METRIZABILITY OF CERTAIN POINT-COUNTABLE UNIONS

Yoshio Tanaka

Received March 15, 2002; revised May 20, 2002

ABSTRACT. A collection \mathcal{P} of subsets of X is *point-countable* if every point of X is in at most countably many elements of \mathcal{P} . Every first countable space having a countable open (or closed) cover of metric subsets need not be metrizable. For a space X having a (not necessarily open or closed) point-countable cover of metric subsets, we shall consider conditions for X to be metrizable in terms of weak topology.

1. Introduction

Following [3], a space X is determined by a cover \mathcal{P} , if $F \subset X$ is closed in X if and only if $F \cap P$ is closed in P for every $P \in \mathcal{P}$. Here, we can replace "closed" by "open". In this paper, we assume that all spaces are regular, T_1 , and we shall use "X is determined by \mathcal{P} " instead of the usual "X has the weak topology with respect to \mathcal{P} ". Obviously, every space X is determined by any open (or hereditarily closure-preserving closed) cover of X.

A space X is sequential ([1]) if, $F \subset X$ is closed in X whenever any convergent sequence in F has the limit point in F. Every Fréchet space is sequential. We note that a space is sequential if and only if it is determined by a cover of metric subsets. We recall that every sequential space is characterized as a quotient image of a metric space ([1]).

A space X is called strongly Fréchet ([6]) (i.e., countably bi-sequential in the sense of E. Michael [5]) if, whenever $\{A_n : n \in N\}$ is a decreasing sequence with $x \in cl(A_n - \{x\})$ for every $n \in N$, then there exist $x_n \in A_n$ such that the sequence $\{x_n : n \in N\}$ converges to x. When the A_n are the same sets, then such a space X is called Fréchet. Every first countable space is strongly Fréchet, and every strongly Fréchet space is Fréchet.

Let us recall two canonical countable spaces S_{ω} and S_2 .

The sequential fan S_{ω} is the quotient space obtained from the topological sum of countably many convergent sequences by identifying all limit points.

The Arens' space S_2 is defined as follows: $S_2 = \{x_0\} \cup \{x_n : n \in N\} \bigcup \{x_{nm} : n, m \in N\}$, where $x_n \to x_0, x_{nm} \to x_n \ (m \to \infty)$. Also, a basic nbd at $\{x_0\}$ has the form $\{x_0\} \cup \{x_n : n \geq i\} \bigcup \{x_{nm}; n \geq i, m \geq j(n)\}$ $(i, j(n) \in N)$, and the points x_{nm} are isolated, and each point x_n has the obvious basic nbds.

We note that S_{ω} is a Fréchet space which is not strongly Fréchet, and S_2 is a sequential space which is not Fréchet. S_{ω} and S_2 are spaces determined by the obvious increasing countable cover of compact metric subsets, but they are not metrizable. On the other hand, every space having a countable (or point-finite), closed (or open) cover of metric subsets need not be metrizable even if X is first countable (or strongly Fréchet) by *Examples* below, where (1) is well-known, (2); (3) & (4) are shown in [4]; [7] respectively.

It is a natural question to consider conditions for spaces having certain point-countable covers to be metrizable. In this paper, we shall give metrizability of these spaces by whether

²⁰⁰⁰ Mathematics Subject Classification. 54E35, 54B15, 54A20, 54D55.

Key words and phrases. metrizability, weak topology, sequential space, sequential fan, Arens' space.

or not they contain the canonical spaces S_{ω} and S_2 , also apply the results to complexes, inductive limits, and spaces dominated by metric subsets.

Examples. (1) A first countable space X having a countable closed cover of separable metric subsets, but X is not metrizable.

(2) A strongly Fréchet space X having a countable cover of singletones (only one nonisolated point), but X is not first countable, hence not metrizable.

(3) A first countable space X having a point-finite cover of closed and open metric subsets, but X is not normal, hence not metrizable

(4) A first countable space X having an increasing open countable cover of metric subsets, but X is not normal, hence not metrizable.

