CHARACTERIZATIONS OF PSEUDO-BCK ALGEBRAS

YOUNG BAE JUN

Received May 21, 2002

ABSTRACT. A characterization of a pseudo-BCK algebra is provided. Some properties of a pseudo-BCK algebra are investigated. Conditions for a pseudo-BCK algebra to be \wedge -semi-lattice ordered (resp. \cap -semi-lattice ordered) are given.

1. INTRODUCTION

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. G. Georgescu and A. Iorgulescu [1] introduced the notion of a pseudo-BCK algebra as an extension of BCK-algebra. In this paper, we give a characterization of pseudo-BCK algebra, and investigate some properties. We provide conditions for a pseudo-BCK algebra to be \wedge -semi-lattice ordered (resp. \cap -semi-lattice ordered).

2. Preliminaries

For further details of BCK-algebras we refer to [3]. The notion of pseudo-BCK algebras is introduced by Georgescu and Iorgulescu [1] as follows:

Definition 2.1. A pseudo-BCK algebra is a structure $\mathfrak{X} = (X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on X, "*" and " \diamond " are binary operations on X and "0" is an element of X, verifying the axioms: for all $x, y, z \in X$,

- $(\mathbf{a1}) \ (x*y) \diamond (x*z) \leq z*y, \, (x\diamond y)*(x\diamond z) \leq z\diamond y,$
- (a2) $x * (x \diamond y) \leq y, \ x \diamond (x * y) \leq y,$
- (a3) $x \leq x$,
- $(a4) \ 0 \le x,$
- (a5) $x \le y, y \le x \Longrightarrow x = y,$
- (a6) $x \leq y \iff x * y = 0 \iff x \diamond y = 0$.

Remark 2.2. ([1, Remark 1.2]) If \mathfrak{X} is a pseudo-*BCK* algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$, then \mathfrak{X} is a *BCK*- algebra.

In a pseudo-BCK algebra we have (see [1])

- (p1) $x \leq y \implies z * y \leq z * x, \ z \diamond y \leq z \diamond x.$
- (p2) $x \le y, y \le z \implies x \le z.$
- $(p3) (x * y) \diamond z = (x \diamond z) * y.$
- $(p4) \ x * y \le z \iff x \diamond z \le y.$
- (p5) $x * y \leq x$, $x \diamond y \leq x$.
- $(\mathbf{p6}) \quad x * 0 = x = x \diamond 0.$
- (p7) $x \le y \Longrightarrow x * z \le y * z, x \diamond z \le y \diamond z.$

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. (Positive implicative) pseudo-BCK algebra, \wedge -semi-lattice ordered, \cap -semi-lattice ordered.

- (p8) $x \wedge y$ (and $y \wedge x$) is a lower bound for $\{x, y\}$, where $x \wedge y := y \diamond (y * x)$ (and $y \wedge x := x \diamond (x * y)$).
- (p9) $x \cap y$ (and $y \cap x$) is a lower bound for $\{x, y\}$ where $x \cap y := y * (y \diamond x)$ (and $y \cap x := x * (x \diamond y)$).

Definition 2.3. ([1, Definition 1.2]) We say that the pseudo-BCK algebra \mathfrak{X} is

- \wedge -semi-lattice ordered if $x \wedge y = y \wedge x$ for all $x, y \in X$, that is, it satisfies the equality: $y \diamond (y * x) = x \diamond (x * y), \forall x, y \in X$,
- \cap -semi-lattice ordered if $x \cap y = y \cap x$ for all $x, y \in X$, that is, it satisfies the equality: $y * (y \diamond x) = x * (x \diamond y), \forall x, y \in X$,
- inf-semi-lattice ordered if it is both \wedge -semi-lattice ordered and \cap -semi-lattice ordered.

