Fuzzy congruence on *BCI*-algebras

MICHIRO KONDO

Received April 24, 2002

ABSTRACT. In this paper we define fuzzy congruences on BCI-algebras and their quotient algebras, and prove some fundamental results :

- 1. There is a one to one correspondence between the set FC(X) of all fuzzy closed ideals of X and the set $FCon_R(X)$ of all fuzzy regular congruences on X.
- Let X, Y be BCI-algebras and f : X → Y be a BCI-homomorphism. If A
 is a fuzzy ideal of Y, then the quotient algebras X/f⁻¹(A
 and f(X)/A
 are
 BCI-algebras and X/f⁻¹(A
) ≅ f(X)/A

1 Introduction While there are many papers about fuzzy BCK/BCI-algebras and fuzzy ideals of those, we find few papers about fuzzy congruences. In the usual theory of crisp BCK/BCI-algebras, there exists a close relationship between ideals and congruences. It is a natural question to extend the relationship to the case of fuzzy BCK/BCI-algebras. In this paper we define fuzzy congruences on BCI-algebras and quotient fuzzy BCI-algebras by those and investigate their properties.

2 Preliminaries By a *BCI*-algebra we mean an algebraic structure (X, *, 0) of type (2,0) satisfying the following conditions : For all $x, y, z \in X$,

- 1. ((x * y) * (x * z)) * (z * y) = 0
- 2. (x * (x * y)) * y = 0
- 3. x * x = 0
- 4. x * y = y * x = 0 implies x = y

We define a relation " \leq " on X by $x \leq y$ if and only if x * y = 0. It is clear from definition that \leq is a partial order on X. If a *BCI*-algebra X satisfies the extra condition 0 * x = 0 for all $x \in X$, then it is called a *BCK*-algebra. In any *BCI*-algebra X, we have :

 $\begin{array}{l} (P1) \ x * 0 = x \\ (P2) \ x * y \leq x \\ (P3) \ (x * y) * z = (x * z) * y \\ (P4) \ (x * z) * (y * z) \leq x * y \\ (P5) \ x \leq y \text{ implies } x * z \leq y * z \text{ and } z * y \leq z * x \end{array}$

A non-empty subset A of a BCI-algebra X is said to be an *ideal* of X if

- $(I1) \ 0 \in A$
- (12) $x * y \in A$ and $y \in A$ imply $x \in A$.

²⁰⁰⁰ Mathematics Subject Classification. 06B05, 68N17.

Key words and phrases. Fuzzy congruence, Fuzzy BCI-algebra.

Moreover an ideal A is called *closed* if $x \in A$ implies $0 * x \in A$.

We denote by C(X) the set of all closed ideals of X.

A binary relation θ on X is called a *congruence* on X if

 $(C1) \theta$ is an equivalence relation on X

(C2) $(x, y) \in \theta$ implies $(x * z, y * z) \in \theta$ and $(z * x, z * y) \in \theta$ for all $x, y, z \in X$

Also a relation θ is called *regular* if

(R) $(x * y, 0) \in \theta$ and $(y * x, 0) \in \theta$ imply $(x, y) \in \theta$

By $Con_R(X)$ we mean the set of all regular congruences on X. We have the following result ([1, 2]):

Proposition 1. Let X be a BCI-algebra. Then C(X) and $Con_R(X)$ are lattices with respect to set inclusion and they are isomorphic as lattices, that is, $C(X) \cong Con_R(X)$.

Let X be a *BCI*-algebra. By a *fuzzy set* of X we mean a mapping from X to [0, 1]. A fuzzy set \overline{A} of X (i.e. $\overline{A} : X \to [0, 1]$) is called a *fuzzy ideal* if, for all $x, y, z \in X$

(i) $\bar{A}(0) \ge \bar{A}(x)$ (ii) $\bar{A}(x) > \bar{A}(x*y) \land \bar{A}(y) (= \min\{\bar{A}(x*y), \bar{A}(y)\})$

A fuzzy ideal \overline{A} of X is called *closed* if $\overline{A}(0 * x) \ge \overline{A}(x)$ for every $x \in X$. It is easy to show the next result. So we omit the proof.

