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Abstract. This paper discusses the problem of estimating multiple change points in

the trend function of a time series regression model where the residual process is a

circular ARMA model, and the trend function satis�es a sort of Grenander's condi-

tions. First, the asymptotic representation of the likelihood ratio between contiguous

hypothesis is given. Then the limiting distributions of the maximum likelihood esti-

mator (MLE) and the Bayes estimator (BE) for the regression coeÆcients and change

points are derived. It is seen that the BE is asymptotically eÆcient, and that the MLE

is not so generally.

1. Introduction

The problem of testing and estimating change point in linear regression model attracted

much attention from both econometrics and statistics researchers. For example, Bai (1997)

studied the least squares estimation of change point in multiple regression where he showed

the consistency, rate of convergence and the asymptotic distribution of an estimator. For

testing structural changes, we refer the recent contributions of Andrews (1993), Andrews

and Ploberger (1996) and Hidalgo and Robinson (1996).

In comparison, the literature addressing the issue of multiple structural changes is rela-

tively sparse. Garcia and Perron (1996) studied the Wald test for two changes in a dynamic

time series. Liu, Wu and Zidek (1997) studied multiple shifts in linear regression model

estimated by least squares and obtained the consistency and the rate of convergence of the

estimated break dates. Bai and Perron (1998) extended their results allowing for general

forms of serial correlation and heterosckedasticity in the errors.

From statistical point of view, it is very important to investigate the asymptotically

eÆcient estimators. A number of authors considered the consistency property and the rate

of convergence for estimated change points, but the asymptotically eÆcient estimators were

not as well studied in the literature. For a di�usion type process, the problem of detecting

multiple changes was studied by Kutoyants (1984), and he obtained that the Bayes esti-

mator is asymptotically eÆcient. In ARMA context, Shiohama, Taniguchi and Puri (2002)

investigated a regression model with trend functions, and obtained the consistency and the

limiting distributions of Bayes estimators (BE) and maximum likelihood estimators (MLE).

They also showed that the BE is asymptotically eÆcient.

In this paper we develop the asymptotic theory for estimators of multiple change points

in time series regressions. The results include consistency, asymptotic distributions and

asymptotic eÆciency. To show these we use the general results given by Ibragimov and

Has'minski (1981).

This paper is organized as follows. Section 2 speci�es the model and describes as-

sumptions. Also in Section 2, the asymptotic representation of the likelihood ratio process
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between contiguous hypothesis is given. Section 3 de�nes the MLE and BE for unknown

parameters, and states the asymptotics of these estimators. A numerical example is illus-

trated in Section 4. Technical materials are collected in Section 5.

2. Regression model with multiple changes

Consider the following time series regression models

yt =

8>>>><
>>>>:

�
0
1zt + ut t = 1; : : : ; [�1n]

�02zt + ut; t = [�1n] + 1 : : : ; [�2n]
...

�
0
m+1zt + ut t = [�mn] + 1 : : : ; n

(2.1)

= f�01�(t=n � �1) + � � �+ �0m+1�(t=n > �m)gzt + ut

= rt(�1; : : : ;�m+1; � ) + ut; (say); t = 1; : : : ; n;

where �j = (�j1; : : : ; �jq)
0
; j = 1; : : : ;m+1 are unknown parameter vectors, � = (�1; : : : ; �m)

0

is a vector of unknown change points, � is the indicator function, and the residual process

futg is a circular Gaussian ARMA process with E(ut) = 0 and spectral density f(�). The

spectral density f(�) is assumed to be bounded and bounded away from zero. The regression

function zt = (zt1; : : : ; ztq)
0 is nonrandom and observable. Let

a
n
kj (h) =

(Pn�h

t=1 zk;t+h; zjt; h = 0; 1; : : :Pn

t=1�h zk;t+hzjt; h = �1;�2; : : : :(2.2)

The following Grenander's conditions are assumed to hold:

Assumption 2.1.

