THE QUADRATIC MOMENT MATRIX $E(1)$

Chunji Li and Muneo $\mathrm{Chō}$ *

Abstract

For the quadratic moment problem $\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu(z)(0 \leq i+j \leq 2,|i-j| \leq 1)$, we showed that the necessary and sufficient condition for the existence of representing measure μ is $E(1) \geq 0$. In particular, we also obtained the equivalent conditions for the existence of representing measure supported in the unit circle \mathbb{T} and in the closed unit disc \mathbb{D}.

1. Introduction and preliminaries

Given a collection of complex numbers

$$
\begin{equation*}
\gamma \equiv \gamma^{(2 n)}: \gamma_{00}, \gamma_{01}, \gamma_{10}, \cdots, \gamma_{0,2 n}, \gamma_{1,2 n-1}, \cdots, \gamma_{2 n-1,1}, \gamma_{2 n, 0} \tag{1}
\end{equation*}
$$

with $\gamma_{00}>0$ and $\gamma_{j i}=\overline{\gamma_{i j}}$. The truncated complex moment problem entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that

$$
\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu(z) \quad(0 \leq i+j \leq 2 n)
$$

and μ is called a representing measure for γ. This truncated complex moment problem was first considered by R. Curto and L. Fialkow and has been well-established (cf. [5], [6], [7], [8], [9], [10], [11], [13], [14], [16], [18]).

We recall first some notation from [7] and [8]. For $n \in \mathbb{N}$, let $m \equiv m(n)=(n+1)(n+2) / 2$. For $A \in \mathcal{M}_{m}(\mathbb{C})$ (the $m \times m$ complex matrices), we denote the successive rows and columns according to the following lexicographic-functional ordering:

$$
1, Z, \bar{Z}, Z^{2}, \bar{Z} Z, \bar{Z}^{2}, \cdots, Z^{n}, \bar{Z} Z^{n-1}, \cdots, \bar{Z}^{n-1} Z, \bar{Z}^{n}
$$

The authors in [7] defined the moment matrix $M(n):=M(n)(\gamma) \in \mathcal{M}_{m}(\mathbb{C})$ as follows: for $0 \leq k+l \leq n, 0 \leq i+j \leq n$, the entry in row $\bar{Z}^{k} Z^{l}$ and column $\bar{Z}^{i} Z^{j}$ is $M(n)_{(k, l)(i, j)}=$ $\gamma_{l+i, j+k}$. These matrices come from Bram-Halmos characterization for a cyclic operator T satisfying $\gamma_{i j}=\left(T^{* i} T^{j} x_{0}, x_{0}\right)$, where x_{0} is a cyclic vector for T ([3] or [4]). Recently, the authors in [15] considered moment matrices corresponded by Embry characterization for subnormality of such operators ([12]). We will write such matrices by $E(n)$.

Given a collection of complex numbers $\gamma \equiv\left\{\gamma_{i j}\right\} \quad(0 \leq i+j \leq 2 n,|i-j| \leq n)$, with $\gamma_{00}>0$ and $\gamma_{j i}=\overline{\gamma_{i j}}$. The truncated complex moment problem which considered in [15] entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that

$$
\begin{equation*}
\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu(z) \quad(0 \leq i+j \leq 2 n,|i-j| \leq n) \tag{2}
\end{equation*}
$$

[^0]μ is called a representing measure for γ.
We recall some notation from [15]. For $n \in \mathbb{N}$, we let
$$
m=m[n]=\left(\left[\frac{n}{2}\right]+1\right)\left(\left[\frac{n+1}{2}\right]+1\right)
$$

For a matrix $A \in \mathcal{M}_{m}(\mathbb{C})$, we first introduce the following order on the rows and columns of

$$
A: 1, Z, Z^{2}, \bar{Z} Z, Z^{3}, \bar{Z} Z^{2}, Z^{4}, \bar{Z} Z^{3}, \bar{Z}^{2} Z^{2}, Z^{5}, \cdots
$$