Lemma 1. Let \overline{A} be a fuzzy ideal of X. Then

(1) If $x \leq y$ then $\overline{A}(x) \geq \overline{A}(y)$ (2) $\overline{A}(x * z) \geq \overline{A}(x * y) \wedge \overline{A}(y * z)$

We define a fuzzy congruence on a *BCI*-algebra X. A binary function θ from $X \times X$ to [0,1] is called a *fuzzy congruence* on X if it satisfies the conditions : For all $x, y, z \in X$,

- 1. $\overline{\theta}(0,0) = \overline{\theta}(x,x)$
- 2. $\overline{\theta}(x,y) = \overline{\theta}(y,x)$
- 3. $\overline{\theta}(x,z) \geq \overline{\theta}(x,y) \wedge \overline{\theta}(y,z)$
- 4. $\overline{\theta}(x * u, y * u), \overline{\theta}(u * x, u * y) \ge \overline{\theta}(x, y)$

Lemma 2. If $\overline{\theta}$ satisfies the conditions (2),(3), and (4) above, then (1) $\overline{\theta}(0,0) = \overline{\theta}(x,x)$ if and only if (1)' $\overline{\theta}(0,0) \ge \overline{\theta}(x,y)$, for all $x, y \in X$,

Proof. Suppose that $\bar{\theta}(0,0) = \bar{\theta}(x,x)$. Since $\bar{\theta}$ satisfies the conditions (2) and (3), we have $\bar{\theta}(0,0) = \bar{\theta}(x,x) \ge \bar{\theta}(x,y) \land \bar{\theta}(y,x) = \bar{\theta}(x,y)$.

Conversely, it is sufficient to prove $\overline{\theta}(0,0) \leq \overline{\theta}(x,x)$. From (4), we have $\overline{\theta}(0,0) \leq \overline{\theta}(x*0,x*0) = \overline{\theta}(x,x)$.

Theorem 1. If \overline{A} is a fuzzy ideal of X, then the fuzzy relation $\overline{\theta_A}(x, y)$ defined by $\overline{\theta_A}(x, y) = \overline{A}(x * y) \wedge \overline{A}(y * x)$ is a fuzzy congruence.

Proof. We only show that $\overline{\theta_A}$ satisfies the conditions (3) and (4). For the case of (3), we have

$$\begin{split} \bar{\theta_A}(x,z) &= \bar{A}(x*z) \land \bar{A}(z*x) \ge \bar{A}(x*y) \land \bar{A}(y*z) \land \bar{A}(z*y) \land \bar{A}(y*x) \\ &= (\bar{A}(x*y) \land \bar{A}(y*x)) \land (\bar{A}(y*z) \land \bar{A}(z*y)) \\ &= \bar{\theta_A}(x,y) \land \bar{\theta_A}(y,z) \end{split}$$

For the case of (4), it follows from lemma 1 that

$$\begin{split} \bar{\theta}(x*u,y*u) &= \bar{A}((x*u)*(y*u)) \wedge \bar{A}((y*u)*(x*u)) \\ &\geq \bar{A}(x*y) \wedge \bar{A}(y*x) \\ &= \bar{\theta_A}(x,y) \end{split}$$

It is similar the case of $\overline{\theta_A}(u * x, u * y) \ge \overline{\theta_A}(x, y)$.

Conversely,

Theorem 2. If $\bar{\theta}$ is a fuzzy congruence, then the function \bar{A}_{θ} from X to [0,1] defined by $\bar{A}_{\theta}(x) = \bar{\theta}(x,0)$ is a fuzzy ideal of X.

Proof. By lemma 2, $\bar{A}_{\theta}(0) = \bar{\theta}(0,0) \ge \bar{\theta}(x,0) = \bar{A}_{\theta}(x)$ and $\bar{A}_{\theta}(x) = \bar{\theta}(x,0) \ge \bar{\theta}(x,x*y) \land \bar{\theta}(x*y,0) \ge \bar{\theta}(0,y) \land \bar{\theta}(x*y,0) = \bar{A}_{\theta}(y) \land \bar{A}_{\theta}(x*y)$ Hence \bar{A}_{θ} is the fuzzy ideal of X.

