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ON SIMPLE LEFT SYMMETRIC ALGEBRAS OVER A SOLVABLE LIE

ALGEBRA
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Abstract. The structure of complete left symmetric algebras and that of simple left

symmetric algebras over a solvable Lie algebra have been studied by many authors

(cf.[K], [SEG], [B]).

In [SHI] the structure of left symmetric algebras with a principal idempotent was

studied.

In this paper, we shall study the structure of left symmetric algebras with a prin-

cipal idempotent in I (resp. a principal nilpotent in II) and give some examples of

simple left symmetric algebras over a solvable Lie algebra in III.

I.[A] Let G be a Lie algebra over a �eld K of characteristic 0, and A a left symmetric

algebra over G.
A symmetric bilinear formB of A is called of Hessian type([SHI]) if the following equality

holds:

B(xy; z) +B(y; xz) = B(yx; z) +B(x; yz) (x; y; z 2 A)

Denote by h the symmetric bilinear form of A de�ned by

h(x; y) = TrR(xy) (x; y 2 A),

where R(x) (resp. L(x)) denotes the right (resp. left) multiplication of A by x. Then h is

of Hessian type. It is called the canonical 2-form of A.

Denote by A? the linear subspace of A de�ned by

A? = fx 2 A;h(x; y) = 0 (y 2 A)g.

A is called non degenerate if A? = f0g.
Let u be an element of A. u is called a principal idempotent if

(1) uu = u, and

(2) u generates a left ideal hui of A

For a principal idempotent u of A, denote by P a linear subspace of A de�ned by

P = fx 2 A;xu = 0g:

Then P is a linear subspace of A containing [P;P ] and A = fug � P as a linear space.

For x; y 2 P , put

xy = x � y +B(x; y)u,
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where x � y (resp. B(x; y)u) denote the P-component (resp. fug � component) of xy in

fug � P .

By a direct calculation, we obtain the following.

Theorem 1 Let A = fug � P be a left symmetric algebra with a principal idempotent u.

Then we have the following:

(1) (P; �) is a left symmetric algebra.

(2) B is a symmetric bilinear form of (P; �) of Hessian type.

(3) D = L(u) j P is a derivation of (P; �) stisfying the following relation:

B(x; y) = B(Dx; y) +B(x;Dy); (x; y 2 P ) (1)

(4) h(u; u) = 1, h(u;P ) = 0, h = h� +B on P ,

where h (resp:h�) denote the canonical 2-form of A (resp:P ).

A pair (B;D) of a symmetric bilinear form B of Hessian type and a derivation D of

(P; �) satisfying the condition (1) is called compatible of 1st kind.

For a given compatible pair (B;D) of 1st kind of a left symmetric algebra (P; �), de�ne
a binomial product on a linear space A = fug � P as follows:

uu = u, ux = Dx, xu = 0,

xy = x � y +B(x; y)u (x; y 2 P ).

Then we can easily prove that the algebra A(P;B;D) de�ned above is a left symmetric

algebra A = fug � P with a principal idempotent u.

Assume that the underlying Lie algebra G of a left symmetric algebra A is a solvable Lie

algebra over the �eld C of all complex numbers. Then there exists an element u of A which

generates a left ideal hui of A, by Lie's theorem. Moreover we may assume that uu = u, or

uu = 0. Thus we obtain the following.

Proposition 1 Let A be a left symmetric algebra over a solvable Lie algebra over C. As-

sume that the radical R(A) = f0g. Then there exists a principal idempotent u of A and a

compatible pair (B;D) of 1st kind satisfying the condition in Theorem 1.

[B] Let A(P;B;D) be a left symmetric algebra fug � P with a principal idempotent u

corresponding a compatible pair (B;D) of (P; �) of 1st kind.
It is clear that B = 0 if and only if P is an ideal of A = fug � P .

Let A0 be an ideal of A. If u + x(x 2 P ) is contained in A0, then u = (u + x)u is an

element of A0. Therefore we can easily prove the following.

Proposition 2 Let A0 be an ideal of a left symmetric algebra A = A(P;B;D) = fug � P

with a principal idempotent u. Then we have the following.

(1) A0 = fug�Q is an ideal of A if and only if Q is an ideal of (P; �) satisfying DP � Q.
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(2) A linear subspace Q of P is an ideal of A if and only if Q is an ideal of (P; �) satisfying
DQ � Q and B(P;Q) = 0.

