APPROXIMATION OF FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS

Shin-ya Matsushita and Daishi Kuroiwa

Received October 22, 2001; revised May 7, 2002

ABSTRACT. Our purpose is to show two strong convergence theorems for nonexpansive nonselfmappings in a Hilbert space; these are generalizations of Wittmann's result[7], and are proved without any boundary conditions. For this purpose, a boundary condition, called *nowhere normal-outward* condition, is investigated and characterized.

1 Introduction Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let T be a nonexpansive nonself-mapping ; from C into H such that the set F(T) of all fixed points of T is nonempty. In 1992, Marino and Trombetta[2] defined two contraction mappings S_t and U_t as follows: For a given $u \in C$ and each $t \in (0, 1)$,

(1.1)
$$S_t x = tPT x + (1-t)u \quad \text{for all} \quad x \in C$$

and

(1.2)
$$U_t x = P(tTx + (1-t)u) \quad \text{for all} \quad x \in C,$$

where P is the metric projection from H onto C. Then by the Banach contraction principle, there exists a unique element $x_t \in F(S_t)$ (resp. $y_t \in F(U_t)$), i.e.

(1.3)
$$x_t = tPTx_t + (1-t)u$$

and

(1.4)
$$y_t = P(tTy_t + (1-t)u).$$

Recently, Xu and Yin[8] proved that if T is a nonexpansive nonself-mapping from C into H satisfying the weak inwardness condition, then $\{x_t\}$ (resp. $\{y_t\}$) defined by (1.3) (resp. (1.4)) converges strongly as $t \to 1$ to an element of F(T) which is nearest to u in F(T). This result was extended to a Banach space by Takahashi and Kim[6]. On the other hand, Wittmann[7] proved the following strong convergence theorem; see also [4]:

Theorem (Wittmann 1992).

Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a nonexpansive mapping from C into itself. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$, $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, and $\sum_{n=1}^{\infty} \alpha_n = \infty$. Define a sequence $\{x_n\}$ as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) S x_n$$
 for $n \ge 1$.

 $^{2001\} Mathematics\ Subject\ Classification.\ 47 H09.$

Key words and phrases. Approximation of fixed points, nonexpansive nonself-mappings, strong convergence theorems, iteration scheme, boundary conditions.

If $F(S) \neq \emptyset$, then $\{x_n\}$ converges strongly to $Px \in F(S)$, where P is the metric projection from C onto F(S).

In this paper, we extend the above Wittmann's result to nonexpansive nonself-mappings without any boundary conditions. For this purpose, we consider about a boundary condition in Section 2, which is called *nowhere normal-outward* condition. Also we show two propositions between the boundary condition and F(T) when T is a nonexpansive nonselfmapping; the propositions play important roles in this paper. Finally, we introduce two iteration schemes for T by using the metric projection from H onto C, and show two strong convergence theorems, which are generalizations of the Wittmann's result in Section 3.

2 Preliminaries Throughout this paper, we denote the set of all positive integers by N. Let H be a real Hilbert space with norm $\|\cdot\|$ and with inner product $\langle\cdot,\cdot\rangle$, let C be a closed convex subset of H, and let T be a nonself-mapping from C into H. We denote the set of all fixed points of T by F(T). Then T is said to be nonexpansive if

$$||Tx - Ty|| \le ||x - y|| \quad \text{for all} \ x, y \in C.$$

For all $x \in H$, there exists a unique element Px of C satisfying

$$||x - Px|| = \min_{y \in C} ||x - y||$$
 for all $x \in H$.

This mapping P is said to be the metric projection from H onto C. We know that P is nonexpansive and for all $x \in H$, z = Px if and only if $\langle x - z, y - z \rangle \leq 0$ for all $y \in C$. It is known that H satisfies Opial's condition [3]; see also [5]: if $\{x_n\}$ converges weakly to x, then

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

for all $y \neq x$.

Next, we introduce several boundary conditions upon the nonself-mapping.

