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FIXED POINT SETS OF NORMAL SELFMAPS
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Abstract. The main result of this note is the following common generalization of a

theorem of J.-P. Vigu�e on selfmaps of bounded convex domains and a classical Hurwitz's

theorem: Let X be a complex submanifold of a complex manifold Y and let fn be a

sequence in H(X;Y ) converging to f 2 H(X;Y ) with X \ limsupFix(fn) = ;, where

H(X;Y ) represents the space of holomorphic maps from X to Y with the compact-open

topology and Fix(f) denotes the set of �xed points of f . Then either Fix(f) = ; or

dimFix(f) � 1.

In addition, properties of �xed point sets of selfmaps of bounded convex domains

discovered by Vigu�e - for example, that such sets are holomorphic retracts - are extended

to other normal maps.

Introduction.

J.-P. Vigu�e has discovered new and interesting properties of the set of �xed points of

holomorphic selfmaps of bounded convex domains in Cn, the n-dimensional complex plane,

producing Theorems A, B, C and D below. The notation H(X;Y ) represents the space of

holomorphic maps from a complex space X to a complex space Y with the compact-open

topology and Fix(f) denotes the set of �xed points of f 2 H(X;X).

Theorem A [12, 8]. Let X be a hyperbolic manifold and let f 2 H(X;X). Then Fix(f)

is a submanifold (not necessarily connected) of X. Moreover, if p 2 Fix(f), then

Tp(Fix(f)) = f 2 Tp(X) : dfp( ) =  g

where Tp denotes the tangent space at p and dfp is the di�erential map.

Theorem B [10]. Let X be a bounded convex domain in Cn. If f 2 H(X;X) and the

set of �xed points, Fix(f); is not empty, then Fix(f) is a holomorphic retract.

Theorem C [11]. Let X be a bounded convex domain in Cn. If fn is a sequence in

H(X;X) converging to f 2 H(X;X) such that for some compact K � X, Fix(fn)\K 6= ;,

then lim supdimFix(fn) � dimFix(f):

Theorem D [11]. Let X be a bounded convex domain in Cn. Let fn be a sequence in

H(X;X) converging to f 2 H(X;X) and suppose that the corresponding sequence of �xed

points of fn converges to the boundary of X. Then either the limit map f has no �xed point

or Fix(f) is a complex manifold of dimension at least 1.

Extending W. K. Hayman's notion of a uniformly normal family of functions [5], the

authors [6, 9] de�ned uniformly normal families of holomorphic maps between complex

spaces. Singleton uniformly normal families encompass the normal maps previously studied

by various authors. Other familiar examples of uniformly normal families are the important

families of holomorphic maps into either taut, tautly imbedded, hyperbolic or hyperbolically

imbedded spaces. Classical theorems such as the big Picard theorem, Schottky's theorem,
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Lappan's �ve-point theorem, Lohwater-Pommerenke's theorem and theorems on normal

maps by Hahn and J�arvi have been extended to uniformly normal families by the authors

(see [6, 9]).

In this note a common generalization of Theorem D and Hurwitz's Theorem [3] is es-

tablished and extensions of Theorems A, B and C to other normal maps are obtained.

These are listed below. Recall, if An is a sequence of subsets of a topological space X,

lim supAn = fx : x = limank ; ank 2 Ank
g:

� Let X be a complex submanifold of a complex manifold Y and let fn be a sequence in

H(X;Y ) converging to f 2 H(X;Y ) with X \ lim supFix(fn) = ;. Then either Fix(f) = ;

or dimFix(f) � 1.

� Let X be a complex subspace of a complex space Y and let f 2 H(X;X) be a normal

map in H(X;Y ). Then Fix(f) is a closed complex subspace (not necessarily connected) of

X and is singular only where X is singular. Moreover, if p 2 Fix(f) is regular, then

Tp(Fix(f)) = f 2 Tp(X) : dfp( ) =  g

where Tp denotes the tangent space at p and dfp is the di�erential map.

� Let X be a complex space and let fn be a sequence of normal maps in H(X;X)

converging to a normal map f 2 H(X;X): If for each n all of the connected components

of Fix(fn) have the same dimension and lim supFix(fn) 6= ;; then lim supdimFix(fn) �

dimFix(f):

� Let f be a holomorphic selfmap of a hyperbolic convex domainX inCn with Fix(f) 6= ;.

Then each connected component of Fix(f) is a holomorphic retract. In addition, if X is

taut, Fix(f) is connected and hence is a holomorphic retract.

� Let X be a complex subspace of a complex space Y and let f 2 H(X;Y ) be a normal

map such that f(X) � X with a nonsingular �xed point p where the eigenvalues of dfp
are in fz 2 C : jzj < 1g [ f1g. Then the connected component of Fix(f) containing p is a

holomorphic retract.