Let Ai(Pi; Bi;Di) (i = 1; 2) be a left symmetric algebra fuig � Pi with a principal

idempotent ui constructed by (Pi; Bi;Di).

P = P1�P2 as an algebra. Let D (resp. B) be a derivation (resp. a symmetric bilinear

form) of P de�ned as follows:

D j Pi = Di,

B j Pi = Bi and B(P1; P2) = 0.

Then it is clear that (B;D) is a compatible pair of P of 1st kind. The corresponding algebra

A = fug � P with a principal idempotent u is called the algebra constructed by the direct

sum P = P1 � P2.

A left symmetric algebraA(P;B;D) with a principal idempotent u is called decomposable

if there exist non trivial algebras Pi with a compatible pair (Bi;Di)(i = 1; 2) such that

(P;B;D) = (P1; B1;D1)� (P2; B2;D2)

By the de�nition and the above proposition, we obtain the following.

Proposition 3 Let A(P;B;D) be the left symmetric algebra constructed by the direct sum

of (Pi; Bi;Di)(i = 1; 2). If both (Pi; Bi;Di)(i = 1; 2) are simple, then A is simple.

[C]

Proposition 4 Let G be a solvable Lie algebra and A = fug � P = A(P;B;D) a left

symmetric algebra over G with a principal idempotent u corresponding to a compatible pair

(B;D) of 1st kind of a left symmetric algebra P .

If D is non singular and B is non degenerate, then A is simple and non degenerate.

In fact, if D is non singular, then we have P = [A;A]. Thus we have

TrR�(x) = TrR(x) = 0 (x 2 P ),

where R� denotes the right multiplication of (P; �). Therefore (P; �) is a complete algebra

over a nilpotent Lie algebra [G;G]. Moreover if B is non degenerate, then A is non degener-

ate, by Theorm 1 (4), and simple, by Proposition2.

A symmetric bilinear form B of (P; �) is called a trace form if the following relation

holds:

B(x � y; z) = B(x; y � z) (x; y; z 2 P ).

Lemma 1 If a left symmetric algebra (P; �) is commutative, then

(1) (P; �) is associative,

(2) a symmetric bilinear form B of P of Hessian type is a trace form, and
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(3) P (B)? is an ideal of P , where P (B)? denotes a linear subspace of P de�ned by

P (B)? = fx 2 P ;B(x; y) = 0(y 2 P )g.

Proposition 5 If (P; �) is commutative and complete, then P (B)? is an ideal of A(P;B;D).

Therefore if A(P;B;D) is simple, then the symmetric bilinear form B is non degenerate.

A derivation D of P is called split if all eigen values of a linear endomorphism D of P

are contained in the base �eld K.

For an eigen value � of a split derivation D, denote by P� the linear subspace of P

de�ned by

P� = fx 2 P ; (D � �id)mx = 0; for some positive integer mg.

Then P is decomposed into the direct sum P = ��P� of weight spaces fP�g�2� satisfying

P� � P� � P�+�.

By Theorem 1,(3), we obtain the following.

Proposition 6 Let A(P;B;D) be a left symmetric algebra corresponding to a compatible

pair of a zero algebra P of 1st kind with a split derivation D.

If A is simple and indecomposable, then

(1) B is non degenerate, and

(2) P = P1=2 or P = P� � P1�� (� 2 K;� 6= 1=2; 0; 1).

II.[A] Let G be a Lie algebra over K, and A a left symmetric algebra over G.
An element v of A is called principal nilpotent if

(1) R(v) = 0, and

(2) v 62 [A;A].

For a principal nilpotent v of A, there exists a linear subspace P of A of codimension 1

such that

(1) P � [A;A], and

(2) A = fvg � P as a linear space.

For x; y 2 P , put

xy = x � y +C(x; y)v,

where x � y (resp. C(x; y)v) denotes the P-component (resp.fug� component) of xy.

Then we have

(1) [x; y] = x � y � y � x,

(2) C(x; y) = C(y; x).
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Moreover we can easily prove the following.

Theorem 2 Let A = fvg�P be a left symmetric algebra with a principal nilpotent v. Then

we have the following:

(1) (P; �) is a left symmetric algebra.

(2) C is a symmetric bilinear form of (P; �) of Hessian type.

(3) D = L(v) j P is a derivation of (P; �) satisfying the following relation:

C(Dx; y) + C(x;Dy) = 0 (x; y 2 P ). (2)

Conversely, let (P; �) be a left symmetric algebra with a symmetric bilinear form C of

Hessian type and a derivation D satisfying the above relation (2).

