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ABSTRACT. The structure of complete left symmetric algebras and that of simple left
symmetric algebras over a solvable Lie algebra have been studied by many authors
(cE[K), [SEC], [B)).

In [SHI] the structure of left symmetric algebras with a principal idempotent was
studied.

In this paper, we shall study the structure of left symmetric algebras with a prin-
cipal idempotent in I (resp. a principal nilpotent in II) and give some examples of
simple left symmetric algebras over a solvable Lie algebra in II1.

L[A] Let G be a Lie algebra over a field K of characteristic 0, and A a left symmetric
algebra over G.

A symmetric bilinear form B of A is called of Hessian type([SHI]) if the following equality
holds:

B(zy,z) + B(y,xz) = B(yx,z) + B(z,yz)  (2,y,2 € A)
Denote by h the symmetric bilinear form of A defined by
ha,y) = TrR(zy)  (z,y € A),

where R(z) (resp. L(z)) denotes the right (resp. left) multiplication of A by x. Then h is
of Hessian type. It is called the canonical 2-form of A.
Denote by AL the linear subspace of A defined by

At ={z € Aih(z,y) =0 (y€ A}

A is called non degenerate if AL = {0}.
Let u be an element of A. u is called a principal idempotent if

(1) wu =u, and
(2) u generates a left ideal (u) of A
For a principal idempotent u of A, denote by P a linear subspace of A defined by
P={x € A;zu=0}.

Then P is a linear subspace of A containing [P, P] and A = {u} & P as a linear space.
For z,y € P, put

vy = x+y+ B(z,y)u,
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where z % y (resp. B(x,y)u) denote the P-component (resp. {u} — component) of zy in
{u} & P.

By a direct calculation, we obtain the following.

Theorem 1 Let A = {u} & P be a left symmetric algebra with a principal idempotent u.
Then we have the following:

(1) (P,*) is a left symmetric algebra.
(2) B is a symmetric bilinear form of (P, *) of Hessian type.

(3) D=L(u) | P is a derivation of (P,*) stisfying the following relation:
B(z,y) = B(Dx,y) + B(z,Dy). (v,y € P) (1)

(4) h(u,u)=1, h(u,P)=0, h=h*+ B on P,

where h (resp.h*) denote the canonical 2-form of A (resp.P).

A pair (B, D) of a symmetric bilinear form B of Hessian type and a derivation D of
(P, *) satisfying the condition (1) is called compatible of 1st kind.

For a given compatible pair (B, D) of 1st kind of a left symmetric algebra (P, ), define
a binomial product on a linear space A = {u} @ P as follows:

uu = u, ur = Dz, zu = 0,
vy =z *y+ Blz,y)u (r,y € P).

Then we can easily prove that the algebra A(P, B, D) defined above is a left symmetric
algebra A = {u} @ P with a principal idempotent w.

Assume that the underlying Lie algebra G of a left symmetric algebra A is a solvable Lie
algebra over the field C' of all complex numbers. Then there exists an element u of A which
generates a left ideal (u) of A, by Lie’s theorem. Moreover we may assume that vu = u, or
uu = 0. Thus we obtain the following.

Proposition 1 Let A be a left symmetric algebra over a solvable Lie algebra over C'. As-
sume that the radical R(A) = {0}. Then there exists a principal idempotent u of A and a
compatible pair (B, D) of 1st kind satisfying the condition in Theorem 1.

[B] Let A(P, B, D) be a left symmetric algebra {u} @ P with a principal idempotent u
corresponding a compatible pair (B, D) of (P, ) of 1st kind.

It is clear that B = 0 if and only if P is an ideal of A = {u} & P.

Let A’ be an ideal of A. If v 4+ z(x € P) is contained in A, then u = (u + z)u is an
element of A’. Therefore we can easily prove the following.

Proposition 2 Let A’ be an ideal of a left symmetric algebra A = A(P,B,D) = {u} & P

with a principal idempotent u. Then we have the following.

(1) A" ={u}P®Q is an ideal of A if and only if Q is an ideal of (P, *) satisfying DP C Q.
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(2) A linear subspace Q) of P is an ideal of A if and only if Q ts an ideal of (P,*) satisfying
DQ C Q and B(P,Q) =0.

