ON KP-RADICAL IN $B C I$-ALGEBRAS

Zhan Jianming \& Tan Zhisong

Received April 25, 2002

Abstract

The aim of this paper is to study and investigate some properties of kp-radical in $B C I$-algebras. Moreover, some properties on $B C I$-homomorphism are obtained.

1. Introduction

In [2],the notion of nil radicals in $B C I$-algebras was introduced and various properties were developed in [3]. Further, several results on nil ideals were obtained in [4;5]. In [6]. Abujabl etc. introduced the concept of k-radical in $B C I$-algebras and studied some propesties. In this paper, we introduce the concept of kp-radical in $B C I$-algebras and investigate some properties.

By a $B C I$-algebra we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$.
(II) $(x *(x * y)) * y=0$.
(III) $x * x=0$
(IV) $x * y=0$ and $y * x=0$ imply $x=y$.

A binary relation \leq on X can be defined by $x \leq y$ if and only if $x * y=0$. For a $B C I$-algebra X, the $B C K$-part of X is $X+=\{x \in X \mid 0 * x=0\}$. The p-radical of a $B C I$-algebra is the $B C K$-part of X, a $B C I$-algebra is called p-semisimple if its p-radical is $\{0\}$.

A nonempty subset S of a $B C I$-algebra X is called a subalgebra if, for any x and y in $S, x * y \in S$. A non-empty subset I of a $B C I$-algebra X is called an ideal of X if $0 \in I$, and if $x * y \in I, y \in I$ imply that $x \in I$. An ideal I of a $B C I$-algebra X is a closed ideal of X if $0 * x \in I$ for every $x \in I$. A mapping $f: X \rightarrow Y$ of $B C I$ - algebras is called homomorpism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. For any element x, y in a $B C I$-algebra X, we use $x * y^{k}$ to denote the element $(\cdots((x * y) * y) \cdots) * y$, where y occurs k times.

Let S be a nonempty subset of a $B C I$-algebra X. For any positive integer $k, \sqrt[k]{S}=\{x \in$ $\left.X \mid 0 * x^{k} \in S\right\}$ is called the k-radical of S. It's clear that $0 \in \sqrt[k]{S}$. But it is not necessary that $S=\sqrt[k]{S}$. Let I be an ideal of a $B C I$-algebra X. Then I is called a k-semiprime ideal of X if $I=\sqrt[k]{I}$ for any positive integer k. Some properties of k-radical were studied in [6].

[^0]
2. Main Results

Definition 2.1. Let S be a non-empty subset of a $B C I$-algebra X. Then, for any positive integer k, we define $\sqrt[k p]{S}=\left\{x \in X \mid 0 *\left(0 * x^{k}\right) \in S\right\}$, which is called the kp-radical of S.

Theorem 2.2. Let X be a $B C I$-algebra and I an ideal of X. Then $\sqrt[k p]{I}$ is an ideal of X.
Proof. It's clear that $0 \in \sqrt[k p]{I}$. Let y and $x * y \in \sqrt[k p]{I}$, then $0 *\left(0 * y^{k}\right) \in I$ and $0 *\left(0 *(x * y)^{k}\right) \in I$. Hence $\left(0 *\left(0 * x^{k}\right)\right) *\left(0 *\left(0 * y^{k}\right)\right)=0 *\left(\left(0 * x^{k}\right) *\left(0 * y^{k}\right)\right)=0 *\left(0 *(x * y)^{k}\right) \in I$. Since I is an ideal of X, then $0 *\left(0 * x^{k}\right) \in I$, and that $x \in \sqrt[k p]{I}$. Hence I is an ideal of X.

Proposition 2.3. Let S be a subalgebra of a $B C I$-algebra X, then $\sqrt[k p]{S}$ is a subalgebra of X.

