CHARACTERIZATIONS OF PSEUDO-BCK ALGEBRAS

YOUNG BAE JUN

Received May 21, 2002

Abstract

A characterization of a pseudo- $B C K$ algebra is provided. Some properties of a pseudo- $B C K$ algebra are investigated. Conditions for a pseudo- $B C K$ algebra to be \wedge-semi-lattice ordered (resp. \cap-semi-lattice ordered) are given.

1. Introduction

The study of $B C K$-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. G. Georgescu and A. Iorgulescu [1] introduced the notion of a pseudo- $B C K$ algebra as an extension of $B C K$ algebra. In this paper, we give a characterization of pseudo- $B C K$ algebra, and investigate some properties. We provide conditions for a pseudo- $B C K$ algebra to be \wedge-semi-lattice ordered (resp. \cap-semi-lattice ordered).

2. Preliminaries

For further details of $B C K$-algebras we refer to [3]. The notion of pseudo- $B C K$ algebras is introduced by Georgescu and Iorgulescu [1] as follows:

Definition 2.1. A pseudo- $B C K$ algebra is a structure $\mathfrak{X}=(X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on X, " $*$ " and " Δ " are binary operations on X and " 0 " is an element of X, verifying the axioms: for all $x, y, z \in X$,
(a1) $(x * y) \diamond(x * z) \leq z * y,(x \diamond y) *(x \diamond z) \leq z \diamond y$,
(a2) $x *(x \diamond y) \leq y, x \diamond(x * y) \leq y$,
(a3) $x \leq x$,
(a4) $0 \leq x$,
(a5) $x \leq y, \quad y \leq x \Longrightarrow x=y$,
(a6) $x \leq y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0$.
Remark 2.2. ([1, Remark 1.2]) If \mathfrak{X} is a pseudo- $B C K$ algebra satisfying $x * y=x \diamond y$ for all $x, y \in X$, then \mathfrak{X} is a $B C K$ - algebra.

In a pseudo- $B C K$ algebra we have (see [1])
(p1) $x \leq y \Longrightarrow z * y \leq z * x, \quad z \diamond y \leq z \diamond x$.
(p2) $x \leq y, \quad y \leq z \Longrightarrow x \leq z$.
(p3) $(x * y) \diamond z=(x \diamond z) * y$.
(p4) $x * y \leq z \Longleftrightarrow x \diamond z \leq y$.
(p5) $x * y \leq x, \quad x \diamond y \leq x$.
(p6) $x * 0=x=x \diamond 0$.
(p7) $x \leq y \Longrightarrow x * z \leq y * z, \quad x \diamond z \leq y \diamond z$.

[^0](p8) $x \wedge y$ (and $y \wedge x$) is a lower bound for $\{x, y\}$, where $x \wedge y:=y \diamond(y * x)$ (and $y \wedge x:=$ $x \diamond(x * y))$.
(p9) $x \cap y$ (and $y \cap x$) is a lower bound for $\{x, y\}$ where $x \cap y:=y *(y \diamond x)$ (and $y \cap x:=$ $x *(x \diamond y))$.

Definition 2.3. ([1, Definition 1.2]) We say that the pseudo- $B C K$ algebra \mathfrak{X} is

- \wedge-semi-lattice ordered if $x \wedge y=y \wedge x$ for all $x, y \in X$, that is, it satisfies the equality:

$$
y \diamond(y * x)=x \diamond(x * y), \forall x, y \in X
$$

- \cap-semi-lattice ordered if $x \cap y=y \cap x$ for all $x, y \in X$, that is, it satisfies the equality:

$$
y *(y \diamond x)=x *(x \diamond y), \forall x, y \in X
$$

- inf-semi-lattice ordered if it is both \wedge-semi-lattice ordered and \cap-semi-lattice ordered.