In Section 1 some notations and properties of uniformly normal families are presented.

In Section 2 the main results about �xed point sets are provided.

1. Preliminaries.

Let X; Y and Z be topological spaces. The one-point compacti�cation of the space Y will

be denoted by Y � and C(X;Y ) will denote the space of continuous maps from X to Y with

the compact-open topology. If F � C(X;Y ) and G � C(Y;Z); G ÆF = fg Æ f : f 2 F; g 2 Gg:

The notation A (A0) will denote the closure (the derived set) of a subset A of a topological

space X and � = fz 2 C : jzj < 1g.

De�nition 1. Let X;Y be complex spaces. The family F � H(X;Y ) is said to be

uniformly normal in H(X;Y ) (or simply uniformly normal) if F Æ H(�;X) is relatively

compact in C(�; Y �): A map f is simply called normal if the singleton set ffg is uniformly

normal.

A complex spaceX is taut if and only if the familyH(�;X)[f1g is compact in C(�;X�)

and hence H(X;X) is uniformly normal if X is taut. M. Abate [2] showed that a complex

space X is hyperbolic if and only if the family H(�;X) is relatively compact in C(�;X�),

i.e., H(�;X) is uniformly normal. A complex subspace X of a complex space Y is tautly

imbedded in Y if and only if the family H(�;X) is ` relatively compact in H(�; Y ) and

hence H(X;X) is a uniformly normal family in H(X;Y ) if X is tautly imbedded in Y . The

authors [6] showed that H(X;X) is a uniformly normal family in H(X;Y ) if and only if X

is hyperbolically imbedded in Y . In particular a complex subspace X of a complex space
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Y is tautly imbedded in Y if and only if X is relatively compact in Y and hyperbolically

imbedded in Y .

Proposition 2 [7]. Let X, Y be complex spaces. If F � H(X;Y ) is uniformly normal,

then F is relatively compact in C(X;Y �).

Let X be a complex subspace of a complex space Y and let f 2 H(X;X). The notation

�f will be used for the sequence fn of iterates of f where f1 = f; f
2 = f Æ f; � � � ; and �0

f

will denote the set of subsequential limits of �f in C(X;Y �).

Proposition 3 [7]. Let X be a complex subspace of a complex space Y and let f 2

H(X;X) be a normal map in H(X;Y ). Then �f is uniformly normal in H(X;Y ) and in

particular is relatively compact in C(X;Y �):

The following proposition for a normal selfmap is a local version of a theorem for holo-

morphic selfmaps of a taut space by Abate [1] and may be proved similarly. Insuring that

the compositions of the maps involved are valid is what is essentially needed. A holomorphic

retraction of a complex space X is a holomorphic map � 2 H(X;X) such that �2 = �. It

was shown in [1] that the image �(X) of a holomorphic retraction � 2 H(X;X), called a

holomorphic retract, is a closed complex subspace of a complex space X and if p 2 �(X) is

a nonsingular point of X, then �(X) is also nonsingular at p.

Proposition 4 [7]. Let X be a complex subspace of a complex space Y . Let f 2 H(X;X)

be a normal map in H(X;Y ): Suppose there is a nonempty open subset U � X such that

�(U) � X for � 2 �0
f
. Then

(1) There exists a unique map � 2 �0
f
such that �2 = � on U and � 2 �0

f
have the form

� =  Æ � on U where  is an automorphism of the complex subspace U0 = �(U):

(2) h(U) = U0 for all h 2 �0
f
.

(3) The restriction of f to U0, f jU0
, is an automorphism of U0.

The following proposition is also proved in [7].

Proposition 5. Let X be a complex subspace of a complex space Y let f 2 H(X;X) be

a normal map in H(X;Y ): If the set of eigenvalues of dfp are in � [ f1g, there is a map

� 2 C(X;Y �) such that on the connected component, U , of ��1(X) containing p the sequence

of iterates fn converges to � and �jU 2 H(U;U) is a holomorphic retraction. Furthermore,

if �0
f
�H(X;Y ), then fn converges to a map � in H(X;Y ) and � Æ � = � on ��1(X).

2. Main Results.

The conclusion of Vigu�e's Theorem D is the same as that of Hurwitz's Theorem [3]

which may be stated as follows: If X � C and fn is a sequence in H(X;C) converging

to f 2 H(X;C) such that Fix(fn) = ;, then either Fix(f) = ; or f is the identity. Our

�rst result is a common generalization of Hurwitz's Theorem and Theorem D. If X is a

complex subspace of a complex space Y and f 2 H(X;Y ); then Fix(f) is an analytic subset

of Y and its dimension is de�ned by dimFix(f) = maxfdimz Fix(f) : z 2 regFix(f)g where

regFix(f) is the set of regular points of Fix(f) (see [4]).