2. Metrization theorem

For a space X having a point-countable cover of metric subsets, we will consider conditions for X to be metrizable. First we give some Lemmas.

For a cover \mathcal{P} of a space X, let \mathcal{P}^* be the collection of all finite unions of elements of \mathcal{P} . Obviously, if a space is determined by \mathcal{P} , then so is by \mathcal{P}^* . The converse need not hold, but the converse holds if \mathcal{P} is closed.

Lemma 1. Let X be a sequential space, and let \mathcal{P} be a cover of X. Then the following are equivalent.

(1) X is determined by \mathcal{P} (resp. \mathcal{P}^*).

(2) For every infinite sequence $L = \{x_n : n \in n\}$ converging to x, some $P \in \mathcal{P}$ contains x and x_n frequently (resp. x_n frequently).

Proof. For $(1) \to (2)$, note that $L - \{x\}$ is not closed in X. For $(2) \to (1)$, if F is not closed in X, then there exists a sequence L in F converging to x not in F, hence, $F \cap P$ is not closed in P for some $P \in \mathcal{P}$.

In Lemmas below, Lemma 2 is shown as in the proof of [3; Proposition 3.2], using Lemma 1. Lemma 3; Lemma 4 holds by [8; Corollary 1.5]; [3; Corollary 3.6] respectively. For Lemma 7, see [7] or [9], for example.

Lemma 2. Let X be a strongly Fréchet space, and let \mathcal{P} be a point-countable cover of X. If X is determined by \mathcal{P}^* , then each point of X has a nbd which is contained in some element of \mathcal{P}^* .

Let \mathcal{P} be a cover of a space X. Then, \mathcal{P} is a k-network for X, if whenever $K \subset U$ with K compact and U open in X, $K \subset \cup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. When the K is a singleton, then such a cover \mathcal{P} is called a *network*. Clearly, every open base is a k-network.

Lemma 3. Let X be a sequential space, and let \mathcal{P} be a point-countable cover of X. Then \mathcal{P} is a k-network if and only if, for a sequence $L = \{x_n : n \in N\}$ converging to x, and a nbd V of x, there exists $P \in \mathcal{P}$ such that $P \subset V$ and P contains x_n frequently.

Lemma 4. Every strongly Fréchet space with a point-countable k-network has a point-countable base.

As is well-known, every space having a locally finite closed (resp. point-countable open) cover of metric (resp. separable metric) subsets is metrizable. For a more general case

where a space is a strongly Fréchet space determined by a point-countable cover of (locally separable) metric subsets, the following metrizability holds.

Lemma 5. Let X be a strongly Fréchet space, and let \mathcal{P} be a point-countable cover of X. Then X is metrizable if the following case (a), (b), or (c) holds.

(a) X is determined by \mathcal{P} , and each $P \in \mathcal{P}$ is locally separable, metric.

(b) X is determined by \mathcal{P}^* , and for each $P \in \mathcal{P}$, clP is locally separable, metric.

(c) X is a paracompact space, X is determined by \mathcal{P}^* , and each $P^* \in \mathcal{P}^*$ is locally metric.

