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METRIZABILITY OF CERTAIN POINT-COUNTABLE UNIONS
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Abstract. A collection P of subsets of X is point-countable if every point of X is in

at most countably many elements of P . Every �rst countable space having a countable

open (or closed) cover of metric subsets need not be metrizable. For a space X having

a (not necessarily open or closed) point-countable cover of metric subsets, we shall

consider conditions for X to be metrizable in terms of weak topology.

1. Introduction

Following [3], a space X is determined by a cover P, if F � X is closed in X if and only

if F \ P is closed in P for every P 2 P. Here, we can replace " closed " by " open ". In

this paper, we assume that all spaces are regular, T1, and we shall use " X is determined by

P " instead of the usual " X has the weak topology with respect to P ". Obviously, every

space X is determined by any open (or hereditarily closure-preserving closed) cover of X.

A space X is sequential ([1]) if, F � X is closed in X whenever any convergent sequence

in F has the limit point in F . Every Fr�echet space is sequential. We note that a space is

sequential if and only if it is determined by a cover of metric subsets. We recall that every

sequential space is characterized as a quotient image of a metric space ([1]).

A space X is called strongly Fr�echet ([6]) (i.e., countably bi-sequential in the sense of E.

Michael [5]) if, whenever fAn : n 2 Ng is a decreasing sequence with x 2 cl(An � fxg) for

every n 2 N , then there exist xn 2 An such that the sequence fxn : n 2 Ng converges

to x. When the An are the same sets, then such a space X is called Fr�echet. Every �rst

countable space is strongly Fr�echet, and every strongly Fr�echet space is Fr�echet.

Let us recall two canonical countable spaces S! and S2.

The sequential fan S! is the quotient space obtained from the topological sum of count-

ably many convergent sequences by identifying all limit points.

The Arens' space S2 is de�ned as follows: S2 = fx0g[fxn : n 2 Ng
S
fxnm : n;m 2 Ng,

where xn ! x0; xnm ! xn (m!1). Also, a basic nbd at fx0g has the form fx0g [ fxn :

n � ig
S
fxnm;n � i;m � j(n)g (i; j(n) 2 N), and the points xnm are isolated, and each

point xn has the obvious basic nbds.

We note that S! is a Fr�echet space which is not strongly Fr�echet, and S2 is a sequential

space which is not Fr�echet. S! and S2 are spaces determined by the obvious increasing

countable cover of compact metric subsets, but they are not metrizable. On the other hand,

every space having a countable (or point-�nite), closed (or open) cover of metric subsets

need not be metrizable even if X is �rst countable (or strongly Fr�echet) by Examples below,

where (1) is well-known, (2); (3) & (4) are shown in [4]; [7] respectively.

It is a natural question to consider conditions for spaces having certain point-countable

covers to be metrizable. In this paper, we shall give metrizability of these spaces by whether
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or not they contain the canonical spaces S! and S2, also apply the results to complexes,

inductive limits, and spaces dominated by metric subsets.

Examples. (1) A �rst countable space X having a countable closed cover of separable

metric subsets, but X is not metrizable.

(2) A strongly Fr�echet space X having a countable cover of singletones (only one non-

isolated point), but X is not �rst countable, hence not metrizable.

(3) A �rst countable space X having a point-�nite cover of closed and open metric

subsets, but X is not normal, hence not metrizable

(4) A �rst countable space X having an increasing open countable cover of metric

subsets, but X is not normal, hence not metrizable.

2. Metrization theorem

For a space X having a point-countable cover of metric subsets, we will consider condi-

tions for X to be metrizable. First we give some Lemmas.

For a cover P of a space X, let P� be the collection of all �nite unions of elements of

P. Obviously, if a space is determined by P, then so is by P�. The converse need not hold,

but the converse holds if P is closed.

Lemma 1. Let X be a sequential space, and let P be a cover of X. Then the following

are equivalent.

(1) X is determined by P (resp. P�).

(2) For every in�nite sequence L = fxn : n 2 ng converging to x, some P 2 P contains

x and xn frequently (resp. xn frequently).

Proof. For (1) ! (2), note that L � fxg is not closed in X. For (2) ! (1), if F is not

closed in X, then there exists a sequence L in F converging to x not in F , hence, F \ P is

not closed in P for some P 2 P.

In Lemmas below, Lemma 2 is shown as in the proof of [3; Proposition 3.2], using

Lemma 1. Lemma 3; Lemma 4 holds by [8; Corollary 1.5]; [3; Corollary 3.6] respectively.

For Lemma 7, see [7] or [9], for example.

Lemma 2. Let X be a strongly Fr�echet space, and let P be a point-countable cover of

X. If X is determined by P�, then each point of X has a nbd which is contained in some

element of P�.

Let P be a cover of a space X. Then, P is a k-network for X, if whenever K � U with

K compact and U open in X, K � [P 0 � U for some �nite P 0 � P. When the K is a

singleton, then such a cover P is called a network. Clearly, every open base is a k-network.

Lemma 3. Let X be a sequential space, and let P be a point-countable cover of X.