We denote the entry of A in row $\bar{Z}^{k} Z^{l}$ and column $\bar{Z}^{i} Z^{j}$ by $A_{(k, l)(i, j)}$. If $n=2 k, k=$ $1,2, \cdots$, let

$$
\mathcal{S} \mathcal{P}_{n}=\left\{p(z, \bar{z})=a_{00}+a_{01} z+a_{02} z^{2}+a_{11} \bar{z} z+a_{03} z^{3}+a_{12} \bar{z} z^{2}+\cdots+a_{k k} \bar{z}^{k} z^{k}\right\} ;
$$

if $n=2 k+1, k=0,1,2, \cdots$, let

$$
\mathcal{S} \mathcal{P}_{n}=\left\{p(z, \bar{z})=a_{00}+a_{01} z+a_{02} z^{2}+a_{11} \bar{z} z+a_{03} z^{3}+a_{12} \bar{z} z^{2}+\cdots+a_{k, k+1} \bar{z}^{k} z^{k+1}\right\}
$$

where $a_{i j} \in \mathbb{C}$. It is clear that $\mathcal{S} \mathcal{P}_{n}$ is a subspace of \mathcal{P}_{n}, the vector space of all complex polynomials in z, \bar{z} of total degree $\leq n$. For $p \in \mathcal{S} \mathcal{P}_{n}$, let $\widehat{p}=\left(a_{00}, a_{01}, \cdots, a_{k k}\right)^{T}$ (which means the transposed) or $\left(a_{00}, a_{01}, \cdots, a_{k, k+1}\right)^{T}$ in \mathbb{C}^{m}. We define a sesquilinear form $\langle\cdot, \cdot\rangle_{A}$ on $\mathcal{S} \mathcal{P}_{n}$ by

$$
\langle p, q\rangle_{A}:=\langle A \widehat{p}, \widehat{q}\rangle \quad\left(p, q \in \mathcal{S} \mathcal{P}_{n}\right)
$$

In particular, $\left\langle\bar{z}^{i} z^{j}, \bar{z}^{k} z^{l}\right\rangle_{A}=A_{(k, l)(i, j)}$, for $0 \leq i+j \leq n, i \leq j$ and $0 \leq k+l \leq n, k \leq l$.
For the truncated complex moment problem (2), we define the moment matrix $E(n) \equiv$ $E(n)(\gamma) \in \mathcal{M}_{m}(\mathbb{C})$ as follows: $E(n)_{(k, l)(i, j)}:=\gamma_{l+i, j+k}$. In $E(n)$, for $0 \leq i+j \leq n, \bar{Z}^{i} Z^{j}$ denotes the unique column whose initial element is $\gamma_{i j}$. For example, if $n=1$, i.e., γ : $\gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{11}$, the quadratic moment matrix is

$$
E(1)=\left[\begin{array}{ll}
\gamma_{00} & \gamma_{01} \\
\gamma_{10} & \gamma_{11}
\end{array}\right]
$$

If $E(n)$ is a moment matrix with representing measure μ for γ, then by direct computation we have that

$$
\langle E(n) \widehat{p}, \widehat{p}\rangle=\int|p(z, \bar{z})|^{2} d \mu \quad \text { for } p(z, \bar{z}) \in \mathcal{S} \mathcal{P}_{n}
$$

Thus, we have the following
Theorem 1.1. If γ admits a representing measure μ, then $E(n) \geq 0$.
But the converse implication is not always true (cf. [15, Example 3.2]).
For $p \in \mathcal{S P}{ }_{n}$, let $\mathcal{Z}(p)=\{z \in \mathbb{C}: p(z, \bar{z})=0\}$.
Lemma 1.2. ([15, Lemma 3.1]) Let $\gamma \equiv\left\{\gamma_{i j}\right\}(0 \leq i+j \leq 2 n,|i-j| \leq n)$. Assume that γ has a representing measure μ. For $p \in \mathcal{S P}{ }_{n}$, supp $\mu \subseteq \mathcal{Z}(p) \Longleftrightarrow p(Z, \overline{\bar{Z}})=0$.

For example, if we consider the moment problem for

$$
E(2):=\left[\begin{array}{cccc}
1 & 0 & i & 1 \\
0 & 1 & 1+i & 1-i \\
-i & 1-i & 3 & -3 i \\
1 & 1+i & 3 i & 3
\end{array}\right]
$$

We note that $Z^{2}=i 1+(1+i) Z$ and $\bar{Z} Z=1+(1-i) Z$. Thus, if there exists a representing measure μ, then Lemma 1.2 shows that $z^{2}=i+(1+i) z,|z|^{2}=1+(1-i) z$, on supp μ, that is, the atoms are $z_{0}=\frac{(1-\sqrt{3})(1+i)}{2}, z_{1}=\frac{(1+\sqrt{3})(1+i)}{2}$. It is easy to check that the representing measure $\mu=\frac{(1+\sqrt{3})}{2 \sqrt{3}} \delta_{z_{0}}+\frac{(-1+\sqrt{3})}{2 \sqrt{3}} \delta_{z_{1}}$.