- (i) **Rothe's condition**: $T(\partial C) \subset C$, where ∂C is the boundary set of C;
- (ii) **inwardness condition**[1]: $Tx \in I_c(x)$ for all $x \in C$, where

$$I_c(x) = \{ y \in H \mid y = x + a(z - x) \text{ for some } z \in C \text{ and } a \ge 0 \};$$

- (iii) weak inwardness condition[1]: $Tx \in clI_c(x)$ for all $x \in C$, where cl denotes the norm-closure; and
- (iv) nowhere normal-outward condition[1]: $Tx \in S_x^c$ for all $x \in C$, where P is the metric projection from H onto C, and

$$S_x = \{ y \in H \mid y \neq x, Py = x \}.$$

It is easily seen that there hold implications: $(i) \Rightarrow (ii) \Rightarrow (iii)$. It also holds that $(iii) \Rightarrow (iv)$; see [1], p.354. To prove our results, we need the following propositions:

Proposition 2.1 Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let P be the metric projection from H onto C, and let T be a nonself-mapping from C into H satisfying the nowhere normal-outward condition. Then F(T) = F(PT). Moreover, if C is bounded and T is nonexpansive, then T has a fixed point.

Proof. At first we show F(T) = F(PT). It is sufficient to prove that F(PT) is a subset of F(T). Let $x \in F(PT)$, that is PTx = x. Since $Tx \in S_x^c$, we obtain Tx = x. Next, suppose that C is bounded and T is nonexpansive. Then PT is a nonexpansive mapping from C into itself. Therefore $F(T) = F(PT) \neq \emptyset$, see [5].

Proposition 2.2 Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let T be a nonexpansive nonself-mapping from C into H. If $F(T) \neq \emptyset$, then T satisfies nowhere normal-outward condition.

Proof. If there exists $x_0 \in C$ such that $Tx_0 \in S_{x_0}$, then $Tx_0 \neq x_0$ and $PTx_0 = x_0$, where P is the metric projection from H onto C. Let $z \in F(T)$, we have

$$||Tx_0 - z||^2 = ||Tx_0 - x_0||^2 + 2\langle Tx_0 - PTx_0, PTx_0 - z \rangle + ||PTx_0 - z||^2$$

> $||x_0 - z||^2$.

This contradicts that T is nonexpansive. Therefore, $Tx \in S_x^c$ for all $x \in C$. \Box

Remark 2.1 By using Proposition 2.1 and Proposition 2.2, we can consider generalizations of fixed point theorems ¿from self-mappings to nonself-mappings. When T is a nonexpansive nonself-mapping, applying the fixed point theorems to self-mapping PT, we have some results with respect to nonself-mapping T. For example, we can show the following, which is a generalization result of Xu and Yin's result, see [8], and also note that it is proved without any boundary conditions:

Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, let P be the metric projection from H onto C, and let T be a nonexpansive nonself-mapping from C into H. Let $\{x_t\}$ and $\{y_t\}$ be the nets defined by (1.3) and (1.4), respectively. If T satisfies nowhere normal-outward condition, then the following three conditions are equivalent:

- $F(T) \neq \emptyset$,
- $\{x_t\}$ remains bounded as $t \to 1$,
- $\{y_t\}$ remains bounded as $t \to 1$.

Also, if $F(T) \neq \phi$, then $\{x_t\}$ and $\{y_t\}$ converge strongly as $t \to 1$ to some fixed points of T.

In the next section, we can apply the idea to Theorem 3.1. However, we can not apply it to Theorem 3.2 simply; it is more complicated.

3 Main Results In this section, we prove two strong convergence theorems for nonexpansive nonself-mappings, which are generalizations of Wittmann's result[7], and also, which are not required any boundary conditions.

Theorem 3.1 Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let P_1 be the metric projection from H onto C, and let T be a nonexpansive nonself-mapping from C into H. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \le \alpha_n \le 1$, $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, and $\sum_{n=1}^{\infty} \alpha_n = \infty$. Define a sequence $\{x_n\}$ as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) P_1 T x_n$$
 for $n \ge 1$.

If $F(T) \neq \emptyset$, then $\{x_n\}$ converges strongly to $P_2x \in F(T)$, where P_2 is the metric projection from C onto F(T).

This theorem is proved easily by using Proposition 2.1 and Proposition 2.2, as shown in Remark 2.1.

Proof. Since P_1T is a nonexpansive mapping from C into itself, applying Wittmann's result, we obtain that $\{x_n\}$ converges strongly as $n \to \infty$ to a fixed point z of P_1T nearest to x. Using Proposition 2.1 and Proposition 2.2, we obtain $F(P_1T) = F(T)$. Hence $\{x_n\}$ converges strongly as $n \to \infty$ to a fixed point z of T nearest to x.