3. Characterizations of pseudo- $B C K$ algebras

For any element x of a pseudo- $B C K$ algebra \mathfrak{X}, the initial section of x is defined to be the set

$$
\downarrow x:=\{y \in X \mid y \leq x\} .
$$

Proposition 3.1. Let \mathfrak{X} be a pseudo- $B C K$ algebra. For any $x, y \in X$, we have

$$
\downarrow(x \wedge y) \subset \downarrow x \cap \downarrow y \text { and } \downarrow(x \cap y) \subset \downarrow x \cap \downarrow y
$$

Proof. If $z \in \downarrow(x \wedge y)$, then $z \leq x \wedge y$. Since $x \wedge y$ is a lower bound for $\{x, y\}$, it follows from (a5) that $z \leq x$ and $z \leq y$ so that $z \in \downarrow x$ and $z \in \downarrow y$, that is, $z \in \downarrow x \cap \downarrow y$. Let $w \in \downarrow(x \cap y)$. Then $w \leq x \cap y$. Since $x \cap y$ is a lower bound for $\{x, y\}$, it follows from (a5) that $w \leq x$ and $w \leq y$. Hence $w \in \downarrow x$ and $w \in \downarrow y$, and thus $w \in \downarrow x \cap \downarrow y$. This completes the proof.
Lemma 3.2. ([1, Proposition 1.15]) Let \mathfrak{X} be a pseudo-BCK algebra.
(i) If \mathfrak{X} is \wedge-semi-lattice ordered, then $x \wedge y$ is the g.l.b. of $\{x, y\}$ for all $x, y \in X$.
(ii) If \mathfrak{X} is \cap-semi-lattice ordered, then $x \cap y$ is the g.l.b. of $\{x, y\}$ for all $x, y \in X$.

Proposition 3.3. Let \mathfrak{X} be a pseudo-BCK algebra. If \mathfrak{X} is \wedge-semi-lattice ordered, then $\downarrow(x \wedge y)=\downarrow x \cap \downarrow y$.
Proof. Let $z \in \downarrow x \cap \downarrow y$. Then $z \leq x$ and $z \leq y$. Hence $z \leq x \wedge y$ since $x \wedge y$ is the g.l.b. of $\{x, y\}$ by Lemma 3.2. This implies $z \in \downarrow(x \wedge y)$. Thus $\downarrow x \cap \downarrow y \subset \downarrow(x \wedge y)$. Since the reverse inclusion is by Proposition 3.1, we conclude that $\downarrow(x \wedge y)=\downarrow x \cap \downarrow y$.
Proposition 3.4. Let \mathfrak{X} be a pseudo-BCK algebra such that

$$
\downarrow(x \wedge y)=\downarrow x \cap \downarrow y \text { for all } x, y \in X
$$

Then \mathfrak{X} is \wedge-semi-lattice ordered.
Proof. For any $x, y \in X$, we have

$$
\downarrow(x \wedge y)=\downarrow x \cap \downarrow y=\downarrow y \cap \downarrow x=\downarrow(x \wedge y)
$$

Hence $x \wedge y \in \downarrow(y \wedge x)$ and $y \wedge x \in \downarrow(x \wedge y)$. Therefore $x \wedge y \leq y \wedge x$ and $y \wedge x \leq x \wedge y$. It follows from (a5) that $x \wedge y=y \wedge x$. This completes the proof.

Proposition 3.5. Let \mathfrak{X} be a pseudo- $B C K$ algebra which is \cap-semi-lattice ordered. Then $\downarrow(x \cap y)=\downarrow x \cap \downarrow y$.

Proof. Let $w \in \downarrow x \cap \downarrow y$. Then $w \leq x$ and $w \leq y$. Since $x \cap y$ is the g.l.b. of $\{x, y\}$, we have $w \leq x \cap y$, that is, $w \in \downarrow(x \cap y)$. Hence $\downarrow x \cap \downarrow y \subset \downarrow(x \cap y)$. This completes the proof.

