}	w_{2}	w_{3}
w_{1}	0	0	0
w_{2}	0	0	$2 w_{1}$
w_{3}	0	w_{1}	0

(1) $D w_{1}=-\beta w_{1}, D w_{2}=\beta w_{2}, D w_{3}=-2 \beta w_{3},(\beta \in K, \beta \neq 0)$

C	w_{1}	w_{2}	w_{3}
w_{1}	0	1	0
w_{2}	1	0	0
w_{3}	0	0	0

(2) $D w_{1}=w_{1}, D w_{2}=\beta w_{2}, D w_{3}=(1-\beta) w_{3},(\beta \in K, \beta \neq 0,1)$

B	w_{1}	w_{2}	w_{3}
w_{1}	0	0	0
w_{2}	0	0	1
w_{3}	0	1	0

(3) $D w_{1}=(1-\beta) w_{1}, D w_{2}=\beta w_{2}, D w_{3}=(1-2 \beta) w_{3},(\beta \in K, \beta \neq 0,1)$

B	w_{1}	w_{2}	w_{3}
w_{1}	0	1	0
w_{2}	1	0	0
w_{3}	0	0	0

The algebra $A(P, B, D)(1)$ is complete and simple (cf. [B]). The algebra $A(P, B, D)(2)$ is degenerate, and the radical $R(A)$ of $A\left(=A^{\perp}=\left\{w_{1}\right\}\right)$ is an ideal of A. The algebra $A(P, B, D)(3)$ is simple, $R(A)=0$, and $A^{\perp}=\left\{w_{3}\right\}$.

Let $(P, *)$ be a left symmetric algebra, and h^{*} the canonical 2 -form of $(P, *)$.
For any derivation D of $(P, *)$, we have

$$
\left[D, R^{*}(x)\right]=R^{*}(D x), \text { ie. } \operatorname{Tr} R^{*}=0
$$

Therefore we obtain the following.
Lemma For any derivation D of $(P, *),\left(h^{*}, D\right)$ is a compatible pair of 2 nd kind.
(d)
(1) $P_{1}\left\{x, y_{i}\right\}_{1 \leq i \leq r}(r \geq 2)$: a non degenerate algebra with a base $\left\{x, y_{i}\right\}_{1 \leq i \leq r}$ having the following muliplication :
$x * x=x$,
$x * y_{i}=\frac{1}{2} y_{i}$,
$y_{i} * x=0$,
$y_{i} * y_{j}=\delta_{i r-j+1}$.
$D_{1} x=0$,
$D_{1} y_{i}=\alpha_{i} y_{i}$,
$\alpha_{i}+\alpha_{r-i+1}=0$,

$$
\alpha_{i}=\left\{\begin{array}{lr}
0, & \text { if } r: \text { odd and } i=\frac{r+1}{2} \\
\text { nonzero }, & \text { otherwise }
\end{array}\right.
$$

$C_{1}=$ the canoncial 2-form h_{1} of P_{1}.
(2) $P_{2}\left\{z_{i}\right\}_{1 \leq i \leq 2 s}$: a zero algebra with a base $\left\{z_{i}\right\}_{1 \leq i \leq 2 s}$.
$D_{2} z_{i}=\beta_{i} z_{i}$,
$\beta_{i}+\beta_{2 s-i+1}=0\left(\beta_{i} \neq 0\right)$,
$C_{2}\left(z_{i}, z_{j}\right)=\delta_{i 2 s-j+1}$.
(3) $\left(P_{3}\left\{w_{1}, w_{2}, w_{3}\right\}, C_{3}, D_{3}\right)$ is the algebra with a compatible pair $\left(C_{3}, D_{3}\right)$ of 2 nd kind described in (c), (1).
Denote by $A_{i j}\left(\right.$ resp. $\left.A_{123}\right)$ the simple left symmetric algebra with a principal nilpotent v constructed by the direct sum $P_{i} \oplus P_{j}\left(\right.$ resp. $\left.P_{1} \oplus\left(P_{2} \oplus P_{3}\right)\right)(1 \leq i \neq j \leq 3)$. Then we obtain the following :
(1) A_{23} is complete,
(2) the radical $R\left(A_{12}\right)$ (resp. A_{13}, A_{123}) is a left ideal $\{v\} \oplus P_{2}$ (resp. $\{v\} \oplus P_{3}$, $\{v\} \oplus\left(P_{2} \oplus P_{3}\right)$) of A_{12} (resp. A_{13}, A_{123}) which is not an ideal.
(3) $R\left(A_{12}\right)=A_{12}^{\frac{1}{2}}\left(\right.$ resp. $\left.R\left(A_{13}\right)=A_{13}^{\perp}, R\left(A_{123}\right)=A_{123}^{\frac{1}{2}}\right)$.
(e) Let A be a left symmetric algebra of dimension $3 r$ with a base $\left\{u_{i}, x_{i}, y_{i}\right\}_{1 \leq i \leq r}$ and the following multiplication table:
(1) $u_{i} u_{j}=\delta_{i j} u_{j}, u_{i} x_{j}=\alpha_{i j} x_{j}, u_{i} y_{j}=\beta_{i j} y_{j}, x_{j} u_{i}=y_{j} u_{i}=0$,
$x_{i} x_{j}=y_{i} y_{j}=0, x_{i} y_{j}=y_{j} x_{i}=\delta_{i j} u_{j}$ $\alpha_{i j}, \beta_{i j} \neq 0, \alpha_{i j}+\beta_{i j}=\delta_{i j}$.
(2) $u_{i} u_{j}=0, u_{i} x_{j}=\alpha_{i j} x_{j}, u_{i} y_{j}=\beta_{i j} y_{j}, x_{j} u_{i}=y_{j} u_{i}=0$, $x_{i} x_{j}=y_{i} y_{j}=0, x_{i} y_{j}=y_{j} x_{i}=\delta_{i j} u_{j}$ $\alpha_{i j}, \beta_{i j} \neq 0, \alpha_{i j}+\beta_{i j}=0, \operatorname{det}\left(\alpha_{i j}\right)_{i, j=1,2, \cdots, r} \neq 0$