Theorem 3.2 Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let P_1 be the metric projection from H onto C, and let T be a nonexpansive nonself-mapping from C into H. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \le \alpha_n \le 1$, $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, and $\sum_{n=1}^{\infty} \alpha_n = \infty$. Define a sequence $\{y_n\}$ as follows: $y_1 = y \in C$ and

$$y_{n+1} = P_1(\alpha_n y + (1 - \alpha_n)Ty_n)$$
 for $n \ge 1$.

If $F(T) \neq \emptyset$, then $\{y_n\}$ converges strongly to $P_2y \in F(T)$, where P_2 is the metric projection from C onto F(T).

Proof. Let $z \in F(T)$. Then we have

$$\begin{aligned} \|y_2 - z\| &= \|P_1(\alpha_1 y + (1 - \alpha_1)Ty_1) - P_1 z\| \\ &\leq \|\alpha_1 y + (1 - \alpha_1)Ty_1 - z\| \\ &\leq \alpha_1 \|y - z\| + (1 - \alpha_1)\|y_1 - z\| \\ &= \|y - z\|. \end{aligned}$$

If $||y_n - z|| \le ||y - z||$ for some $n \in \mathbb{N}$, then we can show that $||y_{n+1} - z|| \le ||y - z||$ similarly. Therefore, by induction, we obtain $||y_n - z|| \le ||y - z||$ for all $n \in \mathbb{N}$ and hence $\{y_n\}$ and $\{Ty_n\}$ are bounded. Set $K = \sup\{||Ty_n|| : n \in \mathbb{N}\}$. Then

$$\begin{split} \|y_{n+1} - y_n\| &= \|P_1(\alpha_n y + (1 - \alpha_n)Ty_n) - P_1(\alpha_{n-1}y + (1 - \alpha_{n-1})Ty_{n-1})\| \\ &\leq \|\alpha_n y + (1 - \alpha_n)Ty_n - \{\alpha_{n-1}y + (1 - \alpha_{n-1})Ty_{n-1}\}\| \\ &= \|(\alpha_n - \alpha_{n-1})y + (1 - \alpha_n)(Ty_n - Ty_{n-1}) + (\alpha_{n-1} - \alpha_n)Ty_{n-1}\| \\ &\leq |\alpha_{n-1} - \alpha_n|\|y\| + (1 - \alpha_n)\|y_n - y_{n-1}\| + |\alpha_{n-1} - \alpha_n|\|Ty_{n-1}\| \\ &\leq |\alpha_{n-1} - \alpha_n|(\|y\| + K) + (1 - \alpha_n)\|y_n - y_{n-1}\| \end{split}$$

for each $n \in \mathbf{N}$. By induction, we have

$$\|y_{n+m+1} - y_{n+m}\| \le \sum_{k=m}^{n+m-1} |\alpha_{k+1} - \alpha_k| (\|y\| + K) + \prod_{k=m}^{n+m-1} (1 - \alpha_{k+1}) \|y_{m+1} - y_m\|$$

for all $m, n \in \mathbb{N}$. By $\sum_{n=1}^{\infty} \alpha_n = \infty$, we have $\prod_{n=1}^{\infty} (1 - \alpha_n) = 0$; see [4]. Hence we obtain

$$\limsup_{n \to \infty} \|y_{n+1} - y_n\| = \limsup_{n \to \infty} \|y_{n+m+1} - y_{n+m}\| \le \sum_{k=m}^{\infty} |\alpha_{k+1} - \alpha_k| (\|y\| + K)$$

for all $m \in \mathbb{N}$. By $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, we get $\lim_{n \to \infty} ||y_{n+1} - y_n|| = 0$. Also, from

$$\begin{split} \|y_n - P_1 T y_n\| &= \|P_1(\alpha_{n-1}y + (1 - \alpha_{n-1})Ty_{n-1}) - P_1 T y_n\| \\ &\leq \|\alpha_{n-1}y + (1 - \alpha_{n-1})Ty_{n-1} - Ty_n\| \\ &\leq \alpha_{n-1}\|y - Ty_n\| + (1 - \alpha_{n-1})\|y_{n-1} - y_n\|, \end{split}$$

we obtain (3.5) $\lim_{n \to \infty} \|y_n - P_1 T y_n\| = 0.$ Next we prove (3.6) $\limsup_{n \to \infty} \langle y_n - P_2 y, y - P_2 y \rangle \le 0.$