(G.1) a
n
kk(0) = O(n); k = 1; : : : ; q and

Pl+�

t=l z
2
tk = O(�); for any l = 1; : : : ; n and, k =

1; : : : ; q.

(G.2) limn!1 z
2
n+1;k=a

n
kk(0) = 0, k = 1; : : : ; q:

(G.3) limn!1 a
n
kj(h)=fankk(0)anjj (0)g1=2 = rkj (h) exists for every k; j = 1; : : : ; q and h 2Z.

Denote by R(h) the q � q matrix (rkj (h)).

(G.4) R(0) is nonsingular.

From (G.3) there exists a Hermitian matrix function M (�) = (Mkj (�)) with positive

semide�nite increments such that

R(h) =

Z �

��

e
ih�

dM(�):(2.3)

Suppose that the stretch of series from model (2.1) yn = (y1; � � � ; yn)0 is available.

Denote the covariance matrix of un = (u1; � � � ; un)0 by �n and let tn = (r1; : : : ; rn)
0 with

rt = rt(�1; : : : ;�m+1; � ). Then the likelihood function based on yn is given by

Ln(�1; � � � ;�m+1; � ) =
1

(2�)n=2j�nj1=2 exp
�
�1

2
(yn � tn)0��1n (yn � tn)

�
:(2.4)
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Since we assume that futg is a circular ARMA process, it is seen that �n has the following

representation

�n = U�
ndiagf2�f(�1); � � � ; 2�f(�n)gUn

where Un = fn�1=2 exp(2�its=n); t; s = 1; : : : ; ng and �k = 2�k=n (see Anderson (1977)).

Write

Fn(�k) =
1p
2�n

nX
t=1

(yt � rt)e
�it�k :

Then the likelihood function (2.4) is rewritten as

Ln(�1; � � ��m+1; � ) =
1

(2�)nfQn

k=1 f(�k)g1=2
exp

"
�1

2

nX
k=1

f(�k)
�1jFn(�k)j2

#
:(2.5)

De�ne the local sequence for the parameters

�
(n)

i = �i +D
�1
n bi; and � (n) = � + n

�1�(2.6)

whereDn = diag(
p
a
n
11(0); : : : ;

q
anqq(0)); bi 2 Rq for i = 1; : : : ;m+1, and � = (�1; : : : ; �m)

0 2
R
m. For notational convenience, in what follows, we use the the following convention

�0 = 0; �m+1 = 1 and �m+1 = 0. Under the local sequence (2.6) the likelihood ratio process

is represented as

Zn(b1; � � � ; bm+1;�)(2.7)

� Ln(�
(n)

1 ; � � � ;�(n)

m+1; �
(n))

Ln(�1; � � � ;�m+1; � )

= exp

"
� 1

2
p
n

nX
k=1

f(�k)
�1=2

n
dn(�k)A(�k) + dn(�k) A(�k)

o

� 1

2n

nX
k=1

jA(�k)j2
#

where dn(�k) = (2�n)�1=2
Pn

t=1 ute
it�k and

A(�k)

=
1p

2�f(�k)

8<
:

mX
j=1

[�jn+�j]X
s=[�jn]+1

(�j+1 � �j)0zse�is�k �
m+1X
j=1

[�jn+�j]X
s=[�j�1n]+1

b0jD
�1
n zse

�is�k

9=
;

= A1(�k) +A2(�k) (say):

The asymptotic representation of Zn(b1; : : : ; bm+1;�) is given as follows.
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Theorem 2.1. Suppose that Assuption 2.1 holds. Then for all (�01; : : : ;�
0
m+1; � ) 2 � �

R
q�(m+1)+m, the log-likelihood function ratio has the asymptotic representation

logZn(b1; : : : ; bm+1;�)