In general, for every fuzzy ideal \bar{A} of X, we have $\bar{A_{\theta_A}}(x) = \bar{\theta_A}(x,0) = \bar{A}(x*0) \wedge \bar{A}(0*x) = \bar{A}(x) \wedge \bar{A}(0*x) \leq \bar{A}(x)$

In particular if X is a *BCK*-algebra then we have $A_{\theta_A} = \bar{A}$ for every fuzzy *BCK*-ideal \bar{A} of X.

Lemma 3. If \overline{A} is a fuzzy closed ideal, then we have $\overline{\theta_A}(x * y, 0) \wedge \overline{\theta_A}(y * x, 0) = \overline{\theta_A}(x, y)$, that is, $\overline{\theta_A}$ is a fuzzy regular congruence.

Proof. Since \overline{A} is closed, it follows that $\overline{\theta_A}(x * y, 0) = \overline{A}(x * y) \land \overline{A}(0 * (x * y)) = \overline{A}(x * y)$ and similarly $\overline{\theta_A}(y * x, 0) = \overline{A}(y * x)$. Hence $\overline{\theta_A}(x * y, 0) \land \overline{\theta_A}(y * x, 0) = \overline{A}(x * y) \land \overline{A}(y * x) = \overline{\theta_A}(x, y)$. This means that if $\overline{A} \in FC(X)$ then $\overline{\theta_A} \in FCon_R(X)$.

Conversely we have

Lemma 4. If $\bar{\theta}$ is a fuzzy regular congruence, then \bar{A}_{θ} is a fuzzy closed ideal.

Proof. It follows from definition that

$$\begin{aligned} A_{\theta}(0*x) &= \theta(0*x,0) \\ &= \bar{\theta}(0*x,x*x) \\ &\geq \bar{\theta}(0,x) = \bar{\theta}(x,0) = \bar{A}_{\theta}(x) \end{aligned}$$

Thus \overline{A}_{θ} is closed.

From the above we can conclude that

- (1) For any fuzzy closed ideal \overline{A} of X, $\overline{A} = A_{\theta_A}^-$.
- (2) For any fuzzy regular congruence $\bar{\theta}$ of X, $\bar{\theta} = \bar{\theta_A}$.

KONDO

Because, for the case of (1), we have $\overline{A_{\theta_A}}(x) = \overline{\theta_A}(x,0) = \overline{A}(x*0) \wedge \overline{A}(0*x) = \overline{A}(x) \wedge \overline{A}(0*x) = \overline{A}(x)$, and for the case of (2), since $\overline{\theta}$ is regular, $\theta_{A_\theta}(x,y) = \overline{A}_{\theta}(x*y) \wedge \overline{A}_{\theta}(y*x) = \overline{\theta}(x*y,0) \wedge \overline{\theta}(y*x,0) = \overline{\theta}(x,y)$.

Thus we get one of main theorems of the paper.

Theorem 3. Let X be a BCI-algebra. Then we have $FC(X) \cong FCon_R(X)$

Proof. We define a map ξ from FC(X) to $FCon_R(X)$ by $\xi(\overline{A}) = \overline{\theta_A}$ for any fuzzy closed ideal \overline{A} of X. It is clear from the above that ξ is an isomorphism. We note that FC(X) and $FCon_R(X)$ are lattices with set inclusion orders, respectively.

We can also show the next theorem, which is so-called the transfer principle ([3]).

Theorem 4. If $\overline{\theta}$ is a fuzzy relation on X, then $\overline{\theta}$ is a fuzzy congruence if and only if for all $\alpha \in [0,1]$ if $U(\overline{\theta}:\alpha) \neq \emptyset$ then $U(\overline{\theta}:\alpha)$ is a congruence on X, where $U(\overline{\theta}:\alpha) = \{(x,y) \in X \times X \mid \overline{\theta}(x,y) \geq \alpha\}$

Proof. (\Longrightarrow) Suppose that $\overline{\theta}$ is a fuzzy congruence on X. Take any $\alpha \in [0, 1]$ such that $U(\overline{\theta} : \alpha)$ is not empty. It is sufficient to show that $U(\overline{\theta} : \alpha)$ is a congruence on X. Since $U(\overline{\theta} : \alpha)$ is not empty, there is an element $(u, v) \in X \times X$ such that $(u, v) \in U(\overline{\theta} : \alpha)$. This means that $\alpha \leq \overline{\theta}(u, v)$. Since $\overline{\theta}$ is the congruence, we have $\alpha \leq \overline{\theta}(u, v) \leq \overline{\theta}(0, 0) = \overline{\theta}(x, x)$. That is, $(x, x) \in U(\overline{\theta} : \alpha)$.