Proof. Let $x, y \in \sqrt[k p]{S}$, then $0 *\left(0 * x^{k}\right) \in S$ and $0 *\left(0 * y^{k}\right) \in S$. Hence $0 *\left(0 *(x * y)^{k}\right)=$ $\left(0 *\left(0 * x^{k}\right)\right) *\left(0 *\left(0 * y^{k}\right)\right) \in S$ because S is a subalgera of X. So $x * y \in \sqrt[k p]{S}$, and that $\sqrt[k p]{S}$ is a subalgebra of X.
Proposition 2.4. If S is a subalgebra of a $B C I$-algebra X and $x \in \sqrt[k p]{S}$, then $0 * x \in \sqrt[k p]{S}$.
Proof. Let $x \in \sqrt[k p]{S}$, then $0 *\left(0 * x^{k}\right) \in S$. Hence $0 *\left(0 *\left(0 * x^{k}\right)\right) \in S$ because S is a subalgebra of X. Therefore $0 *\left(0 *(0 * x)^{k}\right)=0 *\left(0 *\left(0 * x^{k}\right)\right) \in S$, and that $0 * x \in \sqrt[k p]{S}$.

Proposition 2.5. If A is a closed ideal of a $B C I$-algebra X, then $\sqrt[k p]{A}$ is a closed ideal of X.

It's immediate consepuence of Proposition 2.3 and 2.4.
Theorem 2.6. If I and J are ideals of a $B C I$-algebra X, then $\sqrt[k p]{I \cap J}=\sqrt[k p]{I} \cap \sqrt[k p]{J}$.
Proof. Let $x \in \sqrt[k p]{I \cap J}$, then $0 *\left(0 * x^{k}\right) \in I \cap J$. Thus $0 *\left(0 * x^{k}\right) \in I$ and $0 *\left(0 * x^{k}\right) \in J$, and that $x \in \sqrt[k p]{I}$ and $x \in \sqrt[k p]{J}$. Hence $x \in \sqrt[k p]{I} \cap \sqrt[k p]{J}$. Thus $\sqrt[k p]{I \cap J}=\sqrt[k p]{I} \cap \sqrt[k p]{J}$. Conversely, let $x \in \sqrt[k p]{I} \cap \sqrt[k p]{J}$ then $x \in \sqrt[k p]{I}$ and $x \in \sqrt[k p]{J}$, and that $0 *\left(0 * x^{k}\right) \in I$ and $0 *\left(0 * x^{k}\right) \in J$. Hence $0 *\left(0 * x^{k}\right) \in I \cap J$ and that $x \in \sqrt[k p]{I \cap J}$. Thus $\sqrt[k p]{I} \cap \sqrt[k p]{J} \subseteq \sqrt[k p]{I \cap J}$. Therefore $\sqrt[k p]{I} \cap \sqrt[k p]{J}=\sqrt[k p]{I \cap J}$.

Theorem 2.7. Let I and J be two ideal of a $B C I$-algebra X, then $\sqrt[k p]{I \cup J}=\sqrt[k p]{I} \cup \sqrt[k p]{J}$.
Proof. If $x \in \sqrt[k p]{I \cup J}$, then $0 *\left(0 * x^{k}\right) \in I \cup J$. Hence $0 *\left(0 * x^{k}\right) \in I$ or $0 *\left(0 * x^{k}\right) \in J$, and that $0 *\left(0 * x^{k}\right) \in I \cup J$. Thus $\sqrt[k_{p}]{I \cup J}=\sqrt[k_{p}]{I} \cup \sqrt[k_{p}]{J}$. Now, Let $x \in \sqrt[k_{p}]{I} \cup \sqrt[k_{p}]{J}$, then $x \in \sqrt[k p]{I}$ or $x \in \sqrt[k p]{J}$. Hence $0 *\left(0 * x^{k}\right) \in I$ or $0 *\left(0 * x^{k}\right) \in J$, and that $0 *\left(0 * x^{k}\right) \in I \cup J$. Hence $x \in \sqrt[k p]{I \cup J}$, and that $\sqrt[k p]{I} \cup \sqrt[k p]{J} \subseteq \sqrt[k p]{I \cup J}$. Therefore $\sqrt[k p]{I \cup J}=\sqrt[k p]{I} \cup \sqrt[k p]{J}$.

Definition 2.8. An ideal I of a $B C I$-algebra X is called a kp-semiprime ideal if $I=\sqrt[k p]{I}$.
Theorem 2.9. If I and J are kp-semiprime ideals of a $B C I$-algebra X, then $I \cap J$ is a kp-semiprime ideal.

Proof. From Theorem 2.6, we obtain $\sqrt[k p]{I \cap J}=\sqrt[k p]{I} \cap \sqrt[k_{p}]{J}$. But $\sqrt[k p]{I}=I$ and $\sqrt[k_{p}]{J}=J$ because I and J are kp-semiprime ideals. Thus $\sqrt[k p]{I \cap J}=I \cap J$, and that $I \cap J$ is a kp-semiprime ideal.