3. Characterizations of pseudo-BCK algebras

For any element x of a pseudo-BCK algebra \mathfrak{X} , the *initial section* of x is defined to be the set

$$\downarrow x := \{ y \in X \mid y \le x \}.$$

Proposition 3.1. Let \mathfrak{X} be a pseudo-BCK algebra. For any $x, y \in X$, we have

 $\downarrow (x \land y) \subset \downarrow x \ \cap \downarrow y \ and \ \downarrow (x \cap y) \subset \downarrow x \ \cap \downarrow y.$

Proof. If $z \in \downarrow (x \land y)$, then $z \leq x \land y$. Since $x \land y$ is a lower bound for $\{x, y\}$, it follows from (a5) that $z \leq x$ and $z \leq y$ so that $z \in \downarrow x$ and $z \in \downarrow y$, that is, $z \in \downarrow x \cap \downarrow y$. Let $w \in \downarrow (x \cap y)$. Then $w \leq x \cap y$. Since $x \cap y$ is a lower bound for $\{x, y\}$, it follows from (a5) that $w \leq x$ and $w \leq y$. Hence $w \in \downarrow x$ and $w \in \downarrow y$, and thus $w \in \downarrow x \cap \downarrow y$. This completes the proof.

Lemma 3.2. ([1, Proposition 1.15]) Let \mathfrak{X} be a pseudo-BCK algebra.

- (i) If \mathfrak{X} is \wedge -semi-lattice ordered, then $x \wedge y$ is the g.l.b. of $\{x, y\}$ for all $x, y \in X$.
- (ii) If \mathfrak{X} is \cap -semi-lattice ordered, then $x \cap y$ is the g.l.b. of $\{x, y\}$ for all $x, y \in X$.

Proposition 3.3. Let \mathfrak{X} be a pseudo-BCK algebra. If \mathfrak{X} is \wedge -semi-lattice ordered, then $\downarrow(x \land y) = \downarrow x \cap \downarrow y$.

Proof. Let $z \in \downarrow x \cap \downarrow y$. Then $z \leq x$ and $z \leq y$. Hence $z \leq x \wedge y$ since $x \wedge y$ is the g.l.b. of $\{x, y\}$ by Lemma 3.2. This implies $z \in \downarrow (x \wedge y)$. Thus $\downarrow x \cap \downarrow y \subset \downarrow (x \wedge y)$. Since the reverse inclusion is by Proposition 3.1, we conclude that $\downarrow (x \wedge y) = \downarrow x \cap \downarrow y$.

Proposition 3.4. Let \mathfrak{X} be a pseudo-BCK algebra such that

 $\downarrow (x \land y) = \downarrow x \cap \downarrow y \text{ for all } x, y \in X.$

Then \mathfrak{X} is \wedge -semi-lattice ordered.

Proof. For any $x, y \in X$, we have

 $\downarrow (x \land y) = \downarrow x \ \cap \ \downarrow y = \downarrow y \ \cap \ \downarrow x = \downarrow (x \land y).$

Hence $x \wedge y \in \downarrow (y \wedge x)$ and $y \wedge x \in \downarrow (x \wedge y)$. Therefore $x \wedge y \leq y \wedge x$ and $y \wedge x \leq x \wedge y$. It follows from (a5) that $x \wedge y = y \wedge x$. This completes the proof.

Proposition 3.5. Let \mathfrak{X} be a pseudo-BCK algebra which is \cap -semi-lattice ordered. Then $\downarrow(x \cap y) = \downarrow x \cap \downarrow y$.

Proof. Let $w \in \downarrow x \cap \downarrow y$. Then $w \leq x$ and $w \leq y$. Since $x \cap y$ is the g.l.b. of $\{x, y\}$, we have $w \leq x \cap y$, that is, $w \in \downarrow (x \cap y)$. Hence $\downarrow x \cap \downarrow y \subset \downarrow (x \cap y)$. This completes the proof. \Box

Proposition 3.6. Let \mathfrak{X} be a pseudo-BCK algebra. If \mathfrak{X} satisfies the equality

 $\downarrow (x \cap y) = \downarrow x \ \cap \ \downarrow y \text{ for all } x, y \in X,$

then \mathfrak{X} is \cap -semi-lattice ordered.