Let A;(P;, Bi, D;) (i = 1,2) be a left symmetric algebra {u;} & P; with a principal
idempotent u; constructed by (P;, By, D;).

P = P; § P, as an algebra. Let D (resp. B) be a derivation (resp. a symmetric bilinear
form) of P defined as follows:

D| P =D,
B | P;=B; and B(P,, Py) = 0.

Then it is clear that (B, D) is a compatible pair of P of 1st kind. The corresponding algebra
A = {u} @ P with a principal idempotent u is called the algebra constructed by the direct
sum P =P, @ Ps.

A left symmetric algebra A(P, B, D) with a principal idempotent v is called decomposable
if there exist non trivial algebras P; with a compatible pair (B;, D;)(i = 1,2) such that

(P7B*D) :(P17B17D1)$(P27B27D2)

By the definition and the above proposition, we obtain the following.

Proposition 3 Let A(P, B, D) be the left symmetric algebra constructed by the direct sum
of (P;,B;, D;)(i = 1,2). If both (P;, B;, D;)(1 = 1,2) are simple, then A 1s simple.

[€]
Proposition 4 Let G be a solvable Lie algebra and A = {u} @ P = A(P,B,D) a left

symmetric algebra over G with a principal idempotent u corresponding to a compatible pair
(B, D) of 1st kind of a left symmetric algebra P.

If D is non singular and B is non degenerate, then A is simple and non degenerate.

In fact, if D is non singular, then we have P = [A, A]. Thus we have
TrR*(z) = TrR(z) = 0 (z € P),

where R* denotes the right multiplication of (P, x). Therefore (P, *) is a complete algebra
over a nilpotent Lie algebra [G,G]. Moreover if B is non degenerate, then A is non degener-
ate, by Theorm 1 (4), and simple, by Proposition2.

A symmetric bilinear form B of (P, ) is called a trace form if the following relation

holds:
B(z xy,z) = B(z,y * z) (v,y,z € P).

Lemma 1 If a left symmetric algebra (P,*) is commutative, then
(1) (P,*) is associative,

(2) a symmetric bilinear form B of P of Hessian type is a trace form, and
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(3) P(B)t is an ideal of P, where P(B)* denotes a linear subspace of P defined by

P(B)* = {z € P:B(z,y) = 0(y € P)}.

Proposition 5 If (P, *) is commutative and complete, then P(B)* is an ideal of A(P, B, D).
Therefore if A(P, B, D) is simple, then the symmetric bilinear form B is non degenerate.

A derivation D of P is called split if all eigen values of a linear endomorphism D of P
are contained in the base field K.

For an eigen value A of a split derivation D, denote by Py the linear subspace of P
defined by

Py ={x € P;(D — Xid)™z = 0, for some positive integer m}.

Then P is decomposed into the direct sum P = @, Py of weight spaces { Py} ea satisfying
Py * PM C P)\+N'
By Theorem 1,(3), we obtain the following.

Proposition 6 Let A(P, B,D) be a left symmetric algebra corresponding to a compatible
pair of a zero algebra P of 1st kind with a split derivation D.
If A is simple and indecomposable, then

(1) B is non degenerate, and
(2) P = P1/2 or P= P\ @ Pi_» (/\ c I(,/\ # 1/2,0,1).

IL.[A] Let G be a Lie algebra over K, and A a left symmetric algebra over G.
An element v of A is called principal nilpotent if

(1) R(v) =0, and
(2) v [A Al

For a principal nilpotent v of A, there exists a linear subspace P of A of codimension 1
such that

(1) PO [A,A] and
(2) A= {v} @ P as a linear space.
For z,y € P, put
vy =a*y+Clz,y)v,

where @ %y (resp. C(z,y)v) denotes the P-component (resp.{u} — component) of zy.
Then we have

(1) [,y =2*y—y=*uz,
(2) C(z,y) = Cly, ).
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Moreover we can easily prove the following.

Theorem 2 Let A = {v} @ P be a left symmetric algebra with a principal nilpotent v. Then
we have the following:

(1) (P,*) is a left symmetric algebra.
(2) C is a symmetric bilinear form of (P,*) of Hessian type.