The following conjecture is a core problem in [15].
Conjecture 1.3. ([15, Conjecture 1.2]) Let $\gamma \equiv\left\{\gamma_{i j}\right\} \quad(0 \leq i+j \leq 2 n,|i-j| \leq n)$ be a truncated moment sequence. The following statements are equivalent.
(i) γ has a rank $E(n)$-atomic representing measure;
(ii) $E(n) \geq 0$ and $E(n)$ admits a flat (i.e., rank-preserving) extension $E(n+1)$.

The conjecture doesn't hold in general but for even number n (cf. [15, Example 3.7]). Thus, we give the following theorem in sharpness.

Theorem 1.4. ([15, Theorem 4.1]) The truncated complex moment sequence $\gamma \equiv\left\{\gamma_{i j}\right\}$ $(0 \leq i+j \leq 2 n,|i-j| \leq n)$ has a rank $E(n)$-atomic representing measure if and only if $E(n) \geq 0$ and $E(n)$ admits a double flat extension $E(n+2)$, i.e., rank $E(n)=\operatorname{rank} E(n+2)$.

In this paper we answer to the quadratic moment problem, and consider it on the unit circle \mathbb{T} and closed unit disc \mathbb{D}.

Acknowledgment. The first-named author is grateful to Research Institute for Mathematical Sciences at Kyoto University and Kanagawa University for their hospitality and support during his visit.

2. The quadratic moment problem

Let $\gamma: \gamma_{00}, \gamma_{01}, \gamma_{10}, \gamma_{11}$ with $\gamma_{00}>0, \gamma_{10}=\overline{\gamma_{01}}$ and $\gamma_{11} \in \mathbb{R}$. The quadratic moment problem entails finding a positive Borel measure μ supported in the complex plane \mathbb{C} such that

$$
\gamma_{i j}=\int \bar{z}^{i} z^{j} d \mu(z), \quad(0 \leq i+j \leq 2,|i-j| \leq 1)
$$

As in section 1, we can obtain the moment matrix

$$
E(1)=\left[\begin{array}{ll}
\gamma_{00} & \gamma_{01} \\
\gamma_{10} & \gamma_{11}
\end{array}\right]
$$

Let $r=\operatorname{rank} E(1)$. We can obtain the following results similar to [7, Theorem 6.1].
Theorem 2.1. The following statements are equivalent.
i) γ has a representing measure;
ii) γ has an r-atomic representing measure;
iii) $E(1) \geq 0$.

In this case, if $r=1$, there exists a unique representing measure $\mu=\gamma_{00} \delta_{\frac{\gamma_{01}}{\gamma_{00}}}$; if $r=2$, the 2-atomic representing measures contain a sub-parameter by a circle.

Proof. i) \Rightarrow iii): From Theorem 1.1.
ii) \Rightarrow i): Trivial.
iii) \Rightarrow ii): First, if $r=1$, i.e., $\operatorname{det} E(1)=\gamma_{00} \gamma_{11}-\gamma_{01} \gamma_{10}=0$, we claim that $\mu:=\gamma_{00} \delta \frac{\gamma_{01}}{\gamma_{00}}$ is the unique representing measure of γ. In fact,

$$
\begin{aligned}
\int 1 d \mu & =\gamma_{00} \\
\int z d \mu & =\gamma_{00}\left(\frac{\gamma_{01}}{\gamma_{00}}\right)=\gamma_{01} \\
\int \bar{z} d \mu & =\gamma_{00}\left(\frac{\gamma_{10}}{\gamma_{00}}\right)=\gamma_{10} ; \\
\int \bar{z} z d \mu & =\gamma_{00}\left(\frac{\gamma_{01}}{\gamma_{00}}\right)\left(\frac{\gamma_{10}}{\gamma_{00}}\right)=\frac{\gamma_{01} \gamma_{10}}{\gamma_{00}}=\gamma_{11}
\end{aligned}
$$

Thus, μ is an 1-atomic representing measure for γ. If ν is any representing measure for γ, then the relation $Z=\alpha 1$ and Lemma 1.2 imply $\operatorname{supp} \nu=\left\{\frac{\gamma_{01}}{\gamma_{00}}\right\}$, whence $\nu=\mu$.