Proof. Let $x, y \in X$. Then $\downarrow (x \cap y) = \downarrow x \cap \downarrow y = \downarrow y \cap \downarrow x = \downarrow (y \cap x)$, and so $x \cap y \in \downarrow (y \cap x)$ and $y \cap x \in \downarrow (x \cap y)$. Hence $x \cap y \leq y \cap x$ and $y \cap x \leq x \cap y$. Using (a5), we get $x \cap y = y \cap x$. Consequently, \mathfrak{X} is \cap -semi-lattice ordered.

Proposition 3.7. In any pseudo-BCK algebra we have

 $x * (y \land x) = x * y$ and $x \diamond (y \cap x) = x \diamond y$.

Proof. Note that $x * (y \land x) = x * (x \diamond (x * y)) \le x * y$ by (a2). Since $y \land x \le y$, it follows from (p1) that $x * y \le x * (y \land x)$. Hence, by (a5), we have $x * (y \land x) = x * y$. Now using (a2), we obtain

$$x \diamond (y \cap x) = x \diamond (x \ast (x \diamond y)) \le x \diamond y.$$

The inequality $y \cap x \leq y$ and the condition (p1) imply $x \diamond y \leq x \diamond (y \cap x)$. Therefore $x \diamond y = x \diamond (y \cap x)$ by (a5). This completes the proof.

We now provide a characterization of a pseudo-BCK algebra.

Theorem 3.8. A structure $\mathfrak{X} = (X, \leq, *, \diamond, 0)$ is a pseudo-BCK algebra if and only if it satisfies (a1), (a5), (a6) and

$$(b1) \quad x * (0 \diamond y) = x = x \diamond (0 * y).$$

Proof. Assume that \mathfrak{X} is a pseudo-*BCK* algebra. Then $x * (0 \diamond y) \leq x$ and $x \diamond (0 * y) \leq x$. Now $x \diamond (x * (0 \diamond y)) \leq 0 \diamond y = 0$ and $x * (x \diamond (0 * y)) \leq 0 * y = 0$, which imply that $x \diamond (x * (0 \diamond y)) = 0$ and $x * (x \diamond (0 * y)) = 0$, that is, $x \leq x * (0 \diamond y)$ and $x \leq x \diamond (0 * y)$. Hence, by (a5), we conclude that $x * (0 \diamond y) = x = x \diamond (0 * y)$. Conversely, let $\mathfrak{X} = (X, \leq, *, \diamond, 0)$ be a structure satisfying (a1), (a5), (a6) and (b1). Putting x = z = 0 in (a1), we have $(0 * y) \diamond (0 * 0) \leq 0 * y$ and $(0 \diamond y) * (0 \diamond 0) \leq 0 \diamond y$. It follows from (a6) and (b1) that

$$0 = ((0 * y) \diamond (0 * 0)) \diamond (0 * y) = (0 * y) \diamond (0 * 0) = 0 * y$$
(3.1)

and

$$0 = ((0 \diamond y) * (0 \diamond 0)) * (0 \diamond y) = (0 \diamond y) * (0 \diamond 0) = 0 \diamond y$$
(3.2)

so from (a6) that $0 \leq y$. Combining (3.1), (3.2) and (b1) implies

$$x \diamond 0 = x \diamond (0 * y) = x = x * (0 \diamond y) = x * 0.$$
(3.3)

Substituting 0 for y and z in (a1) and using (3.1), (3.2) and (3.3), we obtain

$$x\diamond x=(x\ast 0)\diamond (x\ast 0)\leq 0\ast 0=0$$

 and

$$x * x = (x \diamond 0) * (x \diamond 0) \le 0 \diamond 0 = 0$$

Since $0 \le x$ for all $x \in X$, it follows from (a6) that $x \diamond x = 0 = x * x$, that is, $x \le x$. Replacing y by 0 in (a1) and using (3.3), we get

$$x \diamond (x \ast z) = (x \ast 0) \diamond (x \ast z) \leq z \ast 0 = z$$

and

$$x * (x \diamond z) = (x \diamond 0) * (x \diamond z) \le z \diamond 0 = z$$

Hence the structure $\mathfrak X$ is a pseudo-BCK algebra.