(3) D= L(v)| P is aderivation of (P,*) satisfying the following relation:

C(D:c,y)+C(:c,Dy):0(ijEP). (2)

Conversely, let (P,*) be a left symmetric algebra with a symmetric bilinear form C of
Hessian type and a derivation D satisfying the above relation (2).
Define a bilinear product on a linear space A = {v} @ P as follows:

vv =0, ve = Dz, zv =0, and
wy =a*xy+Clz,y)v (v,y € P).

Then it is clear that the algebra A(P, C, D) with the above multiplication is a left symmetric
algebra with a principal nilpotent v. (C, D) is called a compatible pair of P of 2th kind.

Proposition 7 Let A(P,C,D) be a left symmetric algebra with a principal nilpotent v
corresponding to a compatible pair (C,D) of 2nd kind. Then A is complete if and only if
(P, %) is complete.

In fact, for 2 € P, we have
TrR(z) = TrR*(z),

where R (resp. R*) denotes the right multiplication of A (resp. (P,x*)). O
We can easily prove the following.

Proposition2’ Let A(P,C,D) be a left symmetric algebra with a principal nilpotent v
corresponding to a compatible pair (C, D) of 2nd kind.

(1) A'={v}®Q is an ideal of A= {v} D P if and only if Q is an ideal of (P, *) satisfying
DQ C Q.

(2) A linear subspace Q of P is an ideal of A if and only if Q 1s an ideal of (P,*) satisfying
DQ C Q and C(P,Q) =0.

Remark. There exists an ideal A’ of A(P,C, D) such that v ¢ A" and A" ¢ P. (cf.
Example (d). A{(Py,Cy,Dy)).

Let A;(P;,Ci,D;) (1 = 1,2) be a left symmetric algebra {v;} & P; with a principal
nilpotent v; constructed by (P;, C;, D;).

Put P = P; & P; as an algebra. Denote by D (resp.C) a derivation (resp. a symmetric
bilinear form) of P defined as follows:
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D|P =D,
C| P =Ciand C(Py,Py) =0 (i = 1,2).

Then it is clear that (C, D) is a compatible pair of P of 2nd kind. The corresponding
algebra A = {v} @ P with a principal nilpotent v is called the algebra constructed by the
direct sum P = P © Ps.

A left symmetric algebra A(P, C, D) with a principal nilpotent v is called decomposable
if there exist non trival algebra P; (i = 1,2) with a compatible pair (C;, D;) of 2nd kind
such that P =P, @ P,

Proposition3’ Let A(P,C, D) be the algebra constructed by the direct sum (P;,C;, D;)
(1 = 1,2). If both the algebra A;(P;, C;,D;) are simple, then A is simple.

Let (P, *) be a complete left symmetric algebra over a nilpotent Lie algebra, and (C, D)
a compatible pair of P of 2nd kind. Denote by A(P,C, D) the left symmetric algebra with
a principal nilpotent v corresponding to (C, D). Then, by Proposition 7, A is complete.
Moreover, by Propsition 2’ if DP = P and C is non degenerate, then A is simple. Thus
we obtain the following.

Proposition 8 Let (P, ) be a complete left symmetric algebra over a nilpotent Lie algebra,

and A(P,C,D) a left symmetric algebra with a principal nilpotent v corresponding to a
compatible pair (C,D) of P of 2nd kind.
If DP = P and C is non degenerate, then A is complete and simple.

Corollary Assume that (P,*) is a zero algebra. Then the following statements are
mutually equivalent:

(1) A(P,C,D) is complete and simple.

(2) DP = P and C is non degenerate.

[B] Let G be a complex Lie algebra, (V, p) a G-module corresponding to a Lie homomor-
phism p of G into the linear endomorphism ring gl(V') of V, and A a left symmetric algebra
over G.

We can easily prove the following.

Lemma 2 For any o,0 € C, x,y € G and v € V, we have

(p(z) — (a + B)id)™ (p(y)u) = Z <TZ> p((adz — Bid)* ) {(p(z) — aid)™ Fu}.

k=0

Corollary For a left symmetric algebra A over G. We have

(8) (L(x) — (0 + Bid)™ (y=) = 3 (’}j)L((adm By {(L() - aid)"F2)
k=0
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for any o, € C, z,y,z € A.