Proof. For case (a), let $\mathcal{P} = \{X_{\alpha} : \alpha\}$. Since each X_{α} is locally separable, metric, X_{α} is determined by the obvious point-countable (open) cover $\{X_{\alpha\beta}:\beta\}$ of separable metric subsets. While, X is determined by the point-countable cover $\{X_{\alpha} : \alpha\}$. Thus it is routinely shown that X is determined by a point-countable cover $\{X_{\alpha\beta}:\alpha,\beta\}$. So, we can assume that X_{α} are separable metric. Since X is strongly Fréchet, by Lemma 2, each $x \in X$ has a nbd V(x) such that $V(x) \subset \bigcup \mathcal{F}$ for some finite $\mathcal{F} \subset \mathcal{P}$. Then, V(x) is separable. This shows that X is locally separable. On the other hand, let \mathcal{B}_{α} be a countable base for X_{α} . Let $\mathcal{C} = \bigcup \{\mathcal{B}_{\alpha} : \alpha\}$. Then \mathcal{C} is a point-countable cover of X. For $x \in X$, let V be a nbd of x, and let $L = \{x_n : n \in N\}$ be a sequence converging to x. Since X is determined by \mathcal{P} , some X_{α} contains the point x, and contains x_n frequently by Lemma 1. Thus, there exists $B \in \mathcal{B}_{\alpha_0}$ such that $x \in B \subset V$, and B contains x_n frequently. Then, \mathcal{C} is a point-countable k-network by Lemma 3. Since, X is strongly Fréchet, X has a point-countable base by Lemma 4. Therefore, X is a locally separable space with a point-countable base. Then, as is well known, X is the topological sum of locally separable metric subsets. Thus X is metrizable. For case (b), each point of X has a nbd which is contained in some $P^* \in \mathcal{P}^*$ by Lemma 2. Thus, X is locally separable. Let $\mathcal{P} = \{X_{\alpha} : \alpha\}$. Let \mathcal{G}_{α} be a point-countable base for clX_{α} , and let $\mathcal{H}_{\alpha} = \{B \cap X_{\alpha} : B \in \mathcal{G}_{\alpha}\}$. Since X is determined by \mathcal{P}^* , we show that $\bigcup \{\mathcal{H}_{\alpha} : \alpha\}$ is a point-countable k-network for X by means of Lemmas 1 and 3. Thus X is metrizable by means of Lemma 4. For case (c), X is locally metric by Lemma 2. Since X is paracompact, as is well-known, X is metrizable.

In the previous lemma, the separability of the metric subsets is essential in cases (a) & (b), and the paracompactness is essential in case (c); see *Examples*. However, in view of cases (a) & (b), the author has the following question: Let X be a space having a point-countable cover \mathcal{P} of X such that X is determined by \mathcal{P}^* , and each element of \mathcal{P}^* is locally separable, metric. If X is strongly Fréchet, then is X metrizable ?

Lemma 6. For a point-countable cover \mathcal{P} of a space X, suppose that the following case (a) or (b) holds. Then X is Fréchet if and only if X contains no (closed) copy of S_2 .

- (a) X is determined by \mathcal{P}^* , and each $P^* \in \mathcal{P}^*$ is metric.
- (b) X is sequential, X is determined by \mathcal{P} , and each $P \in \mathcal{P}$ is locally separable, metric.

Proof. Since the "only if " part is obvious, we shall show the " if " by referring to the proof of [7; Theorem 2.1]. To show that X is Fréchet, suppose not. For case (a), X is sequential since it is determined by a cover of sequential subspaces. Then, by [2; Proposition 7.3], X contains a subset $S = \{x_0\} \cup \{x_n : n \in N\} \bigcup \{L_n : n \in N\}$, where $x_n \to x_0, x_{nm} \to x_n \ (m \to \infty)$, but no points $p_n \in L_n \ (n \in N)$ converges to x_0 . Now, let $\{P \in \mathcal{P} : P \cap S \neq \emptyset\} = \{P_n : n \in N\}$, and let $X_n = \bigcup \{P_i : i \leq n\}$ for each $n \in N$. Since X is determined by \mathcal{P}^* and $x_n \to x_0$, by Lemma 1, some X_{n_1} contains x_0 and some subsequence $\{x_{n_i} : i \in N\}$. But, since X_{n_1} is metric, X_{n_1} doesn't contain