Proposition 3.9. In any pseudo-BCK algebra \mathfrak{X} , we have (b2) $(y \wedge x) \diamond (y * x) \leq x \diamond (x * (x \wedge y)).$

(b3) $(y \cap x) * (y \diamond x) \le x * (x \diamond (x \cap y)).$

Proof. (b2) For any $x, y \in X$, we have

$$\begin{array}{l} \left((y \land x) \diamond (y \ast x) \right) \ast \left(x \diamond (x \ast (x \land y)) \right) \\ = & \left((x \diamond (x \ast y)) \diamond (y \ast x) \right) \ast \left(x \diamond (x \ast (y \diamond (y \ast x))) \right) \\ = & \left((x \ast (x \diamond (x \ast (y \diamond (y \ast x))))) \diamond (x \ast y) \right) \diamond (y \ast x) \\ = & \left((x \ast (y \diamond (y \ast x))) \diamond (x \ast y) \right) \diamond (y \ast x) \\ \leq & \left(y \ast (y \diamond (y \ast x)) \diamond (y \ast x) \\ = & \left((y \ast x) \diamond (y \ast x) \right) = 0. \end{array}$$

It follows from (a4) and (a5) that

$$ig((y\wedge x)\diamond(y*x)ig)*ig(x\diamondig(x*(x\wedge y))ig)=0,$$

that is, $(y \land x) \diamond (y \ast x) \leq x \diamond (x \ast (x \land y))$. (b3) Let $x, y \in X$. Then

$$\begin{array}{l} \left(\left(y \cap x \right) * \left(y \diamond x \right) \right) \diamond \left(x * \left(x \diamond \left(x \cap y \right) \right) \right) \\ = & \left(\left(x * \left(x \diamond y \right) \right) * \left(y \diamond x \right) \right) \diamond \left(x * \left(x \diamond \left(y * \left(y \diamond x \right) \right) \right) \right) \\ = & \left(\left(x \diamond \left(x * \left(x \diamond \left(y * \left(y \diamond x \right) \right) \right) \right) * \left(x \diamond y \right) \right) * \left(y \diamond x \right) \\ = & \left(\left(x \diamond \left(y * \left(y \diamond x \right) \right) \right) * \left(x \diamond y \right) \right) * \left(y \diamond x \right) \\ \leq & \left(y \diamond \left(y * \left(y \diamond x \right) \right) * \left(y \diamond x \right) \\ = & \left(y \diamond x \right) * \left(y \diamond x \right) = 0. \end{array}$$

Since $0 \le x$ for all $x \in X$, it follows from (a5) that

$$\left((y \cap x) * (y \diamond x)\right) \diamond \left(x * (x \diamond (x \cap y))\right) = 0$$

so that $(y \cap x) * (y \diamond x) \leq x * (x \diamond (x \cap y))$. This completes the proof.

Definition 3.10. A pseudo-*BCK* algebra \mathfrak{X} is said to be *positive implicative* if it satisfies (a7) $(x * z) \diamond (y * z) = (x \diamond y) * z, \forall x, y, z \in X,$ (a8) $(x \diamond z) * (y \diamond z) = (x * y) \diamond z, \forall x, y, z \in X,$

Proposition 3.11. If \mathfrak{X} is a positive implicative pseudo-BCK algebra, then $x * y = x \diamond y$ for all $x, y \in X$.

Proof. For any $x, y \in X$, we have

$$\begin{array}{rcl} x\ast y &=& (x\ast y)\diamond 0 = (x\ast y)\diamond (y\ast y) = (x\diamond y)\ast y \\ &=& (x\ast y)\diamond y = (x\diamond y)\ast (y\diamond y) = (x\diamond y)\ast 0 = x\diamond y, \end{array}$$

which completes the proof.

Note from Remark 2.2 and Proposition 3.11 that every positive implicative pseudo-BCK algebra is a positive implicative BCK-algebra. That is, there is no positive implicative pseudo-BCK algebras which are not positive implicative BCK-algebras.