De�ne a bilinear product on a linear space A = fvg � P as follows:

vv = 0, vx = Dx, xv = 0, and

xy = x � y + C(x; y)v (x; y 2 P ).

Then it is clear that the algebra A(P;C;D) with the above multiplication is a left symmetric

algebra with a principal nilpotent v. (C;D) is called a compatible pair of P of 2th kind.

Proposition 7 Let A(P;C;D) be a left symmetric algebra with a principal nilpotent v

corresponding to a compatible pair (C;D) of 2nd kind. Then A is complete if and only if

(P; �) is complete.

In fact, for x 2 P , we have

TrR(x) = TrR�(x),

where R (resp. R�) denotes the right multiplication of A (resp. (P; �)). 2

We can easily prove the following.

Proposition2' Let A(P;C;D) be a left symmetric algebra with a principal nilpotent v

corresponding to a compatible pair (C;D) of 2nd kind.

(1) A0 = fvg�Q is an ideal of A = fvg�P if and only if Q is an ideal of (P; �) satisfying
DQ � Q.

(2) A linear subspace Q of P is an ideal of A if and only if Q is an ideal of (P; �) satisfying
DQ � Q and C(P;Q) = 0.

Remark. There exists an ideal A0 of A(P;C;D) such that v 62 A0 and A0 6� P . (cf.

Example (d). A1(P1; C1;D1)).

Let Ai(Pi; Ci;Di) (i = 1; 2) be a left symmetric algebra fvig � Pi with a principal

nilpotent vi constructed by (Pi; Ci;Di).

Put P = P1 � P2 as an algebra. Denote by D (resp.C) a derivation (resp. a symmetric

bilinear form) of P de�ned as follows:
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D j Pi = Di,

C j Pi = Ci and C(P1; P2) = 0 (i = 1; 2).

Then it is clear that (C;D) is a compatible pair of P of 2nd kind. The corresponding

algebra A = fvg � P with a principal nilpotent v is called the algebra constructed by the

direct sum P = P1 � P2.

A left symmetric algebra A(P;C;D) with a principal nilpotent v is called decomposable

if there exist non trival algebra Pi (i = 1; 2) with a compatible pair (Ci;Di) of 2nd kind

such that P = P1 � P2

Proposition3' Let A(P;C;D) be the algebra constructed by the direct sum (Pi; Ci;Di)

(i = 1; 2). If both the algebra Ai(Pi; Ci;Di) are simple, then A is simple.

Let (P; �) be a complete left symmetric algebra over a nilpotent Lie algebra, and (C;D)

a compatible pair of P of 2nd kind. Denote by A(P;C;D) the left symmetric algebra with

a principal nilpotent v corresponding to (C;D). Then, by Proposition 7, A is complete.

Moreover, by Propsition 2', if DP = P and C is non degenerate, then A is simple. Thus

we obtain the following.

Proposition 8 Let (P; �) be a complete left symmetric algebra over a nilpotent Lie algebra,

and A(P;C;D) a left symmetric algebra with a principal nilpotent v corresponding to a

compatible pair (C;D) of P of 2nd kind.

If DP = P and C is non degenerate, then A is complete and simple.

Corollary Assume that (P; �) is a zero algebra. Then the following statements are

mutually equivalent:

(1) A(P;C;D) is complete and simple.

(2) DP = P and C is non degenerate.

[B] Let G be a complex Lie algebra, (V; �) a G-module corresponding to a Lie homomor-

phism � of G into the linear endomorphism ring gl(V ) of V , and A a left symmetric algebra

over G.

We can easily prove the following.

Lemma 2 For any �; � 2 C, x; y 2 G and u 2 V , we have

(�(x) � (� + �)id)m(�(y)u) =

mX
k=0

�
m

k

�
�((adx� �id)ky)f(�(x) � �id)m�kug.

Corollary For a left symmetric algebra A over G. We have

(3) (L(x) � (� + �)id)m(yz) =

mX
k=0

�
m

k

�
L((adx � �id)ky)f(L(x) � �id)m�kzg
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for any �; � 2 C, x; y; z 2 A.