Suppose that $(x, y), (y, z) \in U(\overline{\theta} : \alpha)$. Since $\alpha \leq \overline{\theta}(x, y), \overline{\theta}(y, z)$, we have $\alpha \leq \overline{\theta}(x, y) \land \overline{\theta}(y, z) \leq \overline{\theta}(x, z)$. Hence $(x, z) \in U(\overline{\theta} : \alpha)$.

At last we assume that $(x, y) \in U(\overline{\theta} : \alpha)$. Since $\alpha \leq \overline{\theta}(x, y) \leq \overline{\theta}(x * u, y * u), \overline{\theta}(u * x, u * y)$, we have $(x * u, y * u), (u * x, u * y) \in U(\overline{\theta} : \alpha)$.

Hence from the above we can conclude that $U(\bar{\theta}:\alpha)$ is the congruence on X if it is not empty.

(\Leftarrow) Conversely, suppose that for all $\alpha \in [0,1]$ if $U(\bar{\theta}:\alpha) \neq \emptyset$ then $U(\bar{\theta}:\alpha)$ is a congruence on X. We only show that $\bar{\theta}(x,z) \geq \bar{\theta}(x,y) \wedge \bar{\theta}(y,z)$. Take any $\alpha \in [0,1]$ such that $U(\bar{\theta}:\alpha)$ is not empty. Since the relation $U(\bar{\theta}:\alpha)$ is transitive, if $(x,y), (y,z) \in U(\bar{\theta}:\alpha)$ then $(x,z) \in U(\bar{\theta}:\alpha)$. This means that if $\bar{\theta}(x,y), \bar{\theta}(y,z) \geq \alpha$ then $\bar{\theta}(x,z) \geq \alpha$ for any α . Hence we have $\bar{\theta}(x,z) \geq \bar{\theta}(x,y) \wedge \bar{\theta}(y,z)$.

The other cases can be proved similarly.

Now we will define a quotient algebra by a fuzzy ideal. Let X be a *BCI*-algebra and \overline{A} be a fuzzy ideal of X. For any element $x, y \in X$, we define $x \sim_{\overline{A}} y$ by

$$A(x * y) = A(y * x) = A(0),$$

that is, $\theta_{\bar{A}}(x,y) = \bar{A}(x)$. Then it is clear that

Lemma 5. $\sim_{\bar{A}}$ is a congruence relation on X.

We define $X/\bar{A} = \{x/\bar{A} | x \in X\}$ and $x/\bar{A} = \{y \in X | x \sim_{\bar{A}} y\}$. We note that these sets are not fuzzy sets but crisp ones. By a fuzzy congruent BCI-algebra induced by a fuzzy ideal \bar{A} , we mean a map ξ from X/\bar{A} to [0,1] which is defined by $\xi(x/\bar{A}) = \bar{A}(x)$. It is obvious that the map ξ is well-defined. Now we consider the property of a crisp set X/\bar{A} . For any element $x/\bar{A}, y/\bar{A} \in X/\bar{A}$, we define $x/\bar{A} * y/\bar{A} = (x * y)/\bar{A}$. It is easy to show

Theorem 5. For any BCI-algebra X and fuzzy ideal \overline{A} of X, X/\overline{A} is a BCI-algebra.