If $r=2$, i.e., $E(1)$ is positive and invertible, then $\delta:=\gamma_{00} \gamma_{11}-\gamma_{01} \gamma_{10}>0$. If a flat extension $E(2)$ of $E(1)$ can be obtained, by [15, Lemma 3.6], $E(2)$ admits a flat extension of the form $E(4)$. Then, by Theorem $1.4, \gamma$ has a rank $E(2)$-atomic (i.e., $E(1)$-atomic) representing measure. Therefore we construct a flat extension $E(2)$ of $E(1)$. Let

$$
E(2):=\left[\begin{array}{llll}
\gamma_{00} & \gamma_{01} & \gamma_{02} & \gamma_{11} \\
\gamma_{10} & \gamma_{11} & \gamma_{12} & \gamma_{21} \\
\gamma_{20} & \gamma_{21} & c_{11} & c_{12} \\
\gamma_{11} & \gamma_{12} & c_{21} & c_{22}
\end{array}\right]
$$

where $\gamma_{20}=\overline{\gamma_{02}}, \gamma_{21}=\overline{\gamma_{12}}, c_{21}=\overline{c_{12}}$. Then by Smul'jan's result (cf. [7, Proposition 2.2]), rank $E(2)=\operatorname{rank} E(1)$ if and only if

$$
\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=W^{*} E(1) W
$$

where

$$
W=E(1)^{-1}\left[\begin{array}{ll}
\gamma_{02} & \gamma_{11} \\
\gamma_{12} & \gamma_{21}
\end{array}\right]
$$

Let

$$
\begin{aligned}
& {\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=E(1)^{-1}\left[\begin{array}{l}
\gamma_{02} \\
\gamma_{12}
\end{array}\right]=\frac{1}{\delta}\left[\begin{array}{l}
\gamma_{11} \gamma_{02}-\gamma_{01} \gamma_{12} \\
\gamma_{00} \gamma_{12}-\gamma_{10} \gamma_{02}
\end{array}\right]} \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right]=E(1)^{-1}\left[\begin{array}{l}
\gamma_{11} \\
\gamma_{21}
\end{array}\right]=\frac{1}{\delta}\left[\begin{array}{c}
\gamma_{11}^{2}-\gamma_{01} \gamma_{21} \\
\gamma_{00} \gamma_{21}-\gamma_{10} \gamma_{11}
\end{array}\right] .}
\end{aligned}
$$

Then $E(2)$ will be of the form of a moment matrix if and only if $c_{11}=c_{22}$. That is,

$$
\alpha \gamma_{20}+\beta \gamma_{21}=a \gamma_{11}+b \gamma_{12}
$$

It is equivalent to

$$
\gamma_{11}^{3}-\gamma_{11}\left|\gamma_{02}\right|^{2}+2 \operatorname{Re}\left(\gamma_{01} \gamma_{12} \gamma_{20}-\gamma_{01} \gamma_{11} \gamma_{21}\right)=0
$$

Let $\gamma_{12}=0$. Then we have $\left|\gamma_{02}\right|=\gamma_{11}$. Therefore, $E(1)$ has a flat extension $E(2)$.

Now we construct a representing measure. Since $Z^{2}=\alpha 1+\beta Z$ and $\bar{Z} Z=a 1+b Z$, Lemma 1.2 implies that the two atoms z_{0}, z_{1} of representing measure are the roots of

$$
z^{2}-(\alpha+\beta z)=0, \quad \text { and } \quad \bar{z} z=a+b z
$$

We first show that $z_{0} \neq z_{1}$. If, $z_{0}=z_{1}$, i.e., $Z=z_{0} 1$, whence rank $E(1)=1$. This is a contradiction.