Theorem 1. Let X be a complex submanifold of a complex manifold Y and let fn be

a sequence in H(X;Y ) converging to f 2 H(X;Y ) such that the corresponding sequence of

�xed points of fn converges to the boundary of X. Then either Fix(f) = ; or dimFix(f) � 1.

Proof. Suppose Fix(f) 6= ; and dimFix(f) = 0. Let p 2 Fix(f) and for r > 0 let

Br = fz 2 Cn : kzk < rg. Real numbers a; b; may be assumed with 0 < b < a such that

(i) Ba is a relatively compact local coordinate neighborhood of p with the center at p,
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(ii) Ba \ Fix(f) = fpg; fn(Bb) � Ba; f(Bb) � Ba; and

(iii) kfn � fk < Æ=2 on @Bb where Æ = inffk(f � id)(q)k : q 2 @Bbg.

Then

k(fn � id) � (f � id)k < kf � idk on @Bb

and hence by an extension of Rouch�e's theorem [4] the number of zeros counted with

multiplicities in Bb of the maps fn � id and f � id are equal. It follows that

Fix(fn) \Bb 6= ;

which is a contradiction.

The following theorem extends a result of Wavre [8] for a taut complex space.

Theorem 2. Let X be a complex space with no complex subspaces with positive dimension

and let f 2 H(X;X) be a normal map with a relatively compact image. Then f has a unique

�xed point xo 2 X and the sequence of iterates of f converges to xo.

Proof. Since the sequence of iterates �f is relatively compact inH(X;X); by Proposition

4 there is a holomorphic retraction � 2 �0
f
. The set �(X) is compact connected complex

subspace of X and so is a singleton xo. It follows that �
0

f
= f�g.

Vigu�e [12, 8] proved the following result when X is a hyperbolic manifold (Theorem A).

Theorem 3. Let X be a complex subspace of a complex space Y and let f 2 H(X;X)

be a normal map in H(X;Y ): Then Fix(f) is a closed complex subspace (not necessarily

connected ) of X and is singular only where X is singular. Moreover, if p 2 Fix(f), then

Tp(Fix(f)) = f 2 Tp(X) : dfp( ) =  g

where Tp denotes the tangent space at p and dfp, the di�erential map.

Proof. Let p 2 Fix(f). Since the sequence of iterates �f is relatively compact in

C(X;Y �); there are relatively compact neighborhoodsW;V of p such that V is biholomor-

phic to a bounded domain in C
n, W � V and �(W ) � V for � 2 �0

f
. By Proposition 4,

there is a map � 2 �0
f
such that � Æ � = � on W . Let U be the connected component of

�
�1(W )\W containing p. Then U is a hyperbolic space and � 2 H(U;U) is a holomorphic

retraction. Since Fix(f) \ U � �(U) and �(U) is singular only at singular points of U , the

proof is reduced to the case where X is a hyperbolic manifold. It is then completed by

appeal to Vigu�e's Theorem A.

In Theorem C, selfmaps of bounded convex domains in Cn are shown to satisfy the in-

equality lim supdimFix(fn) � dim Fix(f), which is local in nature. It might be suspected

from this observation that Theorem C can be generalized to more general selfmaps of more

general domains. Theorem 4 is one such generalization. In Theorem 4, it is assumed that,

for each map under consideration, all connected components of the �xed point set have the

same dimension. This assumption is motivated by the discovery of Vigu�e that on some do-

mains, all connected components of the �xed point set of a selfmap have the same dimension

[12].

Theorem 4. Let X be a complex space and let fn be a sequence of normal maps

in H(X;X) converging to a normal map f 2 H(X;X): If for each n all of the con-

nected components of Fix(fn) have the same dimension and lim supFix(fn) 6= ;; then

lim supdimFix(fn) � dim Fix(f):

Proof. Suppose p 2 lim supFix(fn), that pn 2 Fix(fn) and pn ! p 2 Fix(f). It

may be assumed that the points pn and p are regular. Since by Theorem 3, dimFix(fn)
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coinsides with the dimension of the eigenspace of (dfn)pn corresponding to the eigenvalue 1

and (dfn)pn ! (df)p; it follows that

dimpn
Fix(fn) � dimp Fix(f):

The following theorem extends Theorem B by Vigu�e, a result for bounded convex do-

mains.

Theorem 5. Let X be a convex hyperbolic domain in Cn and let f 2 H(X;X) with

Fix(f) 6= ;. Then each connected component of Fix(f) is a holomorphic retract and in

particular a complex submanifold of X. If , in addition, X is taut then Fix(f) is connected

and hence is a holomorphic retract.