=

mX
j=1

(�j+1 � �j)0Wj1 +

mX
j=2

p
�j � �j�1b

0
jWj2 +

p
�1b

0
1W12 +

p
1� �mb

0
m+1Wm+1;2

� 1

8�2

mX
j1;j2=1

(�j1+1 � �j1 )0
Z �

��

A(�j1 ; �j1 ;�)A(�j2 ; �j2 ;�)
�
f(�)�1d�(�j2+1 � �j2 )

�
m+1X
j=1

�j � �j�1

4�
b0j

Z �

��

f(�)�1dM(�)bjÆj � 1

4�

mX
j=1

min(�j+1 � �j ; �j � �j�1)

�
2
4b0j+1

Z �

��

1

2�

1X
l=1�[�j]

�(l)e�il�dM(�)bj + b
0
j

Z �

��

1

2�

[�j ]�1X
l=�1

�(l)e�il�dM (�)bj+1

3
5+ op(1)

= logZ(b1; : : : ; bm+1;�) + op(1); (say)

where A(�j ; �j ;�) =
P[�jn+�j]

s=[�jn]+1
zse

is�, Æj = 1 for j = 2; : : : ;m, Æ1 = Æm+1 = 2,

Wj1 = � 1

2�

Z �

��

[�jn+�j]X
s=[�jn]+1

zse
is�

f(�)�1dZu(�) for j = 1; : : : ;m

Wj2 =

Z �

��

�
2�
p
�j � �j�1

��1 [�jn+�j]X
s=[�j�1n]+1

D�1
n zse

is�
f(�)�1dZu(�) for j = 2; : : : ;m

W12 =

Z �

��

(2�
p
�1)

�1

[�1n+�1]X
s=1

D�1
n zse

is�(1 + e
in�)f(�)dZu(�)

and

Wm+1;2 =

Z �

��

�
2�
p
1� �m

��1 mX
s=[�mn]+1

D�1
n zse

is�(1 + e
�in�)f(�)dZu(�):

Let W 1 = (W 0
11j � � � jW 0

m1)
0 and W 2 = (W 0

12j � � � jW 0
m+1;2)

0. Then�
W 1

W 2

�
�!
D

N

�
0;

�
V 1 0

0 V 2

��

where V 1 is (qm) � (qm) matrix with (i; j)th block

1

4�2

Z �

��

A(�i; �i;�)A(�j ; �j ;�)
�
f(�)�1d�; for i; j = 1; : : : ;m:

and V 2 is (q(m + 1))� (q(m + 1)) matrix with

V 2 =

0
BBBBB@

2A B
0

B A B

. . .
. . .

. . .

B A B

0 B 2A

1
CCCCCA
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where

A =
1

2�

Z �

��

f(�)�1dM(�)

and Z �

��

2
4 1

2�

1X
l=1�[�j]

�(l)e�il� +
1

2�

1X
l=1�[�j]

�(l)e�il�

3
5 dM (�):

Next we present some fundamental lemmas which are useful in the estimation of multiple

change points.

Lemma 2.1. Suppose that Assumption 2.1 holds. Then for some p > 2 and for any

compact set C 2 �, we have

sup
�1;::: ;�m+1;�2C

EZ
1=p
n (b1; : : : ; bm+1;�) � expf�g(b1; : : : ; bm+1;�)g

where

g(b1; : : : ; bm+1;�) = C

mX
j=1

j�j j+
m+1X
i;j=1

b0iKbj

with some positive de�nite matrix K and C > 0.

Lemma 2.2. Suppose that Assumption 2.1 holds. Then for any compact set C � �,

there exist some integer �(C ) = �, B(C ) = B such that for any integer p > 1

sup
�1;::: ;�m+1;�2C ;bj<H;�j<H

2
4m+1X
j=1




b(2)j � b(1)j




� + 


�(2) � �(1)


�
3
5�1

� E

h
Z
1=2p
n (b

(2)

1 ; : : : ; b
(2)

m+1;�
(2)) � Z

1=2p
n (b

(1)

1 ; : : : ; b
(1)

m+1;�
(1))
i2p

� B(1 +H)�:

3. Estimation theory

In this section we state the asymptotic behavior of MLE and BE. The limiting dis-

tributions of these estimators are di�erent and it is shown that the BE is asymptotically

optimal. To show this we use the general results by Ibragimov and Has'minski (1981).