Define

$$
\mu:=\rho_{0} \delta_{z_{0}}+\rho_{1} \delta_{z_{1}}
$$

where

$$
\rho_{0}=\frac{z_{1} \gamma_{00}-\gamma_{01}}{z_{1}-z_{0}}, \quad \rho_{1}=\frac{\gamma_{01}-z_{0} \gamma_{00}}{z_{1}-z_{0}}
$$

Under the assumption of $\rho_{0}, \rho_{1} \in \mathbb{R}$, we next check the moments of μ :

$$
\begin{aligned}
& \int 1 d \mu
\end{aligned}=\rho_{0}+\rho_{1}=\gamma_{00} ; ~ \begin{aligned}
& \int z d \mu=\rho_{0} z_{0}+\rho_{1} z_{1}=\frac{z_{1} \gamma_{00}-\gamma_{01}}{z_{1}-z_{0}} z_{0}+\frac{\gamma_{01}-z_{0} \gamma_{00}}{z_{1}-z_{0}} z_{1} \\
&=\frac{\left(z_{1}-z_{0}\right) \gamma_{01}}{z_{1}-z_{0}}=\gamma_{01} \\
& \int \begin{aligned}
\int \bar{z} d \mu & =\rho_{0} \bar{z}_{0}+\rho_{1} \bar{z}_{1}=\overline{\left(\rho_{0} z_{0}+\rho_{1} z_{1}\right)}=\bar{\gamma}_{01}=\gamma_{10} \\
\int \bar{z} z d \mu & =\rho_{0}\left|z_{0}\right|^{2}+\rho_{1}\left|z_{1}\right|^{2}=\rho_{0}\left(a+b z_{0}\right)+\rho_{1}\left(a+b z_{1}\right) \\
& =a\left(\rho_{0}+\rho_{1}\right)+b\left(\rho_{0} z_{0}+\rho_{1} z_{1}\right) \\
& =a \gamma_{00}+b \gamma_{01}=\gamma_{11}
\end{aligned}
\end{aligned}
$$

Let

$$
f_{0}(z)=\frac{z-z_{1}}{z_{0}-z_{1}}, \quad f_{1}(z)=\frac{z-z_{0}}{z_{1}-z_{0}}
$$

Then $f_{0}\left(z_{0}\right)=1, f_{0}\left(z_{1}\right)=0$ and $f_{1}\left(z_{0}\right)=0, f_{1}\left(z_{1}\right)=1$. Since $E(1)$ is positive and invertible,

$$
\begin{aligned}
0<\left\langle E(1) \widehat{f}_{0}, \widehat{f}_{0}\right\rangle & =\frac{\gamma_{00}\left|z_{1}\right|^{2}-\gamma_{01} \overline{z_{1}}+\gamma_{11}-z_{1} \gamma_{10}}{\left|z_{0}-z_{1}\right|^{2}} \\
& =\int \frac{|z|^{2}-z_{1} \bar{z}-\overline{z_{1}} z+\left|z_{1}\right|^{2}}{\left|z_{0}-z_{1}\right|^{2}} d \mu \\
& =\int\left|f_{0}\right|^{2} d \mu=\rho_{0}
\end{aligned}
$$

Similarly, we have

$$
0<\left\langle E(1) \widehat{f}_{1}, \widehat{f}_{1}\right\rangle=\int\left|f_{1}\right|^{2} d \mu=\rho_{1}
$$

Thus μ is a 2 -atomic representing measure.

3. On the unit circle \mathbb{T}

In this section, we consider the quadratic moment problem on the unit circle $\mathbb{T}:=\{z \in$ $\mathbb{C}:|z|=1\}$ as in [10, Theorem 3.1].

Theorem 3.1. (Unit Circle) Let $r=$ rank $E(1)$. The following statements are equivalent for γ.
(i) There exists a representing measure supported in \mathbb{T};
(ii) There exists a rank r-atomic representing measure supported in \mathbb{T};
(iii) $E(1) \geq 0$ and $\gamma_{11}=\gamma_{00}$.

Proof. (i) \Rightarrow (iii): From Theorem 1.1 or Theorem 2.1, we have $E(1) \geq 0$, and

$$
\gamma_{11}=\int_{\mathbb{T}} \bar{z} z d \mu=\int_{\mathbb{T}} 1 d \mu=\gamma_{00}
$$

(ii) \Rightarrow (i): Trivial.
(iii) \Rightarrow (ii): By Theorem 2.1, we have that there exists an r-atomic representing measure for γ. Therefore our goal is construct an r-atomic representing measure supported in \mathbb{T}. Without loss of generality, we let $\gamma_{00}=1$. .