The following lemma on a property of hyperbolic convex domains will be useful.

Lemma. Let X be a convex hyperbolic domain in Cn. Then the hyperbolic balls of X

(i.e., the balls with respect to the hyperbolic distance kX) are convex sets.

Proof. Let y; z 2 Br(p) with kX(p; z) � kX(p; y) where Br(p) = fx 2 X : kX(p; x) � rg

for p 2 X; r > 0 and let � > 0: Since X is convex,

kX(x; x
0) = limk�(0; an) for x; x0 2 X

where an 2 �; gn(0) = x; gn(an) = x
0
; gn 2 H(�;X):

It follows that there exist maps f; g 2 H(�;X) and reals a; b such that

(i) 0 < b � a < 1;

(ii) f(0) = g(0) = p; f(a) = y; g(b) = z; and

(iii) k�(0; a) < kX(p; y) + �; and k�(0; b) < kX(p; z) + �:

De�ne ht 2 H(�;X); 0 � t � 1, by

ht(w) = tf(w) + (1� t)g(bw=a); w 2 �:

Then

kX(p; ty + (1� t)z) = kX(p; ht(a)) � k�(0; a) < kX(p; y) + �:

Hence Br is convex.

Proof of Theorem 5. Let Fixc(f) denote a nonempty connected component of Fix(f).

For each p 2 Fixc(f) choose a relatively compact open neighborhood Wp of p such that

(i) Wp is a hyperbolic ball centered at p and

(ii) Wp \ Fix(f) � Fixc(f).

Then f(W p) � W p and �(W p) � W p for � 2 �f . Let W = [
p2Fixc(f)Wp: De�ne, as in

Vigu�e [10], a sequence of maps �k in H(X;X) by

�k =
1

k
(id + f + f

2 + � � � + f
k�1)

where id denotes the identity map. Then a subsequence �kj converges to a limit � 2

C(X;X�) with �(W ) �W . Each eigenvalue of d�p at p 2 Fixc(f) is either 1 or 0 and , by

proposition 5, the sequence of iterates �n in H(W;X) converges to � 2 H(W;X) which is a

holomorphic retraction on V = �
�1(W ) \W . The �rst conclusion follows from

Fixc(f) = Fixc(f) \W = �(W ):

The last conclusion follows from the observation that if X is taut convex, � is a holomorphic

retraction on X and Fix(f) = �(X):
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From Theorem 5, Fix(f) is connected for f 2 H(X;X) when X is a taut convex domain

in Cn. In the light of this observation, Corollary 1 derives from Theorem 4.

Corollary 1. Let X be a taut convex domain in Cn, and let fn be a sequence in H(X;X)

converging to f 2 H(X;X): If X \ lim supFix(fn) 6= ;; then lim supdimFix(fn) �

dimFix(f):

Theorem 6 and Corollary 2 show that �xed point sets of other normal maps satisfy similar

properties to a property enjoyed by �xed point sets of selfmaps on bounded domains in Cn,

Theorem 6. Let X be a complex subspace of a complex space Y and let f 2 H(X;X)

be a normal map in H(X;Y ): Suppose that f has a nonsingular �xed point p where the set

of eigenvalues of the di�erential map dfp are in � [ f1g. Then the connected component

of Fix(f) containing p is a holomorphic retract. If, in addition, �0
f
� H(X;Y ), then each

nonempty connected component of Fix(f) is a holomorphic retract and if �0
f
� H(X;X)

then Fix(f) is a holomorphic retract.

Proof. Let Fixc(f) denote the connected component of Fix(f) containing p. By Propo-

sition 5 the sequence of iterates �f converges to a holomorphic retraction � on U , the

connected component of ��1(X) containing p and �(U) = Fixc(f). If �
0

f
� H(X;Y ), then

ffng converges to a map � 2 H(X;Y ) and the map � satis�es � Æ � = � on ��1(X) which

is not empty and �(��1(X)) = Fixc(f). Finally if �0
f
� H(X;X) then � is a holomorphic

retraction on X and �(X) = Fix(f).

Corollary 2 follows from the fact that �0
f
� H(X;Y ) when X is tautly imbedded and

�0
f
� H(X;X) when X is taut.

Corollary 2. Let X be a complex subspace tautly imbedded in a complex space Y .

Suppose that f is a holomorphic selfmap of X with a nonsingular �xed point p where the set

of eigenvalues of the di�erential map dfp are in � [ f1g. Then each connected component

of Fix(f) is a holomorphic retract. If X is assumed to be taut instead of tautly imbedded,

then Fix(f) is a holomorphic retract.
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