Assume that G is a solvable Lie algebra. Then, by Lie’s theorem, there exists a base
{z1,72, - ,7,} of Asuch that L(z) (x € A) is expressed as a upper triangular matrix with
respect to the base {x;}. The base {z;} of A is called a canonical base of a left symmetric
algebra A. Denote by (L();;)1<s j<n (resp. (R(x)ij)1<i j<n) the matrix representation of
L(x) (resp. R(x)) with respect to the canonical base {z;}.

Lemma 3 Let (v) be a left ideal of A generated by v with vo = 0. Then we have [L(v), R(v)] =
0.

In fact, since A is left symmetric, we have the following equality:
[L(x), R(x)] = R(x)R(y) + Rlzy) (r,y € A). (4

For a left ideal (v), there exists a canonical base {z;} of A such that z; = v. With
respect to the base {;}, denote by ¢; the (1,1)-component of L(z;). Then we have

Rv);; = { e (i) = (1)

otherwise.

By the assumption that vo = 0, ¢, = 0 and R(v)? = 0. Thus, by (4), we obtain the
desired equality. O

For a left ideal (v) with vo = 0, denote by A¥(v) (resp. G*(v)) a linear subspace of
A(= G) defined by

A¥(v) = {2 € A; (L(v) — aid)™2 = 0, for some positive integer m}
(resp. G%(v) = {z € A; (adv — aid)™ z = 0, for some positive integer m}).

Proposition 9 Let A be a left symmetric algebra over a complex solvable Lie algebra G
and (v) a left ideal of A with vv =0. Then we have

(1) A%(v) = G*(v), for any a € C,
(2) A(v)*A(v)? C A (v).
Therefore A°(v)(= G°(v)) is a subalgebra of A containing v.
Proof. (1) Since [L(v), R(v)] = 0, by Lemma 4, we obtain the equality.
(2) By (1) and the equality (3), Lemma 3, Corollary, we obtain the inclusion (2). O

Now we quote the following ([K],[SEG]).

Lemma 4 Let A be a left symmetric algebra over a Lie algebra G. Then the following
statements (1), (2) and (3) (resp. (4) and (5)) are mutually equivalent:

(1) A is complete,

(2) R(x) (x € A) is nilpotent,
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(3) TrR(z) =0 (x € A).
(4) L(z) (v € A) is nilpotent,

(5) R(z) (z € A) is nilpotent and G is a nilpotent Lie algebra.

Proposition 10 Let A be a left symmetric algebra over a complez solvable Lie algebra G,
(v) a left ideal of A with vo =0, and A = G,A%(v) the weight space decomposition of A
with respect to L(v).

If A°(v) is a proper subalgebra of A and R(v) | A°(v) = 0, then v is a principal nilpotent
of A.

In fact, since {v) is a left ideal of A, we have
A%v)o =0 (a € 0),

by Proposition 9. Therefore R(v) | A?(v) = 0 implies that R(v) = 0.
Moreover since A%(v) (= G%(v)) # A, L(v) is not nilpotent, that is, v ¢ [G,G]. Thus v
is a principal nilpotent of A. O

Corollary 1 If A°(v) is a complete, proper subalgebra of A over a nilpotent Lie algebra,
then v is a principal nilpotent of A.

In fact, if A%(v) is a complete algebra over a nilpotent Lie algebra, then, by Lemma 5,
L(z) | A° (z € A°(v)) is nilpotent. Therefore we have R(v) | A°(v) =0. O

Corollary 2 If dimA®(v) = 1, then A is complete and v is a principal nilpotent of A.

In fact, if dimA®(v) = 1, then v is a principal nilpotent, by Corollary 1. Moreover any
element = of A%(v) (o # 0) is contained in the derived Lie algebra [G,G]. Therefore we
have TrR(z) =0 (v € A). O

Corollary 3 Assume that A is complete. If A°(v) is a proper subalgebra of A and the
underlying Lie algebra of A®(v) is nilpotent, then v is a principal nilpotent of A.