First, we need to introduce a loss function l(y); y 2 Rd which is

1. nonnegative, continuous at point 0 and l(0) = 0, but is not identically 0;

2. symmetric: l(y) = l(�y);
3. the set fy : l(y) < cg are convex for all c > 0.

We denote byW p the class of loss function satisfying 1-3 with polynomial majorants. The

example of such function is w(y) = jyjp; p > 0.

The MLE �̂
(ML)0

= (b̂
(ML)0

1 ; : : : ; b̂
(ML)0

m+1 ; �̂
(ML)0) and BE (for quadratic loss function)

~�
(B)0

= (~b
(B)0

1 ; : : : ; ~b
(B)0

m+1; ~�
(B)0) are de�ned by the usual relations

L(b̂
(ML)

1 ; : : : ; �̂
(ML)

m+1 ; �̂
(ML)) = max

b1;::: ;bm+1;�2�
L(b1; : : : ; bm+1; � )(3.1)
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and

~�
(B)

=

Z
�
�q(�jYn)d�; q(�jYn) = �(�)Ln(�)R

� �(v)Ln(v)dv
;(3.2)

respectively, where �(�) is a prior density on �. We suppose that the prior density is a

bounded, positive and continuous function possessing a polynomial majorant on�. Further,

let us de�ne two random variables û and ~u, for Z(u);u = (b1; : : : ; bm+1; � ), by relations

Z(û) = sup
u2Rq�(m+1)+m

Z(u)

~u =

R
Rq�(m+1)+m uZ(u)duR
Rq�(m+1)+m Z(v)dv

:

Our main results are stated as follows

Theorem 3.1. Let the parameter set � be an open subset of Rq�(m+1)+m. Then the

MLE is uniformly on (b1; : : : ; bm+1; � ) 2 �, consistent

P lim
n!1

�̂
ML

= �

and converges in distribution

L�

n
An(�̂

(ML) � �)
o
�!
D

L (û);

where An = diag(Dn; : : : ;Dn| {z }
m+1

; n : : : ; n| {z }
m

). For any continuous loss function w 2 Wp, we

have

lim
n to1

E�w(An(�̂
(ML) � �)) = Ew(û):

Proof. The proof follows from Theorem 2.1, Lemmas 2.1 and 2.2 of this paper and Theo-

rem 1.10.1 of Ibragimov and Has'minski (1981).

The asymptotic behavior of BE is in the following theorem.

Theorem 3.2. The Bayes estimator ~�
(B)

, uniformly on � 2 �, is consistent

P lim
n!1

~�
(B)

= �

and converges in distribution

L�

n
An(~�

(B) � �)
o
�!
D

L (~u):

For any continuous loss function w 2W p, we have

lim
n!1

E�w(An(~�
(B) � �)) = Ew(~u):

Proof. The properties of the likelihood ratio Zn(b1; : : : ; bm+1;�) established in Theorem

2.1, Lemmas 2.1 and 2.2 allow us to refer to Theorem 1.10.2 of Ibragimov and Has'minski
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(1981).

Remark. It can be seen that the BE is asymptotically eÆcient and satis�es

Ekûk � Ek~uk:
Of cource the MLE is not asymptotically eÆcient generally.

4. A numerical experiment

In this section we brie
y report results from Monte Carlo simulations. The data are

generated from two mean breaks with the AR(1) process

yt =

8><
>:
ut t = 1; : : : [�1n];

2 + ut t = [�1n] + 1; : : : ; [�2n]:

ut t = [�2n] + 1; : : : ; n; n = 100

(4.1)

where ut = 0:7ut�1 + "t and "t � i:i:d:N(0; 1). The change points (�1; �2) are chosen to be

(1=3; 2=3). For simplicity, we assume that the parameters except change points are known.