Proposition 3.6. Let \mathfrak{X} be a pseudo-BCK algebra. If \mathfrak{X} satisfies the equality

$$
\downarrow(x \cap y)=\downarrow x \cap \downarrow y \text { for all } x, y \in X
$$

then \mathfrak{X} is \cap-semi-lattice ordered.
Proof. Let $x, y \in X$. Then $\downarrow(x \cap y)=\downarrow x \cap \downarrow y=\downarrow y \cap \downarrow x=\downarrow(y \cap x)$, and so $x \cap y \in \downarrow(y \cap x)$ and $y \cap x \in \downarrow(x \cap y)$. Hence $x \cap y \leq y \cap x$ and $y \cap x \leq x \cap y$. Using (a5), we get $x \cap y=y \cap x$. Consequently, \mathfrak{X} is \cap-semi-lattice ordered.

Proposition 3.7. In any pseudo-BCK algebra we have

$$
x *(y \wedge x)=x * y \text { and } x \diamond(y \cap x)=x \diamond y
$$

Proof. Note that $x *(y \wedge x)=x *(x \diamond(x * y)) \leq x * y$ by (a2). Since $y \wedge x \leq y$, it follows from (p 1) that $x * y \leq x *(y \wedge x)$. Hence, by (a5), we have $x *(y \wedge x)=x * y$. Now using (a2), we obtain

$$
x \diamond(y \cap x)=x \diamond(x *(x \diamond y)) \leq x \diamond y
$$

The inequality $y \cap x \leq y$ and the condition (p1) imply $x \diamond y \leq x \diamond(y \cap x)$. Therefore $x \diamond y=x \diamond(y \cap x)$ by (a5). This completes the proof.

We now provide a characterization of a pseudo- $B C K$ algebra.
Theorem 3.8. A structure $\mathfrak{X}=(X, \leq, *, \diamond, 0)$ is a pseudo- $B C K$ algebra if and only if it satisfies (a1), (a5), (a6) and
(b1) $x *(0 \diamond y)=x=x \diamond(0 * y)$.
Proof. Assume that \mathfrak{X} is a pseudo- $B C K$ algebra. Then $x *(0 \diamond y) \leq x$ and $x \diamond(0 * y) \leq x$. Now $x \diamond(x *(0 \diamond y)) \leq 0 \diamond y=0$ and $x *(x \diamond(0 * y)) \leq 0 * y=0$, which imply that $x \diamond(x *(0 \diamond y))=0$ and $x *(x \diamond(0 * y))=0$, that is, $x \leq x *(0 \diamond y)$ and $x \leq x \diamond(0 * y)$. Hence, by (a5), we conclude that $x *(0 \diamond y)=x=x \diamond(0 * y)$. Conversely, let $\mathfrak{X}=(X, \leq, *, \diamond, 0)$ be a structure satisfying (a1), (a5), (a6) and (b1). Putting $x=z=0$ in (a1), we have $(0 * y) \diamond(0 * 0) \leq 0 * y$ and $(0 \diamond y) *(0 \diamond 0) \leq 0 \diamond y$. It follows from (a6) and (b1) that

$$
\begin{equation*}
0=((0 * y) \diamond(0 * 0)) \diamond(0 * y)=(0 * y) \diamond(0 * 0)=0 * y \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
0=((0 \diamond y) *(0 \diamond 0)) *(0 \diamond y)=(0 \diamond y) *(0 \diamond 0)=0 \diamond y \tag{3.2}
\end{equation*}
$$

so from (a6) that $0 \leq y$. Combining (3.1), (3.2) and (b1) implies

$$
\begin{equation*}
x \diamond 0=x \diamond(0 * y)=x=x *(0 \diamond y)=x * 0 . \tag{3.3}
\end{equation*}
$$