In fact, since A is complete, A°(v) is also complete, by lemma 4. If the underlying
Lie algebra of a complete subalgebra A°(v) is nilpotent, then L(z) | A°(v) (z € A%(v)) is
nilpotent, by Lemma 4. Therefore R(v) | A%(v) =0. O

[C] Let A;(P;,Ci, D;) (i = 1,2) be a left symmetric algebra with a principal nilpotent
v; constructed by a compatible pair (C;, D;) of P; of 2nd kind, and A(P,C, D) the left
symmetric algebra with a pincipal nilpotent v constructed by the direct sum P = P; & Ps.
Then {v} & Q1 ® Q2 (@i C P;) is aleft ideal of A if and only if {v;} & Q; (1 =1,2) is a left

ideal of A;. Moreover we have
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TrR(z;) = TrRY (2;), and
i ys) = hi(wiyi) (wiys € Py),

where R (resp. R}) denotes the right multiplication of A (resp. (P;,*)) and h (resp. h})
denotes the canonical 2-form of A (resp. (P;,*)). Thus we obtain the following.

Proposition 11 Let A;(P;,C;, D;) (i = 1,2) be a left symmetric algebra with a principal
nilpotent v;, and A(P,C, D) the left symmetric algebra with a principal nilpotent v construted
by the direct sum P = Py & Ps.

(1) The radical R(A) of A is expressed as
R(A) = {v} © Q1 © Qo,
where Q; s a D;-invariant left ideal of (P;, *) such that R(A;) = {v;} ®Q; (1 = 1,2).
(2) (P, *) is non degenerate if and only if
R(Ai) = A = {vi},
where A} denotes the orthogonal complement of A; with respect to the canonical 2-

form h; of A; (1 =1,2).

Corollary Assume that (Py, %) is complete and (Py,*) is non degenerate. Then we have
the following:

(1) R(A)={v}® Py, and
(2) if Dy £ 0, then R(A) = {v} @ Py is not an ideal of A.
Remark. Using the above corollary, we can construct a left symmetric algebra A over a

solvable Lie algebra whose radical R(A) is not an ideal of A. Therefore a theroem stated
in my paper[M1] is a fault (cf. Example (d)).

III. Let (P,*) be a left symmetric algebra over K. We shall give some examples of
compatibale pair (B, D) (resp. (C, D)) of 1st kind (resp. 2nd kind).

(a) P{z1,72,- - ,zm} : a zero algebra with a base {z1, 72, - ,7m}.
(1) Dz; = %xi, B(xi,xj) = 51’]’
(2) Dz, = %.7:1-,

(0, ifitiEmEL,
B(““”*”J)_{ 1, ifitj=m+1.
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(3) Dz; = o + 21,
R ifi+j5#m+1,
B(CL“I])_{ (_]_)1'717 1fz+]:m+1,
where m is an odd integer and zo = 0.

The corresponding algebra A(P, B, D) are simple and non degenerate([SHI],[B] for(1)).

(b) P{xi,yi}1<i<m : a zero algebra with a base {z;,yi hi<i<m.

(1) Dxi=Xay, Dy; = (1 = Nyi (Ae K, N # %,07 1)
B<I17x]) = 07 B(ylay]) = 07 B(iﬂ“y]) = 5ij7

(2) Doy =Mei+ i1, Dy; = (1= Nyi + i1 (A € K, N # 5£,0,1),
B(.Ti,Ij) = 07 B(ylay]) = 01

. fo, it Em+1,
B(»Tzayj){ (71)1’—1‘/ 1fz—|—]:m+l

(3) Dx; = Aa;, Dy; = =\yi (A€ K,\#0),
Clzi,2;) =0, Clyi,y;) =0, Clay, y;) = b4y,

(4) Dz = Axi+ xi—1, Dy; = —A\yi +yi—1 (A € K, N #0),
C(CC“JJ]) = 07 C(le%) = 07

[0, ifi+j#m+1,
C(m“y]){ (—1)', it i=m 4,

where m is an odd integer and x¢ = yo = 0, for (2) and (4).
Both the algebra A(P,B,D) (1) and (2) are simple and non degenerate. Both the

algebra A(P, B, D) (3) and (4) are complete and simple ([B] for (1),(3)).

(¢) P{wy,ws,ws} : a complete algebra with the following multiplication table.