The average estimates of change points and the squared root of mean square error of MLE

and BE are computed based on 100 repetitions, and are reported in Table 1. The histograms

are displayed in Figure 1.

From these simulations, we point out that two changes are well detected by both MLE

and BE, whereas the mean square error of BE is smaller than that of MLE. This can be

explained by the di�erence of the shape of distributions. We can see that the distribution

of MLE has fatter tails. These simulation results are consistent with the theoretical results

of previous section.

Table 1.

Average estimates and RMSE of � when (�1; �2) = (1=3; 2=3), n = 100.

�̂
(ML)

1 �̂
(ML)

2 ~�
(B)

1 ~�
(B)

2

Mean 0.3222 0.6739 0.3172 0.6786

RMSE 0.0882 0.0809 0.0622 0.0598

5. Proofs

In this section we just give the proof of Theorem 2.1, because the proofs for Lemmas 2.1

and 2.2 are similar to those of Shiohama et al. (2002). The details are given in Shiohama

(2002), which can be obtained from the author.

Proof of Theorem 2.1. We have from (2.7),

logZn(b1; : : : ; bm+1;�)(5.1)

= � 1

2
p
n

nX
k=1

f(�k)
�1=2

n
dn(�k)A(�k) + dn(�k)A(�k)

o
� 1

2n

nX
k=1

jA(�k)j2:

= D1 +D2 +D3 (say):
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Figure 1. Histograms for estimated change points.

The �rst term D1 can be evaluated as

D1 = � 1

2
p
n

nX
k=1

f(�k)
�1=2 fdn(�k)A(�k)g(5.2)

= � 1

4�n

nX
k=1

f(�k)
�1

mX
j=1

nX
t=1

[�jn]+�jX
s=[�jn]+1

(�j+1 � �j)0zsutei(t�s)�k

+
1

4�n

nX
k=1

f(�k)
�1

m+1X
j=1

nX
t=1

[�jn+�j]X
s=[�j�1n]+1

b
0

jD
�1
n zsute

i(t�s)�k

= D11 +D12 (say):

Here we write the spectral density f(�) in the form

f(�) =
1

2�

1X
l=�1

Rf (�)e
�il�

where Rf 's satisfy
P1

l=�1 jljpjRf (l)j <1 for any given p 2Z. Then, from Theorem 3.8.3

of Brillinger (1975) we may write

f(�)�1 =
1

2�

1X
l=�1

�(l)e�il�(5.3)
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where �(l)'s satisfy for any given p 2Z
1X

l=�1

jljpj�(l)j <1:

Then D11 becomes

D11 = � 1

4�n

1

2�

nX
k=1

1X
l=�1

�(l)

mX
j=1

nX
t=1

[�jn+�j]X
s=[�jn]+1

(�j+1 � �j)0zsutei(t�s�l)�k:

It is well known that

nX
k=1

e
i(t�s�l)�k =

�
n if t� s � l = 0 (mod n)

0 otherwise:
(5.4)

Since �[�jn + �j ] � t � s � [(1 � �j)n], for each j and �(l) satis�es
P

l jljpj�(l)j < 1 for

any given p, we have X
jlj�n

j�(l)j � n
�p
X
jlj�n

(l)pj�(l)j = o(n�p):(5.5)

Hence we have only to evaluate D11 for t� s� l = 0. Then, it is easy to see

D11 = � 1

4�

1

2�

1X
l=�1

�(l)

mX
j=1

nX
t=1

[�jn+�j]X
s=[�jn]+1

(�j+1 � �j)0zsutn�1
nX

k=1

e
i(t�s�l)�k

' � 1

8�2

mX
j=1

1X
l=�1

�(l)

[�jn+�j]X
s=[�jn]+1

(�j+1 � �j)0zsus+l � ~D11 (say):

Hence we have

~D11 = � 1

8�2

mX
j=1

1X
l=�1

�(l)(�j+1 � �j)0
[�jn+�j]X
s=[�jn]+1

zs

Z �

��

e
il�
e
is�

dZu(�)(5.6)