YOSHIO TANAKA

S, because if X_{n_1} contains a copy of S, then there exists a sequence $\{p_k : k \in N\}$ with $p_k \in L_{n_k}$ $(k \in N)$ converging to x_0 , a contradiction. Then, we can assume that X_{n_1} is disjoint from some $L_{n_{i(1)}}$. But, $L_{n_{i(1)}}$ converges to $x_{n_{i(1)}}$, then some X_{n_2} $(n_2 > n_1)$ contains some subsequence T_1 of $L_{n_{i(2)}}$ by Lemma 1. Then, $T_1 \subset X_{n_2} - X_{n_1}$. By induction, we can choose a sequence $\{T_k : k \in N\}$, where T_k is a subsequence of $L_{n_{i(k)}}$ (i(k) < i(k+1)) such that $T_k \subset X_{n_k} - X_{n_{k-1}}$ $(n_{k-1} < n_k)$. Let $T = \{x_0\} \cup \{x_{n_{i(k)}} : k \in N\} \bigcup \{T_k : k \in N\}$. Let $P^* \in \mathcal{P}^*$. Then $T \cap P^* \subset T \cap X_{n_k}$ for some X_{n_k} , but $T \cap X_{n_k}$ is compact. Thus $T \cap P^*$ is closed in P^* . Hence, T is closed in X, so T is sequential. Then T is a copy of S_2 . Thus, X contains a closed copy of S_2 . This is a contradiction. Hence X is Fréchet. For case (b), we can assume that the point-countable cover \mathcal{P} consists of separable metric subsets. Let $\{P \in \mathcal{P} : P \cap S \neq \emptyset\} = \{P_n : n \in N\}$. Let $A = \bigcup \{P_n : n \in N\}$. Then $S \subset A$, and A has a countable network by closed subsets. Thus, there exist open subsets G_n $(n \in N)$ of A such that $\{x_0\} = \bigcap \{G_n : n \in N\}$, and $clG_{n+1} \subset G_n$ in A. We can assume that $L_n \cup \{x_n\} \subset G_n$ for each $n \in N$. Then S is closed in A. But, X is determined by \mathcal{P} , so X is determined by a cover $\{A\} \cup \{P \in \mathcal{P} : S \cap P = \emptyset\}$. Then S is closed in X. Thus X contains a closed copy of $S = S_2$, a contradiction. Hence X is also Fréchet.

Lemma 7. Let X be a Fréchet space. Then X is strongly Fréchet if and only if it contains no (closed) copy of S_{ω} .

We have the following metrization theorem on space having certain point-countable covers of metric subsets. The result for case (a) is due to [7; Theorem 4.6].

Theorem 8. For a point-countable cover \mathcal{P} of a space X, suppose that the case (a), (b), or (c) in Lemma 5 holds. Then the following (1), (2), and (3) are equivalent.

- (1) X is metrizable.
- (2) X is strongly Fréchet.
- (3) X contains no (closed) copy of S_{ω} , and no S_2 .

Proof. $(1) \rightarrow (3)$ is obvious. $(3) \rightarrow (2)$ holds by Lemmas 6 and 7. $(2) \rightarrow (1)$ holds by Lemma 5.

Related to Theorem 8, (3) need not imply (2) under spaces being sequential (indeed, there exists a compact sequential space which contains no copy of S_{ω} , and S_2 , but it is not even Fréchet ([9; Example 1.21 & Corollary 1.10]).

Corollary 9. Let X be a sequential space, and let X be a complex having the cover $\mathcal{E} = \{e_{\lambda} : \lambda\}$ of cells in X such that, for each convergent sequence $\{x_n : n \in N\}$, some e_{λ} contains x_n frequently (in particular, let X be a CW-complex). Then X is metrizable if and only if X contains no (closed) copy of S_{ω} , and no S_2 (equivalently, X is strongly Fréchet).

Proof. The cover \mathcal{E} is disjoint, and each cle_{λ} is compact metric. Also, X is determined by \mathcal{E}^* by Lemma 1. Thus, the corollary holds by Theorem 8 (for case (b)).

Let X be a space, and let \mathcal{F} be a closed cover of X. Then X is dominated by \mathcal{F} if, for any $\mathcal{A} \subset \mathcal{F}, A = \bigcup \mathcal{A}$ is closed in X, and A is determined by \mathcal{A} . Every space is dominated by its hereditarily closure-preserving closed cover. It is well-known that every space dominated by metric (or paracompact) subsets is paracompact.

Corollary 10 ([11]). Let X be a space dominated by a closed cover $\{X_{\alpha} : \alpha \leq \gamma\}$ of metric subsets. Then X is metrizable if and only if X contains no (closed) copy of S_{ω} , and no S_2 (equivalently, X is strongly Fréchet).

