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LARGE DEVIATIONS FOR A LINEAR COMBINATION OF

U-STATISTICS
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Abstract. As an estimator of an estimable parameter, we consider a linear com-

bination of U-statistics introduced by Toda and Yamato (2001). As a special case,

this statistic includes the V-statistic and LB-statistic. In case that the kernel is not

degenerate, we show some large deviations for this linear combination of U-statistics.

1 Introduction Let �(F ) be an estimable parameter of an unknown distribution F which

has a symmetric kernel g(x1; :::; xk) of degree k(� 2) and X1; : : : ;Xn be a random sample

of size n from the distribution F . We assume that the kernel g is not degenerate.

As an estimator of �(F ), Toda and Yamato (2001) introduces a linear combination Yn
of U-statistics as follows: Let w(r1; : : : ; rj ; k) be a nonnegative and symmetric function of

positive integers r1; : : : ; rj such that j = 1; : : : ; k and r1+� � �+rj = k, where k is the degree

of the kernel g and �xed. We assume that at least one of w(r1; : : : ; rj ; k)'s is positive. For

j = 1; : : : ; k, let g(j)(x1; :::; xj) be the kernel given by

g(j)(x1; : : : ; xj) =
1

d(k; j)

X+

r1+���+rj=k
w(r1; : : : ; rj ; k)g(x1; : : : ; x1| {z }

r1

; : : : ; xj ; : : : ; xj| {z }
rj

);

(1.1)

where the summation
P+

r1+���+rj=k is taken over all positive integers r1; :::; rj satisfying r1+

� � �+ rj = k with j and k �xed and d(k; j) =
P+

r1+���+rj=kw(r1; : : : ; rj ; k) for j = 1; 2; :::; k.

Let U
(j)
n be the U-statistic associated with this kernel g(j)(x1; : : : ; xj ; k) for j = 1; : : : ; k.

The kernel g(j)(x1; : : : ; xj ; k) is symmetric because of the symmetry of w(r1; : : : ; rj ; k). If

d(k; j) is equal to zero for some j, then the associated w(r1; : : : ; rj ; k)'s are equal to zero.

In this case, we let the corresponding statistic U
(j)
n be zero. The statistics Yn is given by

Yn =
1

D(n; k)

kX
j=1

d(k; j)

�
n

j

�
U (j)
n ;(1.2)

where D(n; k) =
Pk

j=1 d(k; j)
�
n
j

�
. Since w's are nonnegative and at least one of them is

positive, D(n; k) is positive. Note that U
(k)
n = Un for w(1; : : : ; 1; k) > 0, because of g(k) = g.

For example, let w be the function given by w(1; 1; : : : ; 1; k) = 1 and w(r1; : : : ; rj ; k) = 0

for positive integers r1; : : : ; rj such that j = 1; : : : ; k � 1 and r1 + � � �+ rj = k. Then the
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corresponding statistic Yn is equal to U-statistic Un, which is given by

Un =

�
n

k

��1 X
1�j1<���<jk�n

g(Xj1 ; : : : ;Xjk );(1.3)

where
P

1�j1<���<jk�n denotes the summation over all integers j1; : : : ; jk satisfying 1 � j1 <

� � � < jk � n.

Let w be the function given by w(r1; : : : ; rj ; k) = 1 for positive integers r1; : : : ; rj such that

j = 1; : : : ; k and r1 + � � � + rj = k. Then the corresponding statistic Yn is equal to the

LB-statistic Bn given by

Bn =

�
n+ k � 1

k

��1 X
r1+���+rn=k

g(X1; : : : ;X1| {z }
r1

; : : : ;Xn; : : : ;Xn| {z }
rn

);(1.4)

where
P

r1+���+rn=k denotes the summation over all non-negative integers r1; :::; rn satisfy-

ing r1 + � � �+ rn = k.

Let w be the function given by w(r1; : : : ; rj ; k) = k!=(r1! � � � rj !) for positive integers

r1; : : : ; rj such that j = 1; : : : ; k and r1+ � � �+ rj = k. Then the corresponding statistic Yn
is equal to the V-statistic Vn given by

Vn =
1

nk

nX
j1=1

� � �
nX

jk=1

g(Xj1 ; : : : ;Xjk ):(1.5)

(See Toda and Yamato (2001)).