= � 1

4�

mX
j=1

(�j+1 � �j)0
Z �

��

[�jn+�j]X
s=[�jn]+1

zse
is�

f(�)�1dZu(�)

=
1

2

mX
j=1

(�j+1 � �j)0Wj1 (say):

For the random variables Wj1; j = 1; : : : ;m, let
P[�jn+�j]

s=[�jn]+1
zse

is� = A(�j ; �j ;�), We ob-

serve that

E(Wi1W
�
j1) �!

n!1

1

4�2

Z �

��

A(�i; �i;�)A(�j ; �j ;�)
�
f(�)�1d�; i; j = 1; : : : ;m:

Recalling that futg is Gaussian, we have

W 1�!
D

N (0;V 1)(5.7)
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Next, we turn to evaluate D12 in (5.2). By using (5.3)

D12 =
1

4�n

1

2�

nX
k=1

1X
l=�1

�(l)e�il�k
m+1X
j=1

nX
t=1

[�jn+�j]X
s=[�j�1n]+1

b
0
jD

�1
n zsute

i(t�s)�k:(5.8)

Since n� [�j�1n]� 1 � t� s � 1� [�jn], for each j and (5.5), we have only to evaluate D12

for

t� s � l =

8><
>:
0; n; for j = 1;

0; for j = 2; � � � ;m;

0;�n for j = m+ 1:

Then D12 becomes

D12 ' 1

8�2

mX
j=2

1X
l=�1

�(l)b0j

[�jn+�j]X
s=[�j�1n]+1

D�1
n zsus+l

+
1

8�2

1X
l=�1

�(l)b01

[�1n+�1]X
s=1

D�1
n zs(us+l + us+l+n)

+
1

8�2

1X
l=�1

�(l)b0m+1

nX
s=[�mn]+1

D�1
n zs(us+l + us+l�n)

= ~D
y

12 +
~D
yy

12 +
~D
yyy

12 (say):

Similarly as in ~D11

~D
y

12(5.9)

=
1

8�2

mX
j=2

1X
l=�1

�(l)b0j

[�jn+�j]X
s=[�j�1n]+1

Z �

��

e
is�

e
il�
dZu(�)D

�1
n zs

=
1

4�

mX
j=2

b0j

Z �

��

[�jn+�j]X
s=[�j�1n]+1

D�1
n zse

is�
f(�)�1dZu(�)

=

mX
j=2

p
�j � �j�1

2
b0j

Z �

��

�
2�
p
�j � �j�1

��1 [�jn+�j]X
s=[�j�1n]+1

D�1
n zse

is�
f(�)�1dZu(�)

=

mX
j=2

p
�j � �j�1

2
b0jWj2 (say):

where

Wj2�!
D

N

�
0;

1

2�

Z �

��

f(�)�1dM (�)

�
; for j = 2; : : : ;m(5.10)

which follows from Assumption2.1. Analogously, we get

~D
yy

12 =

p
�1

2
b
0

1W12 and ~D
yyy

12 =

p
1� �m

2
b
0

m+1Wm+1;2(5.11)
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where

W12 =

Z �

��

(2�
p
�1)

�1

[�1n+�1]X
s=1

D�1
n zse

is�(1 + e
in�)f(�)dZu(�)(5.12)

and

Wm+1;2 =

Z �

��

�
2�
p
1� �m

��1 mX
s=[�mn]+1

D�1
n zse

is�(1 + e
�in�)f(�)dZu(�):

Recalling ut is Gaussian, W12 and Wm+1;2 are asymptotically normal with mean 0 and

covariance matrix

1

2�

Z �

��

2f(�)�1dM (�):(5.13)

Similar arguments for evaluating D11 and D12 yield

D2 ' 1

2

mX
j=1

(�j+1 � �j)0Wj1(5.14)