Substituting 0 for y and z in (a1) and using (3.1), (3.2) and (3.3), we obtain

$$
x \diamond x=(x * 0) \diamond(x * 0) \leq 0 * 0=0
$$

and

$$
x * x=(x \diamond 0) *(x \diamond 0) \leq 0 \diamond 0=0 .
$$

Since $0 \leq x$ for all $x \in X$, it follows from (a6) that $x \diamond x=0=x * x$, that is, $x \leq x$. Replacing y by 0 in (a1) and using (3.3), we get

$$
x \diamond(x * z)=(x * 0) \diamond(x * z) \leq z * 0=z
$$

and

$$
x *(x \diamond z)=(x \diamond 0) *(x \diamond z) \leq z \diamond 0=z .
$$

Hence the structure \mathfrak{X} is a pseudo- $B C K$ algebra.
Proposition 3.9. In any pseudo-BCK algebra \mathfrak{X}, we have
(b2) $(y \wedge x) \diamond(y * x) \leq x \diamond(x *(x \wedge y))$.
(b3) $(y \cap x) *(y \diamond x) \leq x *(x \diamond(x \cap y))$.
Proof. (b2) For any $x, y \in X$, we have

$$
\begin{aligned}
& ((y \wedge x) \diamond(y * x)) *(x \diamond(x *(x \wedge y))) \\
= & ((x \diamond(x * y)) \diamond(y * x)) *(x \diamond(x *(y \diamond(y * x)))) \\
= & ((x *(x \diamond(x *(y \diamond(y * x))))) \diamond(x * y)) \diamond(y * x) \\
= & ((x *(y \diamond(y * x))) \diamond(x * y)) \diamond(y * x) \\
\leq & (y *(y \diamond(y * x)) \diamond(y * x) \\
= & (y * x) \diamond(y * x)=0 .
\end{aligned}
$$

It follows from (a4) and (a5) that

$$
((y \wedge x) \diamond(y * x)) *(x \diamond(x *(x \wedge y)))=0
$$

that is, $(y \wedge x) \diamond(y * x) \leq x \diamond(x *(x \wedge y))$.
(b3) Let $x, y \in X$. Then

$$
\begin{aligned}
& ((y \cap x) *(y \diamond x)) \diamond(x *(x \diamond(x \cap y))) \\
= & ((x *(x \diamond y)) *(y \diamond x)) \diamond(x *(x \diamond(y *(y \diamond x)))) \\
= & ((x \diamond(x *(x \diamond(y *(y \diamond x)))) *(x \diamond y)) *(y \diamond x) \\
= & ((x \diamond(y *(y \diamond x))) *(x \diamond y)) *(y \diamond x) \\
\leq & (y \diamond(y *(y \diamond x)) *(y \diamond x) \\
= & (y \diamond x) *(y \diamond x)=0 .
\end{aligned}
$$

Since $0 \leq x$ for all $x \in X$, it follows from (a5) that

$$
((y \cap x) *(y \diamond x)) \diamond(x *(x \diamond(x \cap y)))=0
$$

so that $(y \cap x) *(y \diamond x) \leq x *(x \diamond(x \cap y))$. This completes the proof.
Definition 3.10. A pseudo- $B C K$ algebra \mathfrak{X} is said to be positive implicative if it satisfies
(a7) $(x * z) \diamond(y * z)=(x \diamond y) * z, \forall x, y, z \in X$,
(a8) $(x \diamond z) *(y \diamond z)=(x * y) \diamond z, \forall x, y, z \in X$,
Proposition 3.11. If \mathfrak{X} is a positive implicative pseudo- $B C K$ algebra, then $x * y=x \diamond y$ for all $x, y \in X$.

Proof. For any $x, y \in X$, we have

$$
\begin{aligned}
x * y & =(x * y) \diamond 0=(x * y) \diamond(y * y)=(x \diamond y) * y \\
& =(x * y) \diamond y=(x \diamond y) *(y \diamond y)=(x \diamond y) * 0=x \diamond y,
\end{aligned}
$$

which completes the proof.
Note from Remark 2.2 and Proposition 3.11 that every positive implicative pseudo- $B C K$ algebra is a positive implicative $B C K$-algebra. That is, there is no positive implicative pseudo- $B C K$ algebras which are not positive implicative $B C K$-algebras.
Proposition 3.12. If \mathfrak{X} is a pseudo-BCK algebra satisfying the following implication

$$
\begin{equation*}
x \leq y \Longrightarrow x=x \wedge y \quad(\text { resp. } x=x \cap y) \tag{3.4}
\end{equation*}
$$