Theorem 2.10. If I and J are kp-semiprime ideals of a $B C I$ - algebra X and $I \cup J$ is an ideal, then $I \cup J$ is a kp-semiprime ideal.

Proof. From Theorem 2.7, we obtain $\sqrt[k p]{I \cap J}=\sqrt[k p]{I} \cup \sqrt[k p]{J}$. But $\sqrt[k p]{I}=I$ and $\sqrt[k_{p}]{J}=J$ because I and J are kp-semiprime ideals. Thus $\sqrt[k p]{I \cup J}=I \cup J$. and that $I \cup J$ is a kp-semiprime ideal.

Lemma 2.11. If $f: X \rightarrow Y$ is a homomorphism of $B C I$-algebras and I is an ideal of Y, then $f^{-1}(I)$ is an ideal of x.

Obviously.
Theorem 2.12. If $f: X \rightarrow Y$ is a homomorphism of $B C I$-algebras, then, for every ideal I of $Y, f^{-1}(\sqrt[k p]{I})$ is an ideal containing $\sqrt[k p]{f^{-1}(I)}$.

Proof. If I is an ideal of Y, then $\sqrt[k p]{I}$ is an ideal of Y by Theorem 2.2 and $f^{-1}(\sqrt[k p]{I})$ is an ideal of X by Lemma 2.11. Now Let $x \in \sqrt[k p]{f^{-1}(I)}$, then $0 *\left(0 * x^{k}\right) \in f^{-1}(I)$. Thus $f\left(0 *\left(0 * x^{k}\right)\right) \in I$, and that $0 *\left(0 * f(x)^{k}\right) \in I$. Thus $f(x) \in \sqrt[k p]{I} \subseteq Y$. Hence $x \in f^{-1}(\sqrt[k p]{I})$. Therefore, $\sqrt[k p]{f^{-1}(I)} \subseteq f^{-1}(\sqrt[k p]{I})$.

Theorem 2.13. Let $f: X \rightarrow Y$ be an onto homomorphism of $B C I$-algebras. If I is an ideal of X such that $\operatorname{ker} f \subseteq I$, then $f^{-1}(f(I))=I$.

Proof. Clearly, $I \subseteq f^{-1}(f(I))$. Now assume $x \in f^{-1}(f(I))$. Then $f(x)=f(y)$ for some $y \in I$. So $f(x) * f(y)=0$, and that $f(x * y)=f(x) * f(y)=0$. Hence $x * y \in k e r f \subseteq I$. Thus $x * y \in I$ and $y \in I$. Hence $x \in I$ because I is an ideal of X. So $f^{-1}(f(I)) \subseteq I$. Therefore $f^{-1}(f(I))=I$.
Theorem 2.14. If $f: X \rightarrow Y$ is a homomorpism of $B C I$-algebras and I is an ideal of X, then
(i) $f(\sqrt[k p]{I}) \subseteq \sqrt[k p]{(f(I))}$.
(ii) If $\operatorname{ker} f \subseteq I$, then $\sqrt[k p]{f(I)}=f(\sqrt[k p]{I})$.

Proof. (i) If $y \in f(\sqrt[k p]{I})$, then there exists $x \in \sqrt[k p]{I}$ such that $y=f(x)$. Hence $x \in X$ and $0 *\left(0 * x^{k}\right) \in I$. Thus $y=f(x) \in f(X)$ and $f\left(0 *\left(0 * x^{k}\right)\right) \in f(I)$. Hence $0 *\left(0 * f(x)^{k}\right)=0 *\left(0 * f\left(x^{k}\right)\right)=f\left(0 *\left(0 * x^{k}\right)\right) \in f(I)$. So $y \in f(x)$ and $0 *\left(0 * y^{k}\right) \in f(I)$. Therefore $y \in \sqrt[k p]{f(I)}$, and that $f(\sqrt[k p]{I}) \subseteq \sqrt[k p]{f}(I)$.
(ii) Let $x \in \sqrt[k p]{f(I)}$, then $x=f(y) \in f(I)$ for some $y \in X$ and $0 *\left(0 * x^{k}\right) \in f(I)$. Thus $0 *\left(0 * f(y)^{k}\right) \in f(I)$. And so $f\left(0 *\left(0 * y^{k}\right)\right) \in f(I)$. Therefore $0 *\left(0 * y^{k}\right) \in f^{-1}(f(I))$. But kerf $\subseteq I$, and by Theorem 2.13, we have $I=f^{-1}(f(I))$. Hence $0 *\left(0 * y^{k}\right) \in I$, and that $y \in \sqrt[k p]{I}$. Thus $x=f(y) \in f(\sqrt[k p]{I})$. Hence $\sqrt[k p]{f(I)} \subseteq f(\sqrt[k p]{I})$. Using (i), we obtain $\sqrt[k p]{f(I)}=f(\sqrt[k_{p}]{I})$.