If $r=1$, then $\left|\gamma_{01}\right|^{2}=\gamma_{11}=\gamma_{00}=1$. So $\mu=\delta_{\gamma_{01}}$ and $\operatorname{supp} \mu \subseteq \mathbb{T}$.
If $r=2$, then $\operatorname{det} E(1)=1-\left|\gamma_{01}\right|^{2}>0$. Let

$$
E(2)=\left[\begin{array}{cccc}
1 & \gamma_{01} & \gamma_{02} & 1 \\
\gamma_{10} & 1 & \gamma_{01} & \gamma_{10} \\
\gamma_{20} & \gamma_{10} & c_{11} & c_{12} \\
1 & \gamma_{01} & c_{21} & c_{22}
\end{array}\right]
$$

where $\gamma_{20}=\overline{\gamma_{02}}, c_{21}=\overline{c_{12}}$. Then rank $E(2)=\operatorname{rank} E(1)$ if and only if

$$
\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=W^{*} E(1) W
$$

where

$$
W=E(1)^{-1}\left[\begin{array}{cc}
\gamma_{02} & 1 \\
\gamma_{01} & \gamma_{10}
\end{array}\right]
$$

Let

$$
\begin{aligned}
& {\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=E(1)^{-1}\left[\begin{array}{l}
\gamma_{02} \\
\gamma_{01}
\end{array}\right]=\frac{1}{1-\left|\gamma_{01}\right|^{2}}\left[\begin{array}{c}
\gamma_{02}-\gamma_{01}^{2} \\
\gamma_{01}-\gamma_{10} \gamma_{02}
\end{array}\right]} \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right]=E(1)^{-1}\left[\begin{array}{c}
1 \\
\gamma_{10}
\end{array}\right]=\frac{1}{1-\left|\gamma_{01}\right|^{2}}\left[\begin{array}{c}
1-\left|\gamma_{01}\right|^{2} \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .}
\end{aligned}
$$

Then $E(2)$ will be of the form of a moment matrix if and only if $c_{11}=c_{22}$. That is,

$$
\alpha \gamma_{20}+\beta \gamma_{10}=1
$$

It is equivalent to

$$
1-\left|\gamma_{02}\right|^{2}+2 \operatorname{Re}\left(\gamma_{01}^{2} \gamma_{20}-\left|\gamma_{01}\right|^{2}\right)=0
$$

i.e.,

$$
\left|\gamma_{02}\right|^{2}-2 \operatorname{Re}\left(\gamma_{01}^{2} \gamma_{20}\right)=1-2\left|\gamma_{01}\right|^{2}
$$

Let $\gamma_{01}=c+d i, \gamma_{02}=r+s i$. Then

$$
\left(r-c^{2}+d^{2}\right)^{2}+(s-2 c d)^{2}=\left(1-c^{2}-d^{2}\right)^{2}
$$

For each $\gamma_{02}=r+s i$, the corresponding 2-atomic representing measure is supported in \mathbb{T}, since $\bar{Z} Z=1$.

Furthermore, the 2-atomic representing measure

$$
\mu:=\rho_{0} \delta_{z_{0}}+\rho_{0} \delta_{z_{1}}
$$

where z_{0}, z_{1} are the roots of $z^{2}-(\alpha+\beta z)=0$ and $\bar{z} z=1$, and

$$
\rho_{0}=\frac{z_{1}-\gamma_{01}}{z_{1}-z_{0}}, \quad \rho_{1}=\frac{\gamma_{01}-z_{0}}{z_{1}-z_{0}}
$$

The proof is complete.
Example 3.2. (Unit Circle) Let

$$
E(1)=\left[\begin{array}{cc}
1 & \frac{1+i}{2} \\
\frac{1-i}{2} & 1
\end{array}\right]
$$

Then we have

$$
r^{2}+\left(s-\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

$\alpha=-i, \beta=1+i$. So, $z^{2}-(1+i) z+i=0$. We obtain the two atoms $z_{0}=i, z_{1}=1$, both on the unit circle \mathbb{T}. And $\rho_{0}=\rho_{1}=\frac{1}{2}$. Thus we obtain a 2 -atomic representing measure $\mu=\frac{1}{2} \delta_{i}+\frac{1}{2} \delta_{1}$.

4. On the unit disc \mathbb{D}

In this section, we consider the quadratic moment problem on the unit disc $\mathbb{D}:=\{z \in$ $\mathbb{C}:|z| \leq 1\}$ as in [10, Theorem 1.8].