Let w be the function given by w(r1; : : : ; rj ; k) = k!=(r1 � � � rj) for positive integers r1; : : : ; rj
such that j = 1; : : : ; k and r1+ � � �+ rj = k. Then, for example, the corresponding statistic

Yn for the third central moment of the distribution F is given by

Sn =
n

n2 + 1

nX
i=1

(Xi � �X)3;

where �X is the sample mean of X1; : : : ;Xn (see Nomachi et al. (2002)).

In Section 2 for the U-statistic, we quote probability inequalities and tail probability,

which are also known as the large deviations, from Sering (1980), Christo�des (1991),

Vandemaele and Veraverbeke (1982) and Borovskikh (1996).

Our purpose is to show large deviations for the statistic Yn given by (1.3), using the results

for the U-statistic stated in Section 2. These are shown in Section 3.

2 Large Deviations for U-statistics We shall quote some large deviations for U-

statistics. Put �2 = V ar
�
g(X1; : : : ;Xk)

�
and assume that �2 > 0. We denote [n=k]

by m, where [x] is the greatest integer not greater than x.

Lemma 2.1 (Sering (1980, p.201)) Assume that a � g(x1; : : : ; xk) � b, where a and b

are constants. Then, for t > 0 and n � k,

P (Un � � � t) � exp
�
� 2mt2

(b � a)2

�
(2.1)
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and

P (Un � � � t) � exp

�
� mt2

2
�
�2 + 1

3
(b � a)t

�
�
:(2.2)

We note that by using Markov's inequality to P ((Un � � � t) = P (es(Un���t) � 1),

s > 0 we get

P (Un � � � t) � E[es(Un���t)] for s > 0:(2.3)

The inequality (2.1) is derived as follows : The right-hand side of (2.3) is less than or equal

to eQ(s) for s > 0 where Q(s) = (b � a)2s2=(8m) � st, and the minimum value over s > 0

of Q(s) is given by the right-hand side of (2.1) (see, for example, Sering (1980, p. 201)).

In this sense, the inequality (2.1) is equivalent to

inf
s>0

E[es(Un���t)] �
�
� 2mt2

(b� a)2

�
:(2.4)

Similarly, the inequality (2.2) is equivalent to

inf
s>0

E[es(Un���t)] � exp

�
� mt2

2
�
�2 + 1

3
(b � a)t

�
�
:(2.5)

Lemma 2.2 (Christo�des (1991)) (a) Assume that there exists M > 0 such that E(g(X1;

: : : ;Xk)� �)r � r!�2Mr�2=2 for r = 2; 3; : : : . Then for t > 0,

P (Un � � � t) � exp
�
� m

2M2

�p
2tM + �2 � �

�2�
:(2.6)

(b) Assume that a � g(x1; : : : ; xk) � b, where a and b are constants. Then for t > 0,

P (Un � � � t) � exp

�
� 9m

2(b � a)2

�r2

3
t(b � a) + �2 � �

�2�
:(2.7)

For the kernel g(x1; : : : ; xk), we put

 l(x1; : : : ; xl) = E
�
g(X1; : : : ;Xk) j X1 = x1; : : : ;Xl = xl

�
; l = 1; :::; k:

For l = 2; 3; :::; k, we put

g(1)(x1) =  1(x1) � �;

g(l)(x1; : : : ; xl) =  l(x1; : : : ; xl) �
l�1X
i=1

X
1�j1<���<ji�l

g(i)(xj1 ; : : : ; xji )� �:

We suppose �21 = V ar( 1(X1)) > 0. Let �(x) be the standard normal distribution function.

It satis�es the following relation.

1� �(x � (ln n)�2) =
�
1� �(x)

��
1 + o

� 1

lnn

��
(2.8)

uniformly in the range �A � x � c
p
lnn, where A � 0 and c > 0 (see, Vandemaele and

Veraverberke (1982)).
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Lemma 2.3 (Vandemaele and Veraverberke (1982), Lemma 1) (a) If E j g(X1; : : : ;Xk) jp<
1 for some p > 2 + c2 (c > 0), then

P
�pn
k�1

(Un � �) > x
�
=
�
1��(x)

��
1 + o

� 1

lnn

��
(2.9)

uniformly in the range �A � x � c
p
lnn (A � 0).