The algebra (1) (resp. (2)) is simple and non degenerate (resp. simple and complete).
(f) Let A_{1} (resp. A_{2}, A_{3}) be a left symmetric algebra of dimension 8 with a base $\left\{v_{1}, v_{2}, x_{i}, y_{i}\right\}_{1 \leq i \leq 3}$ and the following multiplication:
$v_{i} v_{j}=0, v_{i} x_{j}=\alpha_{i j} x_{j}, v_{i} x_{j}=-\alpha_{i j} y_{j}$
$x_{i} v_{j}=y_{i} v_{j}=0, x_{i} x_{j}=y_{i} y_{j}=0$
(1) $\alpha_{i j} \neq 0$, except for $(i, j)=(2,3)$,

$$
x_{i} y_{j}=y_{j} x_{i}=\left\{\begin{array}{lr}
v_{1}+v_{2}, & \text { if } i=j=1,2, \\
v_{1}, & \text { if } i=j=3, \\
0, & \text { otherwise }
\end{array}\right.
$$

(2) $\alpha_{i j} \neq 0$, except for $(i, j)=(2,2),(2,3)$

$$
x_{i} y_{j}=y_{j} x_{i}=\left\{\begin{array}{lr}
v_{1}+v_{2}, & \text { if } i=j=1, \\
v_{1}, & \text { if } i=j=2,3, \\
0, & \text { otherwise }
\end{array}\right.
$$

(3) $\alpha_{i j} \neq 0$, except for $(i, j)=(2,1),(1,3)$

$$
x_{i} y_{j}=y_{j} x_{i}=\left\{\begin{array}{lr}
v_{1}, & \text { if } i=j=1 \\
v_{1}+v_{2}, & \text { if } i=j=2 \\
v_{2}, & \text { if } i=j=3 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then A_{1} (resp. A_{2}, A_{3}) is a simple complete algebra([B]).

References

[B] D.Burde, Simple left symmetric algebras with solvable Lie algebra, Manuscripta Math. 95, 397-411(1998).
[H] J.Helmstetter, Radical d'une algèbar symmétrique à gauche, Ann. Inst. Fourier(Grenoble), 29, 17-25(1979).
[H] H.Kim, Complete left symmetric affine structures on nilpotent Lie groups, J. differential Geometry 24, 373-394(1986).
[M1] A.Mizuhara, On the radical of a left symmetric algebra II, Tensor,N. S. 40, 221-240(1983).
[M2] A.Mizuhara, On left symmetric algebra with a principal idempotent, Math. Japonica 49,39$50(1999)$.
[SEC] D.Segal, The structure of complete left symmetric algebras, Math. Ann. 293, 569-578(1992).
[SHI] H. Shima, Homogenous Hessian manifold, Ann. Inst. Fourier (Grenoble), 30, 91-128(1980).

Faculty of Science, Kyoto Sangyo Univ.
Kamigamo, Kita-ku, Kyoto, 603-8555, Japan

[^0]: 2000 Mathematics Subject Classification. 17D25
 Key words and phrases, simple algebra, non degenerate algebra, principal idempotent, principal nilpotent, radical.