then \mathfrak{X} is \wedge-semi-lattice ordered (resp. \cap-semi-lattice ordered).
Proof. Since $x \wedge y \leq x$ for all $x, y \in X$, it follows from (3.4) that $x \wedge y=(x \wedge y) \wedge x$, that is, $y \diamond(y * x)=x \diamond(x *(y \diamond(y * x)))$ so from (p 3), Proposition 3.7 and (a1) that

$$
\begin{aligned}
(y \diamond(y * x)) *(x \diamond(x * y)) & =(x \diamond(x *(y \diamond(y * x)))) *(x \diamond(x * y)) \\
& =(x *(x \diamond(x * y))) \diamond(x *(y \diamond(y * x))) \\
& =(x * y) \diamond(x *(y \diamond(y * x))) \\
& \leq(y \diamond(y * x)) * y=0 .
\end{aligned}
$$

Hence $y \diamond(y * x) \leq x \diamond(x * y)$ by (a4) and (a5). Since x and y are arbitrarily, we get $y \diamond(y * x)=x \diamond(x * y)$ for all $x, y \in X$. Therefore \mathfrak{X} is \wedge-semi-lattice ordered. Next, note that $x \cap y \leq x$ for all $x, y \in X$. Hence, by (3.4), we have $x \cap y=(x \cap y) \cap x$, that is, $y *(y \diamond x)=x *(x \diamond(y *(y \diamond x)))$. It follows that

$$
\begin{aligned}
(y *(y \diamond x)) \diamond(x *(x \diamond y)) & =(x *(x \diamond(y *(y \diamond x)))) \diamond(x *(x \diamond y)) \\
& =(x \diamond(x *(x \diamond y))) *(x \diamond(y *(y \diamond x))) \\
& =(x \diamond y) *(x \diamond(y *(y \diamond x))) \\
& \leq(y *(y \diamond x)) \diamond y=0
\end{aligned}
$$

so that $y *(y \diamond x) \leq x *(x \diamond y)$. The reverse inequality is also valid, because x and y are arbitrarily. Hence $y *(y \diamond x)=x *(x \diamond y)$, that is, \mathfrak{X} is \cap-semi-lattice ordered.

Corollary 3.13. If \mathfrak{X} is a pseudo-BC K algebra satisfying the following implication

$$
\begin{equation*}
x \leq y \Longrightarrow x \wedge y=x=x \cap y \tag{3.5}
\end{equation*}
$$

then \mathfrak{X} is inf-semi-lattice ordered.
Proposition 3.14. If a pseudo-BCK algebra \mathfrak{X} is \wedge-semi-lattice ordered, then

$$
x \leq z, z * y \leq z * x \Longrightarrow x \leq y
$$

Proof. Let $x, y, z \in X$ be such that $x \leq z$ and $z * y \leq z * x$. Then $x * z=0$ and $(z * y) \diamond(z * x)=0$, and so

$$
\begin{aligned}
x * y & =(x \diamond 0) * y=(x \diamond(x * z)) * y \\
& =(z \diamond(z * x)) * y=(z * y) \diamond(z * x)=0 .
\end{aligned}
$$

Hence $x \leq y$, ending the proof.
Proposition 3.15. If a pseudo- $B C K$ algebra \mathfrak{X} is \cap-semi-lattice ordered, then

$$
x \leq z, z \diamond y \leq z \diamond x \Longrightarrow x \leq y
$$

Proof. Let $x, y, z \in X$ be such that $x \leq z$ and $z \diamond y \leq z \diamond x$. Then $x \diamond z=0$ and $(z \diamond y) *(z \diamond x)=0$. It follows that

$$
\begin{aligned}
x \diamond y & =(x * 0) \diamond y=(x *(x \diamond z)) \diamond y \\
& =(z *(z \diamond x)) \diamond y=(z \diamond y) *(z \diamond x)=0
\end{aligned}
$$

so that $x \leq y$. This completes the proof.
Proposition 3.16. If a pseudo- $B C K$ algebra \mathfrak{X} satisfies