(b) If for all p = 1; 2; � � � E j g(X1; : : : ;Xk) jp< Kppp (where K and  � 0 are

constants not depending on p), then

P
�pn
k�1

(Un � �) > x
�
=
�
1� �(x)

��
1 + o(1)

�
(2.10)

uniformly in the range �A � x � o(n�) (A � 0) with � = 1=f2(3 + 2)g.

The proposition (a) can be strengthened as follows:

Lemma 2.4 (Borovskikh(1996)) Suppose that

E j g(1)(X1) jp<1; p > 2 + c2

and

E j g(l)(X1; : : : ;Xl) jcl+c
2

<1; l = 2; : : : ; k;

where cl = 2l=(2l � 1) and some constant c > 0. Then

P
�pn
k�1

(Un � �) > x
�
=
�
1� �(x)

��
1 + o

� 1

lnn

��

uniformly in the range �A � x � c
p
lnn (A � 0).

As a corollary of this Lemma, the following is obtained.

Lemma 2.5 (Borovskikh(1996)) Under the same conditions as Lemma 2.4,

P
�pn
k�1

(Un � �) > c
p
lnn

�
=

1p
2�c2 lnn

n�
c2

2

�
1 +O

� 1

lnn

��
:

3 Large Deviations for Y-statistics We put for j = 1; : : : ; k

�j = E
�
g(j)(X1; : : : ;Xj)

�

and

�2(j) = V ar
�
g(j)(X1; : : : ;Xj )

�
:

We note that �k = � and �2
(k)

= �2. We put �2 = maxf�2
(1)
; : : : ; �2

(k)
g: We show some

probability inequalities for a linear combinations of U-statistics. The �rst two probability

inequalities correspond to Lemma 1.
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Theorem 3.1 Assume that a � g(x1; : : : ; xk) � b, where a and b are constants. Then, for

t > 0 and n � k,

P (Yn �EYn � t) � exp
�
� 2mt2

(b � a)2

�
(3.1)

and

P (Yn �EYn � t) � exp

�
� mt2

2
�
�2 + 1

3
(b � a)t

�
�
:(3.2)

Proof By the similar method to (2.3), for s > 0 we have

P (Yn �EYn � t) � E(es(Yn�EYn�t)) = E exp
� kX
j=1

d(k; j)

D(n; k)

�
n

j

�
s(U (j)

n � �j � t)
�
:

Because we may regard d(k; j)=D(n; k))
�
n
j

�
as a probability function on j = 1; � � � ; k, we

can use Jensen's inequality to the exponent of the right-hand side and get the inequality

P (Yn �EYn � t) �
kX

j=1

d(k; j)

D(n; k)

�
n

j

�
E(es(U

(j)
n ��j�t)); s > 0:(3.3)

Since a � g(j) � b and E(U
(j)
n ) = �j (j = 1; : : : ; k), applying (2.4) to the expectation of the

right-hand side and using m = [n=k] � [n=j] (j = 1; : : : ; k), we get

inf
s>0

E(es(U
(j)
n ��j�t)) � exp

�
�

2
�
n
j

�
t2

(b � a)2

�
� exp

�
� 2mt2

(b � a)2

�
:

Using this result to the right-hand side of (3.3), we get (3.1) by the relation D(n; k) =Pn
j=1 d(k; j)

�
n
j

�
.

Applying (2.5) to the expectation of the right-hand side of (3.3) and using m � [n=j]

and �2 � �2j (j = 1; : : : ; k), we get

inf
s>0

E(es(U
(j)
n ��j�t)) � exp

�
�

�
n
j

�
t2

2
�
�2
(j)

+ 1
3
(b � a)t

�
�
� exp

�
� mt2

2
�
�2 + 1

3
(b � a)t

��:

Using this result to the right-hand side of (3.3), we get (3.2). 2

Theorem 3.2 (a) Assume that there exists M > 0 such that E(g(j)(X1; : : : ;Xj) � �j)
r �

r!�2Mr�2=2 for j = 1; : : : ; k and r = 2; 3; : : : . Then for t > 0,

P (Yn �EYn � t) � exp
�
� m

2M2

�p
2tM + �2 � �

�2�
:(3.4)

(b) Assume that a � g(x1; : : : ; xk) � b, where a and b are constants. Then for t > 0,