+

mX
j=2

p
�j � �j�1

2
b0jWj2 +

p
�1

2
b01W12 +

p
1� �m

2
b0m+1Wm+1;2:

The last term in (5.1) becomes

D3 = � 1

2n

nX
k=1

jA(�k)j2

= � 1

2n

nX
k=1

n
A1(�k)A1(�k) +A1(�k)A2(�k) +A2(�k)A1(�k) +A2(�k)A2(�k)

o
= D31 +D32 +D33 +D34 (say):

We have

D31

= � 1

4n�

nX
k=1

f(�k)
�1

0
@ mX
j1=1

[�j1n+�j1 ]X
s1=[�j1n]+1

(�j1+1 � �j1 )0zs1eis1�k
1
A

�
0
@ mX
j2=1

[�j2n+�j2]X
s2=[�j2n]+1

z0s2(�j2+1 � �j2 )e�is2�k
1
A

= � 1

8�2

mX
j1;j2=1

(�j1+1 � �j1 )0
Z �

��

A(�j1 ; �j1 ;�)A(�j2 ; �j2 ;�)
�
f(�)�1d�(�j2+1 � �j2 ) + o(1):
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As for D34,

D34

= � 1

4n�

nX
k=1

f(�k)
�1

0
@m+1X
j1=1

[�j1n+�j1 ]X
s1=[�j1�1n]+1

b0j1D
�1
n zs1e

is1�k

1
A
0
@m+1X
j2=1

[�j2n+�j2 ]X
s2=[�j2�1n]+1

z0s2D
�1
n bj2e

�is2�k

1
A

= � 1

4�

1

2�

1X
l=�1

�(l)

�
m+1X

j1;j2=1

b0j1

[�j1n+�j1]X
s1=[�j1�1n]+1

[�j2n+�j2 ]X
s2=[�j2�1n]+1

D�1
n zs1z

0
s2
D�1

n bj2
1

n

nX
k=1

e
i(s1�s2�l)�k :

Since (5.5), it is seen that we have only to evaluate j1 = j2 and jj1 � j2j = 1. Hence this

yields

D34

= �
m+1X
j=1

(�j � �j�1)

4�
b0j

Z �

��

f(�)�1dM (�)bjÆj � 1

4�

mX
j=1

min(�j+1 � �j; �j � �j�1)

�
2
4b0j+1

Z �

��

1

2�

1X
l=1�[�j]

�(l)e�il�dM(�)bj + b
0
j

Z �

��

1

2�

[�j ]�1X
l=�1

�(l)e�il�dM (�)bj+1

3
5+ o(1):

As for D32, we have

D32

= � 1

4n�

nX
k=1

f(�k)
�1

�
0
@ mX
j1=1

[�j1n+�j1 ]X
s1=[�j1n]+1

(�j1+1 � �j1)0zs1eis1�k
1
A
0
@m+1X
j2=1

[�j2n+�j2]X
s2=[�j2�1n]+1

z0s2D
�1
n bj2e

�is2�k

1
A

=
1

8�2

1X
l=�1

�(l)

mX
j1=1

m+1X
j2=1

[�j1n+�j1]X
s1=[�j1n]+1

[�j2n�j2]X
s2=[�j2�1n]+1

(�j1+1 � �j1)0zs1z0s2D�1
n bj2

� 1

n

nX
k=1

e
i(s1�s2�l)�k

=
1

8�

1X
l=�1

�(l)

mX
j1=1

m+1X
j2=1

[�j2n�j2 ]X
s=[�j2�1n]+1

(�j1+1 � �j1 )0zs+lz0sD�1
n bj2

= min
1�i�q

O(anii(0)
�1=2)

where we use (G.1) and (5.4) to get the result. The asymptotic representation fot D33 is ob-

tained similarly as for D32, which gives D33 = min1�i�q O(a
n
ii(0)

�1=2). The joint asympotic

normality and the covariance structure of (W 1;W 2)
0 follows from the above evaluation.
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