Proof. We only show that X/\bar{A} satisfies the condition $(4) : x/\bar{A} * y/\bar{A} = y/\bar{A} * x/\bar{A} = 0/\bar{A}$ implies $x/\bar{A} = y/\bar{A}$. Suppose that $x/\bar{A} * y/\bar{A} = y/\bar{A} * x/\bar{A} = 0/\bar{A}$. Since $x * y \sim_{\bar{A}} y * x \sim_{\bar{A}} 0$, it follows from definition that $\bar{A}(x * y) = \bar{A}(y * x) = \bar{A}(0)$ and hence $x \sim_{\bar{A}} y$, This means that $x/\bar{A} = y/\bar{A}$. We have some applications. A *BCK*-algebra X is called *commutative* when it satisfies x * (x * y) = y * (y * x) for all $x, y \in X$. It is well-known that the condition is equivalent to the following : x * y = 0 implies x * (y * (y * x)) = 0. For a fuzzy ideal \overline{A} of a *BCK*-algebra X is called *fuzzy commutative* if it satisfies the condition $\overline{A}(x * (y * (y * x))) \ge \overline{A}(x * y)$ for all $x, y \in X$. In this case we have the following.

Theorem 6. Let \overline{A} be a fuzzy ideal of a BCK-algebra X. Then we have \overline{A} : fuzzy commutative ideal $\iff X/\overline{A}$: commutative BCK-algebra.

Proof. (\Longrightarrow) It is sufficient to prove that $x/\bar{A}*y/\bar{A} = 0/\bar{A}$ implies $x/\bar{A}*(y/\bar{A}*x/\bar{A})) = 0/\bar{A}$, that is, $x * y \sim 0$ implies $x * (y * (y * x)) \sim 0$. Suppose that $x * y \sim 0$. It follows from definition that $\bar{A}(x * y) = \bar{A}(0)$. Since \bar{A} is commutative, we have $\bar{A}(0) = \bar{A}(x * y) \leq \bar{A}(x * (y * (y * x)))$ and hence $\bar{A}(x * (y * (y * x))) = \bar{A}(0)$.

On the other hand, since X is the *BCK*-algebra, it follows that $\overline{A}(0*(x*(y*(y*x)))) = \overline{A}(0)$. Hence we get that $x*(y*(y*x)) \sim 0$.

 $(\Longleftrightarrow) \text{ Suppose that } X/\bar{A} \text{ is a commutative } BCK\text{-algebra. Since } \bar{A} \text{ is a fuzzy ideal, we} \\ \text{have } \bar{A}(x*(y*(y*x))) \geq \bar{A}((x*(y*(y*x)))*(x*y)) \wedge \bar{A}(x*y) = \bar{A}((x*(x*y))*(y*(y*x))) \wedge \bar{A}(x*y) = \bar{A}((x*(x*y))*(y*(y*x))) \wedge \bar{A}(x*y). \\ \text{That } X/\bar{A} \text{ is the commutative } BCK\text{-algebra implies } x/\bar{A}*(x/\bar{A}*y/\bar{A}) = y/\bar{A}*(y/\bar{A}*x/\bar{A}), \text{ hence } x*(x*y) \sim y*(y*x). \\ \text{This means that } \bar{A}((x*(x*y))*(y*(y*x))) = \bar{A}(0). \\ \text{From the above we get } \bar{A}(x*(y*(y*x))) \geq \bar{A}(0) \wedge \bar{A}(x*y) = \bar{A}(x*y). \\ \text{Thus } \bar{A} \text{ is the fuzzy commutative ideal.} \\ \square$

For the other cases, we can show the similar result. For example, we can show the following for the positive implicative BCK-algebra. A BCK-algebra X is called *positive implicative* if (x * y) * y = 0 implies x * y = 0 for all $x, y \in X$. For a fuzzy ideal \overline{A} of X, \overline{A} is said to be *fuzzy positive implicative* if $\overline{A}(x * y) \ge \overline{A}((x * y) * y)$ for all $x, y \in X$. In this case, we can show the next. The proof is clear, so we omit it.

Theorem 7. For any BCK-algebra X and a fuzzy ideal \overline{A} of X, X/\overline{A} is a positive implicative BCK-algebra if and only if \overline{A} is a fuzzy positive implicative ideal of X.