P | wy; Wy Wz
wy | 0 0 0
wy | 0 0 2w
w3 | 0wy 0

(1) Dwy = —pwy, Dws = fws, Dws = —20ws,(8 € K,8 # 0)

C | wy wy w3
wy | 0 1 0
wy | 1 0 0
wz | 0 0 0

(2) Dwy = wy, Dwy = Pwq, Dws = (1 — Bws,(8 € K,8+#0,1)
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B wiy wo W3

wp | 0 0 O
W2 0 0 1

(3) Dwy = (1 — B)wy, Dwy = Pwse, Dws = (1 — 2B)ws,(8 € K,8#£0,1)

B | wy wq w3
w1 0 1 0
wy | 1 0 0
wg | 0 0 0

The algebra A(P, B, D)(1) is complete and simple (cf. [B]). The algebra A(P, B, D)(2)
is degenerate, and the radical R(A) of A ( = AT = {w}) is an ideal of A. The algebra
A(P, B,D)(3) is simple, R(A) = 0, and A+ = {w;}.

Let (P, *) be aleft symmetric algebra, and A* the canonical 2-form of (P, %).
For any derivation D of (P, *), we have

[D, R*(z)] = R*(Dx), ie. TrR* = 0.
Therefore we obtain the following.
Lemma For any derivation D of (P,*), (h*, D) is a compatible pair of 2nd kind.
(d)

(1) Pi{z,yi}1<i<r (r >2) : a non degenerate algebra with a base {z,y; }1<i<» having the
following muliplication :

THT =2,
— 1,

T*rYi = JYi,

yz‘*fC:O:

Yi * Y5 = Oir—jt1-

_Dll" == 07
Dyy; = oy,
oy +ap 11 =0,

)]0, if r: oddalrldi:'uzr—l7
= nonzero, otherwise.
(1 = the canoncial 2-form h; of P;.
(2) PQ{Zi}lSiSQS . a zero algebra with a base {Zi}lsiggg.
Dyz; = Bizi,
Bi 4+ Bas—iv1 =0 (8; £ 0),
02(21‘72;‘) = 51‘257#1-
(3) (Ps{wy,wa,ws},Cs, D3) is the algebra with a compatible pair (C3, D3) of 2nd kind
described in (c¢), (1).

Denote by A;; (resp. Aias) the simple left symmetric algebra with a principal nilpotent
v constructed by the direct sum P; & P; (resp. P1 & (P> @ Ps)) (1 <i# j <3). Then
we obtain the following :
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(1) Aas is complete,

(2) the radical R(A12) (resp. Az, Ai23) is a left ideal {v} @ Py (resp. {v} @ Ps,
{v} @ (P2 @ Ps)) of Aig (resp. Ay, Aya3) which is not an ideal.

(3) R(A12) = Aj; (vesp. R(Ai3) = Ajy, R(Ai23) = Asg).

(e) Let A be a left symmetric algebra of dimension 3r with a base {u;, z;, ¥ }1<i<r and the
following multiplication table:

(1) wiuy = d55uj, wiry = aijay, uy; = Bijys, v5u; =yju; =0,
iy = yiy; =0, 23y = yjo; = 0u;
aij; Bij 7 0, aij + Bij = 8ij.

(2) uiu; =0, uiz; = a5, uy; = Pijyj, riui = y;u; =0,
iy = yy; =0, 23y = yj@; = 0u;

aij; Bij 7 0, aij + Bij = 0, det(aij)i j=1,2,,» 7 0

The algebra (1) (resp. (2)) is simple and non degenerate (resp. simple and complete).

(f) Let Ay (resp. Az, A3) be aleft symmetric algebra of dimension 8 with a base {v1, va, i, ¥i J1<i<s
and the following multiplication:

VU5 = 0, Vil; = QG5T5, U;T; = —QG5Y;
zv; =yiv; =0, v;2; =y;y; =0

(1) as; #0, except for (i,7) = (2,3),

’U1+UQ, le:]:].,Z,
TiY; = Yjxi = U1, if 2 Zj = 37

0, otherwise.

(2) oy #0, except for (i,7) = (2,2),(2,3)

v1+172, 1f2:‘]:]_7
Ty = Yiti = UL ifi=j=23,
0.

otherwise.

(3) auj #0, except for (¢,7) = (2,1),(1,3)

vy, ife=y5=1,

) 171—"-1727 1fl=]=2,
LYy = YjTi = vy ifi=j=3
0, otherwise.

Then A; (resp. Ay, As) is a simple complete algebra([B]).
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