Then P is a k-network if and only if, for a sequence L = fxn : n 2 Ng converging to x, and

a nbd V of x, there exists P 2 P such that P � V and P contains xn frequently.

Lemma 4. Every strongly Fr�echet space with a point-countable k-network has a point-

countable base.

As is well-known, every space having a locally �nite closed (resp. point-countable open)

cover of metric (resp. separable metric) subsets is metrizable. For a more general case
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where a space is a strongly Fr�echet space determined by a point-countable cover of (locally

separable) metric subsets, the following metrizability holds.

Lemma 5. Let X be a strongly Fr�echet space, and let P be a point-countable cover of

X. Then X is metrizable if the following case (a), (b), or (c) holds.

(a) X is determined by P, and each P 2 P is locally separable, metric.

(b) X is determined by P�, and for each P 2 P, clP is locally separable, metric.

(c) X is a paracompact space, X is determined by P�, and each P � 2 P� is locally

metric.

Proof. For case (a), let P = fX� : �g. Since each X� is locally separable, metric, X�

is determined by the obvious point-countable (open) cover fX�� : �g of separable metric

subsets. While, X is determined by the point-countable cover fX� : �g. Thus it is routinely

shown that X is determined by a point-countable cover fX�� : �; �g. So, we can assume

that X� are separable metric. Since X is strongly Fr�echet, by Lemma 2, each x 2 X has

a nbd V (x) such that V (x) �
S
F for some �nite F � P. Then, V (x) is separable. This

shows that X is locally separable. On the other hand, let B� be a countable base for X�.

Let C =
S
fB� : �g. Then C is a point-countable cover of X. For x 2 X, let V be a nbd of

x, and let L = fxn : n 2 Ng be a sequence converging to x. Since X is determined by P,

some X� contains the point x, and contains xn frequently by Lemma 1. Thus, there exists

B 2 B�0
such that x 2 B � V , and B contains xn frequently. Then, C is a point-countable

k-network by Lemma 3. Since, X is strongly Fr�echet, X has a point-countable base by

Lemma 4. Therefore, X is a locally separable space with a point-countable base. Then,

as is well known, X is the topological sum of locally separable metric subsets. Thus X is

metrizable. For case (b), each point of X has a nbd which is contained in some P � 2 P�

by Lemma 2. Thus, X is locally separable. Let P = fX� : �g. Let G� be a point-countable

base for clX�, and let H� = fB \ X� : B 2 G�g. Since X is determined by P�, we show

that
S
fH� : �g is a point-countable k-network for X by means of Lemmas 1 and 3. Thus

X is metrizable by means of Lemma 4. For case (c), X is locally metric by Lemma 2. Since

X is paracompact, as is well-known, X is metrizable.

In the previous lemma, the separability of the metric subsets is essential in cases (a) &

(b), and the paracompactness is essential in case (c); see Examples. However, in view of

cases (a) & (b), the author has the following question: Let X be a space having a point-

countable cover P of X such that X is determined by P�, and each element of P� is locally

separable, metric. If X is strongly Fr�echet, then is X metrizable ?

Lemma 6. For a point-countable cover P of a space X, suppose that the following case

(a) or (b) holds. Then X is Fr�echet if and only if X contains no (closed) copy of S2.

(a) X is determined by P�, and each P � 2 P� is metric.

(b) X is sequential, X is determined by P, and each P 2 P is locally separable, metric.

Proof. Since the " only if " part is obvious, we shall show the " if " by refering to

the proof of [7; Theorem 2.1]. To show that X is Fr�echet, suppose not. For case (a),

X is sequential since it is determined by a cover of sequential subspaces. Then, by [2;

Proposition 7.3], X contains a subset S = fx0g [ fxn : n 2 Ng
S
fLn : n 2 Ng, where

xn ! x0; xnm ! xn (m ! 1), but no points pn 2 Ln (n 2 N) converges to x0. Now,

let fP 2 P : P \ S 6= ;g = fPn : n 2 Ng, and let Xn =
S
fPi : i � ng for each

n 2 N . Since X is determined by P� and xn ! x0, by Lemma 1, some Xn1
contains

x0 and some subsequence fxni : i 2 Ng. But, since Xn1
is metric, Xn1

doesn't contain
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S, because if Xn1
contains a copy of S, then there exists a sequence fpk : k 2 Ng with

pk 2 Lnk (k 2 N) converging to x0, a contradiction. Then, we can assume that Xn1
is

disjoint from some Lni(1) . But, Lni(1) converges to xni(1) , then some Xn2
(n2 > n1) contains

some subsequence T1 of Lni(2) by Lemma 1. Then, T1 � Xn2
�Xn1

. By induction, we can

choose a sequence fTk : k 2 Ng, where Tk is a subsequence of Lni(k) (i(k) < i(k + 1)) such

that Tk � Xnk
�Xnk�1

(nk�1 < nk). Let T = fx0g [ fxni(k) : k 2 Ng
S
fTk : k 2 Ng. Let

P � 2 P�. Then T \ P � � T \Xnk
for some Xnk

, but T \Xnk
is compact. Thus T \ P � is

closed in P �. Hence, T is closed in X, so T is sequential. Then T is a copy of S2. Thus,