Theorem 4.1. (Unit Disc) Let $r=$ rank $E(1)$. The following statements are equivalent for γ.
(i) There exists a representing measure supported in \mathbb{D};
(ii) There exists an r-atomic representing measure supported in \mathbb{D};
(iii) $E(1) \geq 0$ and $\gamma_{11} \leq \gamma_{00}$.

Proof. (i) \Rightarrow (iii): From Theorem 1.1 or Theorem 2.1, we have $E(1) \geq 0$, and

$$
\gamma_{11}=\int_{\mathbb{D}} \bar{z} z d \mu \leq \int_{\mathbb{D}} 1 d \mu=\gamma_{00}
$$

(ii) \Rightarrow (i): Trivial.
(iii) \Rightarrow (ii): Assume $E(1) \geq 0$, and $\gamma_{11} \leq \gamma_{00}=1$.

If $r=1$, then $\gamma_{11}=\left|\gamma_{01}\right|^{2} \leq \gamma_{00}=1$. So $\mu=\delta_{\gamma_{01}}$.
If $r=2$, then $\operatorname{det} E(1)=\gamma_{11}-\left|\gamma_{01}\right|^{2}>0$.
To find a 2-atomic representing measure $\mu=\rho_{0} \delta_{z_{0}}+\rho_{1} \delta_{z_{1}}$, we shall solve the following equations

$$
\begin{aligned}
\rho_{0}+\rho_{1} & =1, \\
\rho_{0} z_{0}+\rho_{1} z_{1} & =\gamma_{01}, \\
\rho_{0}\left|z_{0}\right|^{2}+\rho_{1}\left|z_{1}\right|^{2} & =\gamma_{11}
\end{aligned}
$$

Let $\rho_{0}=\rho$. Then from second equation, we have

$$
z_{1}=\frac{\gamma_{01}-\rho z_{0}}{1-\rho}
$$

Take it into third equation, we have

$$
(1-\rho)\left|z_{0}\right|^{2}-\overline{z_{0}} \gamma_{01}-z_{0} \gamma_{10}+\rho\left|z_{0}\right|^{2}+\left|\gamma_{01}\right|^{2}=\frac{1-\rho}{\rho}\left(\gamma_{11}-\left|\gamma_{01}\right|^{2}\right)
$$

i.e.,

$$
\left|z_{0}-\gamma_{01}\right|^{2}=\frac{1-\rho}{\rho} \operatorname{det} E(1)
$$

Since $\operatorname{det} E(1)>0$, we may put

$$
t:=\sqrt{\frac{1-\rho}{\rho} \operatorname{det} E(1)}, \quad \Rightarrow \rho=\frac{\operatorname{det} E(1)}{t^{2}+\operatorname{det} E(1)} .
$$

Let $z_{0}=x+y i, \gamma_{01}=a+b i$. Then we have, $(x-a)^{2}+(y-b)^{2}=t^{2}$. Thus, $x=$ $a+t \cos \theta, y=b+t \sin \theta$. Hence,

$$
\begin{aligned}
z_{0} & =x+y i=a+t \cos \theta+b i+t i \sin \theta \\
& =\gamma_{01}+t e^{i \theta} \\
z_{1} & =\frac{\gamma_{01}-\rho z_{0}}{1-\rho}=\frac{\gamma_{01}-\rho \gamma_{01}-\rho t e^{i \theta}}{1-\rho} \\
& =\gamma_{01}-\frac{\operatorname{det} E(1)}{t} e^{i \theta} .
\end{aligned}
$$

We want to make $\left|z_{0}\right| \leq 1$ and $\left|z_{1}\right| \leq 1$.
Since

$$
\begin{aligned}
& \left|z_{0}\right|^{2}=\left|\gamma_{01}\right|^{2}+2 t \operatorname{Re}\left(\gamma_{10} e^{i \theta}\right)+t^{2} \\
& \left|z_{1}\right|^{2}=\left|\gamma_{01}\right|^{2}-\frac{2}{t} \operatorname{det} E(1) \operatorname{Re}\left(\gamma_{10} e^{i \theta}\right)+\frac{\operatorname{det} E(1)^{2}}{t^{2}}
\end{aligned}
$$