Let $\{y_{n_k}\}$ be a subsequence of $\{y_n\}$ which satisfies

$$\lim_{k \to \infty} \langle y_{n_k} - P_2 y, y - P_2 y \rangle = \limsup_{n \to \infty} \langle y_n - P_2 y, y - P_2 y \rangle,$$

and which converges weakly as $k \to \infty$ to $y_0 \in C$. By (3.5) and Opial's condition, we obtain $y_0 \in F(P_1T)$. Applying Proposition 2.1 and Proposition 2.2, we conclude $y_0 \in F(T)$. Then we have

$$\lim_{n \to \infty} \sup_{n \to \infty} \langle y_n - P_2 y, y - P_2 y \rangle = \lim_{k \to \infty} \langle y_{n_k} - P_2 y, y - P_2 y \rangle$$
$$= \langle y_0 - P_2 y, y - P_2 y \rangle \le 0.$$

By (3.6), for any $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that

$$(3.7) \qquad \langle y_n - P_2 y, y - P_2 y \rangle \le \varepsilon$$

for all $n \ge m$. On the other hand, from

 $P_1(\alpha_ny+(1-\alpha_n)Ty_n)-P_1(\alpha_ny+(1-\alpha_n)P_2y)=y_{n+1}-P_2y+\alpha_n(P_2y-y),$ we have

$$\begin{aligned} \|P_1(\alpha_n y + (1 - \alpha_n)Ty_n) - P_1(\alpha_n y + (1 - \alpha_n)P_2 y)\|^2 \\ \geq \|y_{n+1} - P_2 y\|^2 + 2\alpha_n \langle y_{n+1} - P_2 y, P_2 y - y \rangle. \end{aligned}$$

This implies

$$||y_{n+1} - P_2 y||^2 \le (1 - \alpha_n)^2 ||Ty_n - P_2 y||^2 + 2\alpha_n \langle y_{n+1} - P_2 y, y - P_2 y \rangle$$

for all $n \in \mathbf{N}$. By (3.7), we have

$$\begin{aligned} \|y_{n+1} - P_2 y\|^2 &\leq 2\alpha_n \langle y_{n+1} - P_2 x, y - P_2 x \rangle + (1 - \alpha_n)^2 \|T y_n - P_2 y\|^2 \\ &\leq 2\alpha_n \varepsilon + (1 - \alpha_n) \|T y_n - P_2 y\|^2 \leq 2\alpha_n \varepsilon + (1 - \alpha_n) \|y_n - P_2 y\|^2 \\ &= 2\varepsilon (1 - (1 - \alpha_n)) + (1 - \alpha_n) \|y_n - P_2 y\|^2 \end{aligned}$$

for all $n \ge m$. This implies

$$\begin{aligned} \|y_{n+1} - P_2 y\|^2 &\leq 2\varepsilon \{1 - (1 - \alpha_n)\} \\ &+ 2\varepsilon (1 - \alpha_n) (1 - (1 - \alpha_{n-1}) + (1 - \alpha_{n-1}) \|y_{n-1} - P_2 y\|^2) \\ &= 2\varepsilon \{1 - (1 - \alpha_n) (1 - \alpha_{n-1})\} + (1 - \alpha_n) (1 - \alpha_{n-1}) \|y_{n-1} - P_2 y\|^2 \end{aligned}$$

for all $n \ge m$. By induction, we obtain

$$\|y_{n+1} - P_2 y\|^2 \le 2\varepsilon \left\{ 1 - \prod_{k=m}^n (1 - \alpha_k) \right\} + \prod_{k=m}^n (1 - \alpha_k) \|y_m - P_2 y\|^2.$$

Therefore, from $\sum_{n=1}^{\infty} \alpha_n = \infty$, we obtain

$$\limsup_{n \to \infty} \|y_{n+1} - P_2 y\|^2 \le 2\varepsilon.$$

Since ε is arbitrary, we can conclude that $\{y_n\}$ converges strongly to $P_2 y$.

Acknowledgment The authors would like to express their deep gratitude to the referees for many useful and helpful advice and comments.

References

- B. R. Halpern and G. M. Bergman, A fixed-point theorem for inward and outward maps, Trans. Amer. Math. Soc., 130, 353-358 (1968).
- G. Marino and G. Trombetta, On approximating fixed points for nonexpansive maps, Indian J. Math., 34, 91-98 (1992).
- [3] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73, 591-597 (1967).
- [4] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama-Publishers, 2000.
- [5] W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, 2000.
- [6] W. Takahashi and G. E. Kim, Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces, Nonlinear Analysis, 32, 447–454 (1998).
- [7] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58, 486-491 (1992).
- [8] H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Analysis, 24, 223-228 (1995).