X contains a closed copy of S2. This is a contradiction. Hence X is Fr�echet. For case (b),

we can assume that the point-countable cover P consists of separable metric subsets. Let

fP 2 P : P \ S 6= ;g = fPn : n 2 Ng. Let A =
S
fPn : n 2 Ng. Then S � A, and A has a

countable network by closed subsets. Thus, there exist open subsets Gn (n 2 N) of A such

that fx0g =
T
fGn : n 2 Ng, and clGn+1 � Gn in A. We can assume that Ln [ fxng � Gn

for each n 2 N . Then S is closed in A. But, X is determined by P, so X is determined by

a cover fAg [ fP 2 P : S \ P = ;g. Then S is closed in X. Thus X contains a closed copy

of S = S2, a contradiction. Hence X is also Fr�echet.

Lemma 7. Let X be a Fr�echet space. Then X is strongly Fr�echet if and only if it

contains no (closed) copy of S!.

We have the following metrization theorem on space having certain point-countable

covers of metric subsets. The result for case (a) is due to [7; Theorem 4.6].

Theorem 8. For a point-countable cover P of a space X, suppose that the case (a),

(b), or (c) in Lemma 5 holds. Then the following (1), (2), and (3) are equivalent.

(1) X is metrizable.

(2) X is strongly Fr�echet.

(3) X contains no (closed) copy of S!, and no S2.

Proof. (1) ! (3) is obvious. (3) ! (2) holds by Lemmas 6 and 7. (2) ! (1) holds by

Lemma 5.

Related to Theorem 8, (3) need not imply (2) under spaces being sequential (indeed,

there exists a compact sequential space which contains no copy of S!, and S2, but it is not

even Fr�echet ([9; Example 1.21 & Corollary 1.10]).

Corollary 9. Let X be a sequential space, and let X be a complex having the cover

E = fe� : �g of cells in X such that, for each convergent sequence fxn : n 2 Ng, some e�
contains xn frequently (in particular, let X be a CW-complex). Then X is metrizable if and

only if X contains no (closed) copy of S!, and no S2 (equivalently, X is strongly Fr�echet).

Proof. The cover E is disjoint, and each cle� is compact metric. Also, X is determined

by E� by Lemma 1. Thus, the corollary holds by Theorem 8 (for case (b)).

Let X be a space, and let F be a closed cover of X. ThenX is dominated by F if, for any

A � F , A =
S
A is closed in X, and A is determined by A. Every space is dominated by

its hereditarily closure-preserving closed cover. It is well-known that every space dominated

by metric (or paracompact) subsets is paracompact.

Corollary 10 ([11]). Let X be a space dominated by a closed cover fX� : � � g of

metric subsets. Then X is metrizable if and only if X contains no (closed) copy of S!, and

no S2 (equivalently, X is strongly Fr�echet).
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Proof. For each � � , let Y� = X��
S
fX� : � < �g. Let P = fY� : � � g. Then P is

a disjoint cover of X. Also, every convergent sequence L = fxn : n 2 Ng meets only �nitely

many Y� (in fact, assume xni 2 Y�i with �i < �i+1, and let D = fxni : i 2 Ng. Then each

D \ X�i
is �nite, hence closed in X�i

. Thus D is closed discrete in X, a contradiction).

Then, by Lemma 1, X is determined by P�. While, X is paracompact, and each element

of P� is metric. Thus, the corollary holds by Theorem 8.

Let X be a space determined by a countable cover P = fXn : n 2 Ng such that

Xn � Xn+1 for each n 2 N (hence, if all Xn are closed in X, X is dominated by P).

Then X is called the inductive limit (or direct limit) of fXn : n 2 Ng, and it is denoted

by X = lim
�!

Xn. For a space X determined by a countable cover fCn : n 2 Ng, putting

Xn = [fCm :m � ng for each n 2 N , X = lim
�!

Xn.

For a metric space M having a non-isolated point p, let Xn =Mn � fpg � fpg� : : : for

each n 2 N . Then, each Xn is metric, but T = lim
�!

Xn is not Fr�echet, hence not metrizable,

because T contains a closed copy of S2 (and S!) ([10]). But, the following metrizability of

the inductive limits holds.

Corollary 11. Let X = lim
�!

Xn such that each Xn is metric. Suppose that (a) X is

paracompact, (b) each Xn is locally separable, or (c) each Xn is closed in X. Then X is

metrizable if and only if X contains no (closed) copy of S!, and no S2 (equivalently, X is

strongly Fr�echet).

In the previous corollary, the condition (a), (b), or (c) is essential even if the metric

spaces Xn are open in X (Example (4)). Also, not every normal space X determined by an

increasing closed (or open) cover of separable metric subsets is metrizable even if X is �rst

countable, hence X contains no copy of S!, and no S2 (by the ordinal space X = [0; !1)).
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