Assume that G is a solvable Lie algebra. Then, by Lie's theorem, there exists a base

fx1; x2; � � � ; xng of A such that L(x) (x 2 A) is expressed as a upper triangular matrix with

respect to the base fxig. The base fxig of A is called a canonical base of a left symmetric

algebra A. Denote by (L(x)ij )1�i;j�n (resp. (R(x)ij )1�i;j�n) the matrix representation of

L(x) (resp. R(x)) with respect to the canonical base fxig.

Lemma 3 Let hvi be a left ideal of A generated by v with vv = 0. Then we have [L(v); R(v)] =

0.

In fact, since A is left symmetric, we have the following equality:

[L(x); R(x)] = R(x)R(y) +R(xy) (x; y 2 A). (4)

For a left ideal hvi, there exists a canonical base fxig of A such that x1 = v. With

respect to the base fxig, denote by �i the (1; 1)-component of L(xi). Then we have

R(v)ij =

�
"ij ; if (i; j) = (1; j)

0; otherwise.

By the assumption that vv = 0, �1 = 0 and R(v)2 = 0. Thus, by (4), we obtain the

desired equality. 2

For a left ideal hvi with vv = 0, denote by A�(v) (resp. G�(v)) a linear subspace of

A(= G) de�ned by

A�(v) = fx 2 A; (L(v) � �id)mx = 0; for some positive integer mg

(resp. G�(v) = fx 2 A; (adv � � id)
m
x = 0; for some positive integer mg) :

Proposition 9 Let A be a left symmetric algebra over a complex solvable Lie algebra G
and hvi a left ideal of A with vv = 0. Then we have

(1) A�(v) = G�(v), for any � 2 C,

(2) A(v)�A(v)� � A�+�(v).

Therefore A0(v)(= G0(v)) is a subalgebra of A containing v.

Proof. (1) Since [L(v); R(v)] = 0, by Lemma 4, we obtain the equality.

(2) By (1) and the equality (3), Lemma 3, Corollary, we obtain the inclusion (2). 2

Now we quote the following ([K],[SEG]).

Lemma 4 Let A be a left symmetric algebra over a Lie algebra G. Then the following

statements (1), (2) and (3) (resp. (4) and (5)) are mutually equivalent:

(1) A is complete,

(2) R(x) (x 2 A) is nilpotent,



270 Akira MIZUHARA

(3) TrR(x) = 0 (x 2 A).

(4) L(x) (x 2 A) is nilpotent,

(5) R(x) (x 2 A) is nilpotent and G is a nilpotent Lie algebra.

Proposition 10 Let A be a left symmetric algebra over a complex solvable Lie algebra G,
hvi a left ideal of A with vv = 0, and A = ��A

�(v) the weight space decomposition of A

with respect to L(v).

If A0(v) is a proper subalgebra of A and R(v) j A0(v) = 0, then v is a principal nilpotent

of A.

In fact, since hvi is a left ideal of A, we have

A�(v)v = 0 (� 62 0),

by Proposition 9. Therefore R(v) j A0(v) = 0 implies that R(v) = 0.

Moreover since A0(v) (= G0(v)) 6= A, L(v) is not nilpotent, that is, v 62 [G;G]. Thus v
is a principal nilpotent of A. 2

Corollary 1 If A0(v) is a complete, proper subalgebra of A over a nilpotent Lie algebra,

then v is a principal nilpotent of A.

In fact, if A0(v) is a complete algebra over a nilpotent Lie algebra, then, by Lemma 5,

L(x) j A0 (x 2 A0(v)) is nilpotent. Therefore we have R(v) j A0(v) = 0. 2

Corollary 2 If dimA0(v) = 1, then A is complete and v is a principal nilpotent of A.

In fact, if dimA0(v) = 1, then v is a principal nilpotent, by Corollary 1. Moreover any

element x of A�(v) (� 6= 0) is contained in the derived Lie algebra [G;G]. Therefore we

have TrR(x) = 0 (x 2 A). 2

Corollary 3 Assume that A is complete. If A0(v) is a proper subalgebra of A and the

underlying Lie algebra of A0(v) is nilpotent, then v is a principal nilpotent of A.

In fact, since A is complete, A0(v) is also complete, by lemma 4. If the underlying

Lie algebra of a complete subalgebra A0(v) is nilpotent, then L(x) j A0(v) (x 2 A0(v)) is

nilpotent, by Lemma 4. Therefore R(v) j A0(v) = 0. 2

[C] Let Ai(Pi; Ci;Di) (i = 1; 2) be a left symmetric algebra with a principal nilpotent

vi constructed by a compatible pair (Ci;Di) of Pi of 2nd kind, and A(P;C;D) the left

symmetric algebra with a pincipal nilpotent v constructed by the direct sum P = P1 � P2.