Proof. For each $\alpha \leq \gamma$, let $Y_{\alpha} = X_{\alpha} - \bigcup \{X_{\beta} : \beta < \alpha\}$. Let $\mathcal{P} = \{Y_{\alpha} : \alpha \leq \gamma\}$. Then \mathcal{P} is a disjoint cover of X. Also, every convergent sequence $L = \{x_n : n \in N\}$ meets only finitely many Y_{α} (in fact, assume $x_{n_i} \in Y_{\alpha_i}$ with $\alpha_i < \alpha_{i+1}$, and let $D = \{x_{n_i} : i \in N\}$. Then each $D \cap X_{\alpha_i}$ is finite, hence closed in X_{α_i} . Thus D is closed discrete in X, a contradiction). Then, by Lemma 1, X is determined by \mathcal{P}^* . While, X is paracompact, and each element of \mathcal{P}^* is metric. Thus, the corollary holds by Theorem 8.

Let X be a space determined by a countable cover $\mathcal{P} = \{X_n : n \in N\}$ such that $X_n \subset X_{n+1}$ for each $n \in N$ (hence, if all X_n are closed in X, X is dominated by \mathcal{P}). Then X is called the *inductive limit* (or *direct limit*) of $\{X_n : n \in N\}$, and it is denoted by $X = \lim_{\longrightarrow} X_n$. For a space X determined by a countable cover $\{C_n : n \in N\}$, putting $X_n = \bigcup \{C_m : m \geq n\}$ for each $n \in N, X = \lim_{\longrightarrow} X_n$.

For a metric space M having a non-isolated point p, let $X_n = M^n \times \{p\} \times \{p\} \times \dots$ for each $n \in N$. Then, each X_n is metric, but $T = \lim_{\longrightarrow} X_n$ is not Fréchet, hence not metrizable, because T contains a closed copy of S_2 (and S_{ω}) ([10]). But, the following metrizability of the inductive limits holds.

Corollary 11. Let $X = \lim_{\longrightarrow} X_n$ such that each X_n is metric. Suppose that (a) X is paracompact, (b) each X_n is locally separable, or (c) each X_n is closed in X. Then X is metrizable if and only if X contains no (closed) copy of S_{ω} , and no S_2 (equivalently, X is strongly Fréchet).

In the previous corollary, the condition (a), (b), or (c) is essential even if the metric spaces X_n are open in X (*Example* (4)). Also, not every normal space X determined by an *increasing* closed (or open) cover of separable metric subsets is metrizable even if X is first countable, hence X contains no copy of S_{ω} , and no S_2 (by the ordinal space $X = [0, \omega_1)$).

References

- [1] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57(1965), 101-115.
- [2] S. P. Franklin, Spaces in which sequences suffice II, Fund. Math., 61(1967), 51-56.
- [3] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
- [4] V. I. Malyhin, On countable spaces having no bicompactification of countable tightness, Soviet Math. Dokl., 13(1972), 1407-1411.
- [5] E. Michael, A quintuple quotient quest, Gen. Topology Appl., 2(1972), 91-138.
- [6] F. Siwiec, Sequence-covering and countably bi-quotient mappings, 1(1971), Gen. Topology Appl., 1(1971), 143-154,
- [7] Y. Tanaka, Metrizability of certain quotient spaces, Fund. Math., 119(1983), 158-169.
- [8] Y. Tanaka, Point-countable covers and k-networks, Topology Proc., 12(1987), 327-349.
- [9] Y. Tanaka, Metrization II, Topics in General Topology (K. Morita and J. Nagata eds.), North-Holland, Amsterdam-New York, (1989), 275-314.
- [10] Y. Tanaka, Spaces determined by generalized metric subspaces, Topology Proc., 17(1992), 261-276.
- Y. Tanaka and Zhou Hao-xuan, Spaces dominated by metric subsets, Topology Proc., 9(1984), 149-163.

Department of Mathematics Tokyo Gakugei University Koganei, Tokyo, 184-8501, Japan e-mail: ytanaka@u-gakugei.ac.jp