P (Yn �EYn � t) � exp

�
� 9m

2(b � a)2

�r2

3
t(b � a) + �2 � �

�2�
:(3.5)
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Proof A U-statistic can be represented as an average of averages of i.i.d. random

variables (see, for example, Sering (1980, p.180) and Borovskikh (1996, p.14)). For the

random variable having mean zero, variance �2 > 0 and satisfying E(Xr) � r!�2Mr�2=2

for r = 2; 3; : : : , its moment generating function satis�es E(esX) � expf�2s2=[2(1� sM)]g
for 0 < s < 1=M . Using these two facts, it can be shown that for j = 1; : : : ; k,

Ees(U
(j)
n ��j�t) � exp

�
� st +

�2j s
2

2([n
j
]� sM)

�
; 0 < s <

m

M

�
�

[n
j
]

M

�
;

(Christo�des (1991, p.258{259)). Because of m � [n=j] and �2 � �j (j = 1; : : : ; k) , we

have

Ees(U
(j)
n ��j�t) � exp

�
� st+

�2s2

2(m� sM)

�
; 0 < s <

m

M
:

Thus by (3.3) we have

P (Yn �EYn � t) � exp
�
� st+

�2s2

2(m� sM)

�
; 0 < s <

m

M
:

Putting y =m� sM(> 0), the exponent of the right-hand side is equal to

1

2M2

��mp
y
�
p
(2tM + �2)y

�2
+

m

M2

�p
2tM + �2 � � � (tM + �2)

�
:

The minimum value over y > 0 of this function is given by the second term which is equal

to the exponent of the right-hand side of (3.4).

Under the condition of (b), the condition of (a) is satis�ed with M = (b � a)=3

(Christo�des (1991, p.259)). Therefore the inequality (3.5) is obtained from (3.4) by re-

placing M with (b � a)=3. 2

Theorem 3.3 (a) If E j g(X1; : : : ;Xk) jp<1 and E j g(Xj1 ; : : : ;Xjk ) jp�2<1, 1 � j1 �
� � � � jk � k, for some p > 2 + c2 (c > 0), then

P
�pn
k�1

(Yn � �) > x
�
=
�
1� �(x)

��
1 + o

� 1

lnn

��
(3.6)

uniformly in the range �A � x � c
p
lnn (A � 0).

(b) If for all p = 1; 2; � � � E j g(Xj1 ; : : : ;Xjk ) jp< Kppp, 1 � j1 � � � � � jk � k, (where

K and  � 0 are constants not depending on p), then

P
�pn
k�1

(Yn � �) > x
�
=
�
1� �(x)

��
1 + o(1)

�
(3.7)

uniformly in the range �A � x � o(n�) (A � 0) with � = 1=f2(3 + 2)g.

If d(k; k) = w(1; : : : ; 1; k) > 0, then there exists a constant �(� 0) such that

d(k; k)

D(n; k)

�
n

k

�
= 1� �

n
+O

� 1

n2

�
(3.8)
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and

k�1X
j=1

d(k; j)

D(n; k)

�
n

j

�
=
�

n
+O

� 1

n2

�
:(3.9)

For the U-statistic Un, � = 0. In the following proof of Theorem 3.3 (b), we assume that

� > 0;

because the corresponding large deviations for the U-statistic are given in Section 2. For the

V-statistic Vn and the S-statistic Sn, � = k(k�1)=2. For the LB-statistic Bn, � = k(k�1).

As stated in Toda and Yamato (2001, p.229), we can write

Yn = Un +Rn

and Rn satis�es the following:If E j g(Xj1 ; : : : ;Xjk ) jr< 1 for r > 0 and any integers

j1; : : : ; jk (1 � j1 � � � � � jk � k), then

E j Rn jr� C1

nr
;(3.10)

where C1 is a generic constant (this relation holds even if r is not integer by the same reason

as its proof of Toda and Yamato (2001)).

Proof of Theorem 3.3 Since Yn � � = Un � � +Rn, for any " > 0

P
�pn
k�1

(Un � �) > x + "
�
� P

�pn
k�1

j Rn j> "
�

� P
�pn
k�1

(Yn � �) > x
�

(3.11)

� P
�pn
k�1

(Un � �) > x� "
�
+ P

�pn
k�1

j Rn j> "
�
:

At �rst we shall show (3.6). Using Markov's inequality and (3.10), for " = (lnn)�2 we have

P
�pn
k�1

j Rn j> "
�
� C2

(ln n)2(p�2)

n(p�2)=2
;(3.12)

where C2(> 0) is a generic constant. For a large x > 0, 1 � �(x) � (
p
2�x)�1e�x

2=2 (see,

for example, Johnson et al. (1994)). Hence for �A � x � c
p
lnn, we have 1=

�
1� �(x)