Then fvg�Q1 �Q2 (Qi � Pi) is a left ideal of A if and only if fvig �Qi (i = 1; 2) is a left

ideal of Ai. Moreover we have
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TrR(xi) = TrR�
i (xi), and

h(xi; yi) = h�i (xi; yi) (xi; yi 2 Pi),

where R (resp. R�
i ) denotes the right multiplication of A (resp. (Pi; �)) and h (resp. h�i )

denotes the canonical 2-form of A (resp. (Pi; �)). Thus we obtain the following.

Proposition 11 Let Ai(Pi; Ci;Di) (i = 1; 2) be a left symmetric algebra with a principal

nilpotent vi, and A(P;C;D) the left symmetric algebra with a principal nilpotent v construted

by the direct sum P = P1 � P2.

(1) The radical R(A) of A is expressed as

R(A) = fvg �Q1 �Q2,

where Qi is a Di-invariant left ideal of (Pi; �) such that R(Ai) = fvig�Qi (i = 1; 2).

(2) (Pi; �) is non degenerate if and only if

R(Ai) = A?
i = fvig,

where A?
i denotes the orthogonal complement of Ai with respect to the canonical 2-

form hi of Ai (i = 1; 2).

Corollary Assume that (P1; �) is complete and (P2; �) is non degenerate. Then we have

the following:

(1) R(A) = fvg � P1, and

(2) if D2 6= 0, then R(A) = fvg � P2 is not an ideal of A.

Remark. Using the above corollary, we can construct a left symmetric algebra A over a

solvable Lie algebra whose radical R(A) is not an ideal of A. Therefore a theroem stated

in my paper[M1] is a fault (cf. Example (d)).

III. Let (P; �) be a left symmetric algebra over K. We shall give some examples of

compatibale pair (B;D) (resp. (C;D)) of 1st kind (resp. 2nd kind).

(a) Pfx1; x2; � � � ; xmg : a zero algebra with a base fx1; x2; � � � ; xmg.

(1) Dxi =
1

2
xi, B(xi; xj ) = Æij

(2) Dxi =
1

2
xi,

B(xi; xj ) =

�
0; if i+ j 6= m+ 1;

1; if i+ j = m+ 1:
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(3) Dxi =
1

2
xi + xi�1,

B(xi; xj) =

�
0; if i+ j 6= m+ 1;

(�1)i�1; if i+ j = m+ 1;

where m is an odd integer and x0 = 0.

The corresponding algebra A(P;B;D) are simple and non degenerate([SHI],[B] for(1)).

(b) Pfxi; yig1�i�m : a zero algebra with a base fxi; yig1�i�m.

(1) Dxi = �xi, Dyi = (1 � �)yi (� 2 K;� 6= 1

2
; 0; 1)

B(xi; xj) = 0, B(yi; yj ) = 0, B(xi; yj) = Æij ,

(2) Dxi = �xi + xi�1, Dyi = (1 � �)yi + yi�1 (� 2 K;� 6= 1

2
; 0; 1),

B(xi; xj) = 0, B(yi; yj ) = 0,

B(xi; yj) =

�
0; if i+ j 6= m+ 1;

(�1)i�1; if i+ j = m+ 1:

(3) Dxi = �xi, Dyi = ��yi (� 2 K;� 6= 0),

C(xi; xj) = 0, C(yi; yj) = 0, C(xi; yj ) = Æij ,

(4) Dxi = �xi + xi�1, Dyi = ��yi + yi�1 (� 2 K;� 6= 0),

C(xi; xj) = 0, C(yi; yj) = 0,

C(xi; yj ) =

�
0; if i+ j 6= m+ 1;

(�1)i�1; if i+ j = m+ 1;

where m is an odd integer and x0 = y0 = 0, for (2) and (4).

Both the algebra A(P;B;D) (1) and (2) are simple and non degenerate. Both the

algebra A(P;B;D) (3) and (4) are complete and simple ([B] for (1),(3)).

(c) Pfw1; w2; w3g : a complete algebra with the following multiplication table.