Let X and Y be $B C I$-algebras. Define $*$ on $X * Y=\{(x, y) \mid x \in X, y \in Y\}$ by $(x * y) *(u, v)=(x * u, y * v)$ for every $(x, y),(u, v) \in X * Y$. Then $(X * Y, *,(0,0))$ is a $B C I$-algebra.

Theorem 2.15. Let S and T be nonempty subsets of $B C I$-algebras X and Y, respectively, then $\sqrt[k p]{S} * \sqrt[k p]{T}=\sqrt[k p]{S * T}$.

Proof. Let S and T be nonempty subsets of $B C I$-algebras X and Y, respectively, then $\sqrt[k p]{S * T}=\left\{(s, t) \in X * Y \mid(0,0) *\left((0,0) *(s, t)^{k}\right) \in S * T\right\}=\{(s, t) \in X * Y \mid$ $\left.\left(0 *\left(0 * s^{k}\right), 0 *\left(0 * t^{k}\right)\right) \in S * T\right\}=\left\{(s, t) \in X * Y \mid 0 *\left(0 * s^{k}\right) \in S, 0 *\left(0 * t^{k}\right) \in T\right\}=$ $\{(s, t) \in X * Y \mid s \in \sqrt[k p]{S}, t \in \sqrt[k p]{T}\}=\sqrt[k p]{S} * \sqrt[k p]{T}$.
Theorem 2.16. Let I and J be ideals of $B C I$-algebras X and Y, respectively, then $X *$ $Y / \sqrt[k p]{I * J} \cong X / \sqrt[k p]{I} * Y / \sqrt[k p]{J}$.

Proof. If I and J are ideals of X and Y, respectively, then $\sqrt[k p]{I}$ and $\sqrt[k p]{J}$ are ideals of X and Y, respectively. By [4; Theorem 8$], \sqrt[k p]{I} * \sqrt[k p]{J}$ is an ideals of $X * Y$. Consider the natural homomorphisms

$$
\Pi_{x}: X \rightarrow \frac{X}{\sqrt[k p]{I}} \quad \text { by } \quad x \mapsto \bar{x}, \quad \forall x \in X
$$

$$
\Pi_{y}: Y \rightarrow \frac{Y}{\sqrt[k p]{J}} \quad \text { by } \quad y \mapsto \bar{y}, \quad \forall y \in Y
$$

Clearly, $\overline{x * x^{\prime}}=\Pi_{x}\left(x * x^{\prime}\right)=\Pi_{x}(x) * \Pi_{x}\left(x^{\prime}\right)=\bar{x} * \overline{x^{\prime}}$ and $\overline{y * y^{\prime}}=\Pi_{y}\left(y * y^{\prime}\right)=$ $\Pi_{y}(y) * \Pi_{y}\left(y^{\prime}\right)=\bar{y} * \overline{y^{\prime}}$ for $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$. Define $f: X * Y \rightarrow \frac{X}{\sqrt[k]{I}} * \frac{Y}{\sqrt[k]{I}}$ by $(x, y) \mapsto\left(\Pi_{x}(x), \Pi_{y}(y)\right)=(\bar{x}, \bar{y})$ for every $(x, y) \in X * Y$.

Let $(x, y),(u, v) \in X * Y$ such that $(x, y)=(u, v)$, then $(\bar{x}, \bar{y})=(\bar{u}, \bar{v})$ and that $f((x, y))=$ $f((u, v))$. Therefore, f is a well-defined map. Also, $f((x, y) *(u, v))=f((x * u, y * v))=$ $(\overline{x * u}, \overline{y * v})=(\bar{x} * \bar{u}, \bar{y} * \bar{v})=(\bar{x}, \bar{y}) *(\bar{u}, \bar{v})=f((x, y)) * f((u, v))$.