These results are extentions of the following results respectively : For any BCK-algebra X and ideal A of X,

- (1) X/A : commutative BCK-algebra $\iff A$: commutative ideal
- (2) X/A: positive implicative BCK-algebra $\iff A$: positive implicatice ideal

Let X, Y be BCI-algebras and f be a BCI-homomorphism, that is, a map satisfying f(x * y) = f(x) * f(y) for all $x, y \in X$. If \overline{B} is a fuzzy ideal of Y, then the map $f^{-1}(\overline{B})$ defined by $f^{-1}(\overline{B})(x) = \overline{B}(f(x))$ for all $x \in X$ is a fuzzy ideal of X ([4]).

In this case we can show the following result which is an extension of *homomorphism* theorem.

Theorem 8. Let X, Y be BCI-algebras, f a BCI-homomorphism, and \overline{B} a fuzzy ideal of Y. Then there is a bijective BCI-homomorphism from $X/f^{-1}(\overline{B})$ onto $f(X)/\overline{B}$, that is, $X/f^{-1}(\overline{B}) \cong f(X)/\overline{B}$.

Proof. We define a map h from $X/f^{-1}(\bar{B})$ to $f(X)/\bar{B}$ by $h(x/f^{-1}(\bar{B})) = f(x)/\bar{B}$ for all $x \in X$. The map h is well-defined. Because, if $x/f^{-1}(\bar{B}) = y/f^{-1}(\bar{B})$, since $x \sim_{f^{-1}(\bar{B})} y$, then we have $f^{-1}(\bar{B})(x * y) = f^{-1}(\bar{B})(y * x) = f^{-1}(\bar{B})(0)$ and hence $\bar{B}(f(x) * f(y)) = \bar{B}(f(y) * f(x)) = \bar{B}(f(0)) = \bar{B}(0')$ by definition of $f^{-1}(\bar{B})$. This means that $f(x) \sim_{\bar{B}} f(y)$, that is, $f(x)/\bar{B} = f(y)/\bar{B}$. Hence h is well-defined.

KONDO

For injectiveness of h, we suppose that $h(x/f^{-1}(\bar{B})) = h(y/f^{-1}(\bar{B}))$, that is, $f(x)/\bar{B} = f(y)/\bar{B}$. Since $f(x) \sim_{\bar{B}} f(y)$, we have $\bar{B}(f(x) * f(y)) = \bar{B}(f(y) * f(x)) = \bar{B}(0')$. It follows from definition that $f^{-1}(\bar{B})(x * y) = f^{-1}(\bar{B})(y * x) = f^{-1}(\bar{B})(0)$ and hence that $x/f^{-1}(\bar{B}) = y/f^{-1}(\bar{B})$.

It is easy to show that h is a surjective *BCI*-homomorphism. Thus we can conclude that $X/f^{-1}(\bar{B}) \cong f(X)/\bar{B}$.

 $\int \frac{d}{dt} \int \frac{d}{dt$

In particular, if f is surjective then we have $X/f^{-1}(\bar{B}) \cong Y/\bar{B}$. From the above we can prove that two quotient algebras $X/f^{-1}(\bar{B})$ and $f(X)/\bar{B}$ are isomorphic as fuzzy quotient algebras, that is,

Theorem 9. For two fuzzy quotient algebras ξ and η which are defined by $\xi: X/f^{-1}(\bar{B}) \to [0,1]$, $\xi(x/f^{-1}(\bar{B})) = f^{-1}(\bar{B})(x)$ $\eta: f(X)/\bar{B} \to [0,1]$, $\eta(f(x)/\bar{B}) = \bar{B}(f(x))$, respectively, there exists a bijective map h from $X/f^{-1}(\bar{B})$ to $f(X)/\bar{B}$ such that $\eta \circ h = \xi$.

References

- M.Kondo, Congruences and closed ideals in BCI-algebras, Math. Japonica, vol 46 (1997), 491-496
- [2] M.Kondo, On (*)-ideals in BCI-algebras, Math. Japonica, vol 50 (1999), 201-205
- [3] M.Kondo and Y.B.Jun, On the transfer principle of fuzzy BCK/BCI-algebras, submitted
- [4] X. Ougen, Fuzzy BCK-algebras, Math. Japonica, vol. 36 (1991), 935-942.

Michiro Kondo e-mail:kondo@sie.dendai.ac.jp School of Information Environment Tokyo Denki University, Inzai, 270-1382 JAPAN