P w1 w2 w3
w1 0 0 0

w2 0 0 2w1
w3 0 w1 0

(1) Dw1 = ��w1, Dw2 = �w2, Dw3 = �2�w3,(� 2 K;� 6= 0)

C w1 w2 w3
w1 0 1 0

w2 1 0 0

w3 0 0 0

(2) Dw1 = w1, Dw2 = �w2, Dw3 = (1 � �)w3,(� 2 K;� 6= 0; 1)
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B w1 w2 w3
w1 0 0 0

w2 0 0 1

w3 0 1 0

(3) Dw1 = (1 � �)w1, Dw2 = �w2, Dw3 = (1 � 2�)w3,(� 2 K;� 6= 0; 1)

B w1 w2 w3
w1 0 1 0

w2 1 0 0

w3 0 0 0

The algebra A(P;B;D)(1) is complete and simple (cf. [B]). The algebra A(P;B;D)(2)

is degenerate, and the radical R(A) of A ( = A? = fw1g) is an ideal of A. The algebra

A(P;B;D)(3) is simple, R(A) = 0, and A? = fw3g.

Let (P; �) be a left symmetric algebra, and h� the canonical 2-form of (P; �).
For any derivation D of (P; �), we have

[D;R�(x)] = R�(Dx), ie. TrR� = 0.

Therefore we obtain the following.

Lemma For any derivation D of (P; �), (h�;D) is a compatible pair of 2nd kind.

(d)

(1) P1fx; yig1�i�r (r � 2) : a non degenerate algebra with a base fx; yig1�i�r having the

following muliplication :

x � x = x,

x � yi =
1

2
yi,

yi � x = 0,

yi � yj = Æi r�j+1.

D1x = 0,

D1yi = �iyi,

�i + �r�i+1 = 0,

�i =

�
0; if r: odd and i = r+1

2
;

nonzero; otherwise:

C1 = the canoncial 2-form h1 of P1.

(2) P2fzig1�i�2s : a zero algebra with a base fzig1�i�2s.
D2zi = �izi,

�i + �2s�i+1 = 0 (�i 6= 0),

C2(zi; zj) = Æi 2s�j+1.

(3) (P3fw1; w2; w3g; C3;D3) is the algebra with a compatible pair (C3;D3) of 2nd kind

described in (c), (1).

Denote byAij (resp. A123) the simple left symmetric algebra with a principal nilpotent

v constructed by the direct sum Pi �Pj (resp. P1� (P2 �P3)) (1 � i 6= j � 3). Then

we obtain the following :
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(1) A23 is complete,

(2) the radical R(A12) (resp. A13, A123) is a left ideal fvg � P2 (resp. fvg � P3,

fvg � (P2 � P3)) of A12 (resp. A13, A123) which is not an ideal.

(3) R(A12) = A?
12 (resp. R(A13) = A?

13, R(A123) = A?
123).

(e) Let A be a left symmetric algebra of dimension 3r with a base fui; xi; yig1�i�r and the

following multiplication table:

(1) uiuj = Æijuj , uixj = �ijxj , uiyj = �ijyj , xjui = yjui = 0,

xixj = yiyj = 0, xiyj = yjxi = Æijuj
�ij ; �ij 6= 0, �ij + �ij = Æij .

(2) uiuj = 0, uixj = �ijxj , uiyj = �ijyj , xjui = yjui = 0,

xixj = yiyj = 0, xiyj = yjxi = Æijuj
�ij ; �ij 6= 0, �ij + �ij = 0, det(�ij)i;j=1;2;��� ;r 6= 0

The algebra (1) (resp. (2)) is simple and non degenerate (resp. simple and complete).

(f) Let A1 (resp. A2, A3) be a left symmetric algebra of dimension 8 with a base fv1; v2; xi; yig1�i�3
and the following multiplication:

vivj = 0, vixj = �ijxj , vixj = ��ijyj
xivj = yivj = 0, xixj = yiyj = 0

(1) �ij 6= 0, except for (i; j) = (2; 3),

xiyj = yjxi =

8<
:

v1 + v2; if i = j = 1; 2;

v1; if i = j = 3;

0; otherwise:

(2) �ij 6= 0, except for (i; j) = (2; 2); (2; 3)

xiyj = yjxi =

8<
:

v1 + v2; if i = j = 1;

v1; if i = j = 2; 3;

0; otherwise:

(3) �ij 6= 0, except for (i; j) = (2; 1); (1; 3)

xiyj = yjxi =

8>><
>>:

v1; if i = j = 1;

v1 + v2; if i = j = 2;

v2; if i = j = 3;

0; otherwise:

Then A1 (resp. A2, A3) is a simple complete algebra([B]).
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