Hence $\left|z_{0}\right| \leq 1$ and $\left|z_{1}\right| \leq 1$ if and only if $(t, \theta) \in R(t, \theta)$, where

$$
R(t, \theta):=\left\{(t, \theta) \in\left(R_{+},[0,2 \pi]\right) \left\lvert\, \begin{array}{c}
t^{2}+2 t \operatorname{Re}\left(\gamma_{10} e^{i \theta}\right)+\left|\gamma_{01}\right|^{2} \leq 1 \text { and } \\
\left.\left|\gamma_{01}\right|^{2}-\frac{2}{t} \operatorname{det} E(1) \operatorname{Re}\left(\gamma_{10} e^{i \theta}\right)+\frac{\operatorname{det} E(1)^{2}}{t^{2}} \leq 1\right\} .
\end{array}\right.\right.
$$

We can show that the set $R(t, \theta)$ is not empty as in the proof of [10, Theorem 1.8]. Thus we can obtain a 2 -atomic representing measure. The proof is complete.

Example 4.2. (Unit Disc) Let $\gamma_{01}=0$. Then

$$
R(t, \theta):=\left\{(t, \theta) \in\left(R_{+},[0,2 \pi]\right) \mid \operatorname{det} E(1) \leq t \leq 1\right\}
$$

Let

$$
E(1)=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] .
$$

Then

$$
R(t, \theta):=\left\{(t, \theta) \in\left(R_{+},[0,2 \pi]\right) \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}
$$

Take $t=\frac{2}{3}$. Then $\rho=\frac{9}{17}$, and

$$
\begin{aligned}
& z_{0}=\frac{2}{3}(\cos \theta+i \sin \theta) \\
& z_{1}=-\frac{3}{4}(\cos \theta+i \sin \theta), \quad \forall \theta \in[0,2 \pi]
\end{aligned}
$$

Thus, we obtain a 2 -atomic representing measure

$$
\mu=\frac{9}{17} \delta_{z_{0}}+\frac{8}{17} \delta_{z_{1}}
$$

References

[1] N. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publ. Co. (1965, New York).
[2] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math. 59 (1975), 317-325.
[3] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
[4] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, Amer. Math. Soc. 36 (1991).
[5] R. Curto and L. Fialkow, Flat extensions of positive moment matrices: relations in analytic or conjugate terms, Operator Theory: Adv. Appl. 104 (1998), 59-82.
\qquad 603-635
[7] , Solution of the truncated complex moment problems for flat data, Memoirs Amer. Math. Soc. 568 (1996).
[8] , Flat extensions of positive moment matrices: recursively generated relations, Memoirs Amer. Math. Soc. 648 (1998).
[9] , The truncated complex K-moment problem, Trans. Amer. Math. Soc. 352 (2000), 28252855.
[10] , The quadratic moment problem for the unit disc and unit circle, Integral Equations and Operator Theory, 38 (2000), 377-409.
[11] , Solution of the singular quartic moment problem, J. Operator Theory, to appear.
[12] M. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta. Sci. Math. (Sz) 31 (1973), 61-64.
[13] L. Fialkow, Positivity, extensions and the truncated complex moment problem, Contemporary Mathematics 185 (1995), 133-150.
[14] , Minimal representing measures arising from rank-increasing moment matrix extensions, J. Operator Theory 42 (1999), 425-436.
[15] I. Jung, E. Ko, C. Li and S. Park, Embry truncated complex moment problem, submitted.
[16] I. Jung, S. Lee, W. Lee and C. Li, The quartic moment problem, submitted.
[17] I. Jung and S. Park, Complex moment problem: matrix approach, submitted.
[18] C. Li, A note on singular quartic moment problem, Bull. of the Korean Math. Soc. 37 (2000), No.1, 91-102.

Department of Mathematics, College of Natural Sciences, Ewha Womans University, Seoul 120-750, Korea

Current address: Department of Mathematics, College of Science, Northeastern University, Shenyang, Liaoning 110-004, P. R. China

E-mail address: chunjili@hanmail.net
Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
E-mail address: chiyom01@kanagawa-u.ac.jp

[^0]: Key words and phrases. truncated complex moment problem, the quadratic moment problem, representing measure, double flat extension.

 2000 Mathematics Subject Classification 44A60, 47B20.
 *This research is partially supported by Grant-in-Aid Scientific Research (No.14540190).