�
�

O((lnn)1=2nc
2=2). By this relation, (3.12) and p� c2 > 2, we have

P
�pn
k�1

j Rn j> "
�

1��(x)
= O

�
(lnn)2(p�2)+1=2

n(p�2�c2)=2

�
:

Thus we have

P
�p

n
k�1

j Rn j> "
�

1� �(x)
= o

�
(lnn)�1

�
:(3.13)
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By (2.9), we have

P
�pn
k�1

(Un � �) > x � "
�
=
�
1� �(x� ")

��
1 + o

�
(lnn)�1)

��
:

Taking " = (lnn)�2 and using (2.8), we get

P
�pn
k�1

(Un � �) > x � "
�
=
�
1� �(x)

��
1 + o

�
(lnn)�1)

��
:(3.14)

Applying (3.13) and (3.14) to (3.11), we get (3.6).

Now we shall prove (3.7). By the condition on moments of g, we have

�
E j U (j)

n jp �1=p � Kp ; j = 1; : : : ; k:

Therefore by (3.8), (3.9) and Minkowski's inequality, we have

fE j Rn jpg1=p � Kp
�2�
n

+O
� 1

n2

��
:

Therefore, for p = 1; 2; : : : we have

E j pnRn jp� (2�K)pn�p=2pp+1
�
1 +O

� 1
n

��
:

By Markov's inequality, for " = n�� and p = cn(1�2�)=(2+2) (� = 1=f2(3 + 2)g), we have

P (j pnRn j� ") � O
��
2�Kn��

1
2 p

�p � p� = O
�
ep[ln(2�K)�lnp]+ln p

�
(3.15)

Let pn be a positive sequence such that pn ! 0 and pnn
� ! 1. Then by the same

reason stated in the �rst part, 1=
�
1 � �(pnn

�)
� � p

2�pnn
�ep

2
nn

2�=2. Since " = n��,

p = cn(1�2�)=(2+2) and � = 1=f2(3 + 2)g, we have

P
� p

n
k�1

j Rn j> "
�

1� �(pnn�)
= O

�
pn exp

�
ln c+ n2�

�p2n
2

+ C3 � (2�c� 3�

n2�
) lnn

���
;

whose exponent diverges to �1 as n!1 because of �c > 0, where C3 is a generic constant

depending on c, � and K. Hence the left-hand side converges to 0 as n!1. Thus we get

P
�pn
k�1

j Rn j> n��
�
= (1 � �(x)) � o(1)(3.16)

uniformly in �A � x � o(n�). By (2.10), for a suÆciently small " > 0 we have

P
�pn
k�1

(Un � �) > x� "
�
= (1 � �(x� "))(1 + o(1)):

Using the approximation 1� �(x) � (
p
2�x)�1e�x

2=2 for a large x > 0, we have

1� �(x� n��) = (1 � �(x))(1 + o(1))(3.17)

uniformly in �A � x � o(n�), which is shown by the method similar to (3.16). Therefore,

applying (3.16) and (3.17) to (3.11), we can get (3.7). 2

Noting that the conditions on Rn in the following Corollary are as same as (a) of The-

orem 3.3, the proposition (a) can be strengthened by Lemma 2.4.
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Corollary 3.4 Suppose that

E j g(Xj1 ; : : : ;Xjk ) jp�2<1; (1 � j1 � � � � � jk � k); p > 2 + c2;

E j g(1)(X1) jp<1; p > 2 + c2;

and

E j g(l)(X1; : : : ;Xl) jcl+c
2

<1; l = 2; : : : ; k;

where cl = 2l=(2l � 1) and some constant c > 0. Then

P
�pn
k�1

(Yn � �) > x
�
=
�
1� �(x)

��
1 + o

� 1

lnn

��

uniformly in the range �A � x � c
p
lnn (A � 0).

As a corollary of this result, the following is obtained because of 1 � �(c
p
lnn) =

(2�c2 lnn)�1=2n�c
2=2(1 +O((lnn)�1)).

Corollary 3.5 Under the same conditions as Corollary 3.4,

P
�pn
k�1

(Yn � �) > c
p
lnn

�
=

1p
2�c2 lnn

n�
c2

2

�
1 +O

� 1

lnn

��
:
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