Proposition 3.12. If \mathfrak{X} is a pseudo-BCK algebra satisfying the following implication

$$x \le y \implies x = x \land y \pmod{(\text{resp. } x = x \cap y)},$$
 (3.4)

then \mathfrak{X} is \wedge -semi-lattice ordered (resp. \cap -semi-lattice ordered).

Proof. Since $x \land y \leq x$ for all $x, y \in X$, it follows from (3.4) that $x \land y = (x \land y) \land x$, that is, $y \diamond (y * x) = x \diamond (x * (y \diamond (y * x)))$ so from (p3), Proposition 3.7 and (a1) that

$$\begin{array}{ll} \left(y\diamond(y\ast x)\right)\ast\left(x\diamond(x\ast y)\right) &=& \left(x\diamond(x\ast(y\diamond(y\ast x)))\right)\ast\left(x\diamond(x\ast y)\right) \\ &=& \left(x\ast(x\diamond(x\ast y))\right)\diamond\left(x\ast(y\diamond(y\ast x))\right) \\ &=& \left(x\ast y)\diamond\left(x\ast\left(y\diamond(y\ast x)\right)\right) \\ &\leq& \left(y\diamond(y\ast x)\right)\ast y=0. \end{array}$$

228

Hence $y \diamond (y * x) \leq x \diamond (x * y)$ by (a4) and (a5). Since x and y are arbitrarily, we get $y \diamond (y * x) = x \diamond (x * y)$ for all $x, y \in X$. Therefore \mathfrak{X} is \wedge -semi-lattice ordered. Next, note that $x \cap y \leq x$ for all $x, y \in X$. Hence, by (3.4), we have $x \cap y = (x \cap y) \cap x$, that is, $y * (y \diamond x) = x * (x \diamond (y * (y \diamond x)))$. It follows that

$$\begin{array}{rcl} (y*(y\diamond x))\diamond \big(x*(x\diamond y)\big) &=& \big(x*(x\diamond (y*(y\diamond x)))\big)\diamond \big(x*(x\diamond y)\big)\\ &=& \big(x\diamond (x*(x\diamond y))\big)*\big(x\diamond (y*(y\diamond x))\big)\\ &=& \big(x\diamond y)*\big(x\diamond (y*(y\diamond x))\big)\\ &\leq& \big(y*(y\diamond x)\big)\diamond y=0 \end{array}$$

so that $y * (y \diamond x) \leq x * (x \diamond y)$. The reverse inequality is also valid, because x and y are arbitrarily. Hence $y * (y \diamond x) = x * (x \diamond y)$, that is, \mathfrak{X} is \cap -semi-lattice ordered. \Box

Corollary 3.13. If \mathfrak{X} is a pseudo-BCK algebra satisfying the following implication

$$x \le y \implies x \land y = x = x \cap y, \tag{3.5}$$

then \mathfrak{X} is inf-semi-lattice ordered.

Proposition 3.14. If a pseudo-BCK algebra \mathfrak{X} is \wedge -semi-lattice ordered, then

$$x \le z, \, z * y \le z * x \implies x \le y$$

Proof. Let $x, y, z \in X$ be such that $x \leq z$ and $z * y \leq z * x$. Then x * z = 0 and $(z * y) \diamond (z * x) = 0$, and so

$$\begin{array}{rcl} x \ast y & = & (x \diamond 0) \ast y = (x \diamond (x \ast z)) \ast y \\ & = & (z \diamond (z \ast x)) \ast y = (z \ast y) \diamond (z \ast x) = 0 \end{array}$$

Hence $x \leq y$, ending the proof.