Therefore, f is a homomorphism. Clearly, f is an onto map. By the homomorphism theorem, we have $\frac{X * Y}{\operatorname{kerf}} \cong \frac{X}{\sqrt[k p]{I}} * \frac{Y}{\sqrt[k y]{J}}$. Furthermore, $\operatorname{ker} f=\{(x, y) \in X * Y \mid f((x, y))=$ $(\overline{0}, \overline{0})\}=\{(x, y) \in X * Y \mid(\bar{x}, \bar{y})=(\overline{0}, \overline{0})\}=\{(x, y) \in X * Y \mid \bar{x}=\overline{0}, \bar{y}=\overline{0}\}=\{(x, y) \in$ $X * Y \mid \bar{x} \in \sqrt[k p]{I}, y \in \sqrt[k p]{J}\}=\sqrt[k p]{I} * \sqrt[k p]{J}=\sqrt[k p]{I * J}$ by Theorem 2.15.

Therefore, $\frac{X * Y}{\sqrt[k]{I * J}} \cong \frac{X}{\sqrt[k]{I}} * \frac{Y}{\sqrt[k]{J}}$.
Theorem 2.17. An ideal I of a $B C I$-algebra X is a kp-semiprime ideal if and only if X / I has no non-zero nilpotent elements of index k.

Proof. Let I be a kp-semiprime ideal and let $\bar{a} \in X / I=X / \sqrt[k p]{I}$ be a nilpotent element of index k. Then $\overline{0} *\left(\overline{0} * \bar{a}^{k}\right)=\overline{0}$ and so $\overline{0 *\left(0 * a^{k}\right)}=\overline{0}$. Thus $0 *\left(0 * a^{k}\right) \in I$. Therefore, $a \in \sqrt[k p]{I}$. But $I=\sqrt[k p]{I}$ because I is a kp-semiprime ideal. Hence $a \in I$ and so $\bar{a}=\overline{0}$. Therefore, any nilpotent elements of index k in X / I is zero.

Conversely, we have $\sqrt[k p]{I} \subseteq I$. Let $\bar{a} \in X / I$ be a nilpotent element of index k. Then $\bar{a}=\overline{0}$, and hence, $a \in I$. Moreover, $\overline{0} *\left(\overline{0} * \overline{a^{k}}\right)=0$ and so $\overline{0 *\left(0 * a^{k}\right)}=\overline{0}$. Thus $0 *\left(0 * a^{k}\right) \in I$ and so $a \in \sqrt[k p]{I}$. Hence $I \subseteq \sqrt[k p]{I}$, and that I is a kp-semiprime ideal.

References

[1] Hoo C.S., Closed ideals and p-semisimple BCI-algebras, Math. Japonica 35 (1990), 1103-1112.
[2] Huang W., Nil-radical in BCI-algebras, Math. Japonica 37 (1992), 363-366.
[3] Jun Y.B., A note on nil ideals in BCI-algebras, Math. Japonica 38 (1993), 1017-1021.
[4] Jun Y.B \& Meng.J. \& Roh.E.H, On nil ideals in BCI-algebras, Math. Japonica 38 (1993), 1051-1056.
[5] Jun Y.B. \& Roh, E.H., Nil ideals in BCI-algebras, Math, Japonica 41 (1995), 293-302.
[6] H.A.S.Abujabal \& M.A.Obaid, A radical approach in BCI-algebras, SEA Bull Math. 23 (1999), 335342.
[7] Mu C.Z. \& Xiong, W.H., On ideals in BCI-algebras, Math. Japonica 36 (1991), 497-501.
[8] Ti, L. \& Xi, C.C., p-radical in BCI-algebras, Math. Japonica 30 (1985), 511-517.

DEPARTMENT OF MATHEMATICS, HUBEI INSTITUTE FOR NATIONALITIES, ENSHI, HUBEI PROVINCE, 445000, P.R.CHINA
e-mail: zhanjianming@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 03G25,06F35.
 Key Words and Phrases. kp-radical, kp-semiprime ideal, homomorphism.