$$
\begin{equation*}
x, y \leq z, z \diamond y \leq z \diamond x \Longrightarrow x \leq y \tag{3.6}
\end{equation*}
$$

then $u=v *(v \diamond u)$ for all $u, v \in X$ with $u \leq v$.
Proof. Let $u, v \in X$ be such that $u \leq v$. Then $v *(v \diamond u) \leq v$ by (p 5). Moreover, $v \diamond(v *(v \diamond u)) \leq v \diamond u$ by (a2). It follows from (3.6) that $u \leq v *(v \diamond u)$. Since $v *(v \diamond u) \leq u$ by (a2), we conclude that $u=v *(v \diamond u)$.

Proposition 3.17. Let \mathfrak{X} be a pseudo-BC K algebra such that

$$
\begin{equation*}
x, y \leq z, z * y \leq z * x \Longrightarrow x \leq y \tag{3.7}
\end{equation*}
$$

Then $u=v \diamond(v * u)$ for all $u, v \in X$ with $u \leq v$.
Proof. Let $u, v \in X$ be such that $u \leq v$. Note from (p5) that $v \diamond(v * u) \leq v$. Since $v *(v \diamond(v * u)) \leq v * u$ by (a2), it follows from (3.7) that $u \leq v \diamond(v * u)$. Recall that $v \diamond(v * u) \leq u$ by (a2). Hence, by (a5), we have $u=v \diamond(v * u)$.

Theorem 3.18. A pseudo-BCK algebra \mathfrak{X} is \wedge-semi-lattice ordered if and only if

$$
y \wedge x=y \diamond(y *(y \wedge x)), \forall x, y \in X
$$

Proof. Since $y \wedge x \leq y$ for all $x, y \in X$, the necessity is by Propositions 3.14 and 3.17. Let \mathfrak{X} be a pseudo- $B C K$ algebra which satisfies

$$
y \wedge x=y \diamond(y *(y \wedge x)), \forall x, y \in X
$$

For any $x, y \in X$ with $x \leq y$, we have

$$
x=x \diamond 0=x \diamond(x * y)=y \diamond(y *(x \diamond(x * y)))=y \diamond(y * x)=x \wedge y
$$

and so \mathfrak{X} is \wedge-semi-lattice ordered by Proposition 3.12.
Theorem 3.19. A pseudo-BCK algebra \mathfrak{X} is \cap-semi-lattice ordered if and only if

$$
\begin{equation*}
y \cap x=y *(y \diamond(y \cap x)), \forall x, y \in X \tag{3.8}
\end{equation*}
$$

Proof. Let \mathfrak{X} be a \cap-semi-lattice ordered pseudo- $B C K$ algebra. Using Propositions 3.15 and 3.16, we know that $y \cap x=y *(y \diamond(y \cap x))$ for all $x, y \in X$. Conversely, assume that a pseudo- $B C K$ algebra \mathfrak{X} satisfies the condition (3.8). Let $x, y \in X$ be such that $x \leq y$. Then

$$
\begin{aligned}
x & =x * 0=x *(x \diamond y)=y \cap x=y *(y \diamond(y \cap x)) \\
& =y *(y \diamond(x *(x \diamond y))=y *(y \diamond x)=x \cap y,
\end{aligned}
$$

and so \mathfrak{X} is \cap-semi-lattice ordered by Proposition 3.12. This completes the proof.
Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

[1] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, (submitted).
[2] K. Iséki and S. Tanaka, An introduction to the theory of $B C K$-algebras, Math. Japonica 23(1) (1978), 1-26.
[3] J. Mang and Y. B. Jun, BC K-algebras, Kyungmoonsa, Seoul, Korea, 1994.
Department of Mathematics Education
Gyeongsang National University
Chinju (Jinju) 660-701, Korea
Email address: ybjun@nongae.gsnu.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. (Positive implicative) pseudo- $B C K$ algebra, \wedge-semi-lattice ordered, \cap-semilattice ordered.