Proposition 3.15. If a pseudo-BCK algebra \mathfrak{X} is \cap -semi-lattice ordered, then

$$x \leq z, \, z \diamond y \leq z \diamond x \implies x \leq y.$$

Proof. Let $x, y, z \in X$ be such that $x \leq z$ and $z \diamond y \leq z \diamond x$. Then $x \diamond z = 0$ and $(z \diamond y) * (z \diamond x) = 0$. It follows that

$$\begin{array}{rcl} x \diamond y & = & (x \ast 0) \diamond y = (x \ast (x \diamond z)) \diamond y \\ & = & (z \ast (z \diamond x)) \diamond y = (z \diamond y) \ast (z \diamond x) = 0 \end{array}$$

so that $x \leq y$. This completes the proof.

Proposition 3.16. If a pseudo-BCK algebra \mathfrak{X} satisfies

$$x, y \le z, \, z \diamond y \le z \diamond x \implies x \le y, \tag{3.6}$$

then $u = v * (v \diamond u)$ for all $u, v \in X$ with $u \leq v$.

Proof. Let $u, v \in X$ be such that $u \leq v$. Then $v * (v \diamond u) \leq v$ by (p5). Moreover, $v \diamond (v * (v \diamond u)) \leq v \diamond u$ by (a2). It follows from (3.6) that $u \leq v * (v \diamond u)$. Since $v * (v \diamond u) \leq u$ by (a2), we conclude that $u = v * (v \diamond u)$.

Proposition 3.17. Let \mathfrak{X} be a pseudo-BCK algebra such that

$$x, y \le z, \ z * y \le z * x \implies x \le y. \tag{3.7}$$

Then $u = v \diamond (v * u)$ for all $u, v \in X$ with $u \leq v$.

Proof. Let $u, v \in X$ be such that $u \leq v$. Note from (p5) that $v \diamond (v * u) \leq v$. Since $v * (v \diamond (v * u)) \leq v * u$ by (a2), it follows from (3.7) that $u \leq v \diamond (v * u)$. Recall that $v \diamond (v * u) \leq u$ by (a2). Hence, by (a5), we have $u = v \diamond (v * u)$.

Theorem 3.18. A pseudo-BCK algebra \mathfrak{X} is \wedge -semi-lattice ordered if and only if

$$y \wedge x = y \diamond (y \ast (y \wedge x)), \, \forall x, y \in X.$$

Proof. Since $y \wedge x \leq y$ for all $x, y \in X$, the necessity is by Propositions 3.14 and 3.17. Let \mathfrak{X} be a pseudo-*BCK* algebra which satisfies

$$y \wedge x = y \diamond (y \ast (y \wedge x)), \, \forall x, y \in X$$

For any $x, y \in X$ with $x \leq y$, we have

 γ

$$x = x \diamond 0 = x \diamond (x * y) = y \diamond (y * (x \diamond (x * y))) = y \diamond (y * x) = x \land y$$

and so \mathfrak{X} is \wedge -semi-lattice ordered by Proposition 3.12.

Theorem 3.19. A pseudo-BCK algebra \mathfrak{X} is \cap -semi-lattice ordered if and only if

$$y \cap x = y * (y \diamond (y \cap x)), \, \forall x, y \in X.$$

$$(3.8)$$

Proof. Let \mathfrak{X} be a \cap -semi-lattice ordered pseudo-*BCK* algebra. Using Propositions 3.15 and 3.16, we know that $y \cap x = y * (y \diamond (y \cap x))$ for all $x, y \in X$. Conversely, assume that a pseudo-*BCK* algebra \mathfrak{X} satisfies the condition (3.8). Let $x, y \in X$ be such that $x \leq y$. Then

$$\begin{array}{rcl} x & = & x*0 = x*(x\diamond y) = y \cap x = y*\left(y\diamond(y\cap x)\right) \\ & = & y*\left(y\diamond(x*(x\diamond y)) = y*(y\diamond x) = x\cap y, \end{array}$$

and so \mathfrak{X} is \cap -semi-lattice ordered by Proposition 3.12. This completes the proof.

Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

[1] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, (submitted).

[2] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1-26.

[3] J. Mang and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea, 1994.

DEPARTMENT OF MATHEMATICS EDUCATION GYEONGSANG NATIONAL UNIVERSITY CHINJU (JINJU) 660-701, KOREA

Email address: ybjun@nongae.gsnu.ac.kr