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Primitive recursive analogues of the least regular cardinal

and the least weakly inaccessible cardinal �y
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Abstract. In this paper, we establish primitive recursive analogues of certain regular

cardinals including the least weakly inaccessible cardinal. In order to embody our

ideas, we utilize certain ordinal representation systems, which are based on the ideas

of M.Rathjen and W.Buchholz.

1 Introduction For more than twenty years, several proof theorists have investigated

proof theoretic ordinals of set theoretic systems based on KP (Kripke-Platek set theory).

In order to obtain such ordinals, they deal with several large cardinals and admissible

ordinals. For example, they �rst consider a certain cardinal � and an admissible ordinal �

corresponding to � and a system KP� which is based on KP and characterized by �, and

next they de�ne certain sets of ordinals and functions by employing � (which are called

\Skolem hulls and collapsing functions") and, by using such sets and functions, establish a

primitive recursive structure which generates the proof theoretic ordinal of KP�.

Observing their inventions such as Skolem hulls, collapsing functions, and primitive

recursive structures above, we can expect a possibility of existence of primitive recursive

ordinals corresponding to large cardinals (and admissible ordinals) which are employed for

establishing the proof theoretic ordinals.

In this paper, we propose two primitive recursive ordinals which can be expected to

correspond to the least regular cardinal and the least weakly inaccessible cardinal. These

ordinals are obtained >from primitive recursive structures T (
) and T (I), which are called

\EORS"s (elementary ordinal representation systems) and established by certain Skolem

hulls and collapsing functions. In order to establish T (
) and T (I), we refer ideas of

M.Rathjen in [Ra98], [Ra99] and that of W.Buchholz in [Bu93], which were employed for

establishing the proof theoretic ordinals of KP! and KPi (see also [Po98]).

In Section 2, we de�ne certain Skolem hulls and collapsing functions and de�ne an EORS

T (
). Thus, we de�ne a primitive recursive analogue of the least regular cardinal greater

than ! by using T (
). In Section 3, we de�ne an EORS T (I) by using Skolem hulls and

collapsing functions de�ned in [Bu93], and de�ne a set of ordinals obtained from T (I) to
be a set of primitive recursive ordinals corresponding to regular cardinals less than or equal

to the least weakly inaccessible cardinal. Then we show that an ordinal  II (
1) which is

characterized by T (I) has a property similar to that of the least weakly inaccessible cardinal,

that is,  II (
1) is an element of the set above as well as the limit of elements of the set

which are less than  II (
1).
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Rathjen, with whose fruitful advice I have been able to improve this article.
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In the last section, we compare countable ordinals denoted by T (
) with those denoted

by T (I), in particular, the primitive recursive analogue of the least regular ordinal which is

de�ned in Section 2 with that de�ned in Section 3.

2 A primitive recursive analogue of the least regular cardinal In this section,

we de�ne a candidate of a primitive recursive ordinal corresponding to the least weakly

inaccessible cardinal. For this discussion, we de�ne certain Skolem hulls and collapsing

functions (see [Bu93], [Ra98] and [Po98]). We also refer to [Ra90], [Ra95], [Bu92] and

[Bu93] to show lemmas in this section.

By + we denote ordinary (noncommutative) ordinal addition. An ordinal � is called an

additive principal number if � is closed under +. We let AP denote the class of all additive

principal numbers. We also let ' denote the Veblen function, which is de�ned by: for any

ordinals �; �, '�� is the �th additive principal number 
 such that 8� < �('�
 = 
). Note

that '0� is often denoted by !� and '1� by "�. We also let ! denote the least in�nite

ordinal, and 
 the least uncountable ordinal, which is the least regular cardinal.

De�nition 2.1 For each ordinal � and �, we de�ne C
(�; �) as well as  �


by recursion

on �:

(
1) � [ f0;
g � C

(�; �).

(
2) 
 = 
1 + 
2 & 
1; 
2 2 C

(�; �) ) 
 2 C
(�; �).

(
3) 
 = '
1
2 & 
1; 
2 2 C

(�; �) ) 
 2 C
(�; �).

(
4) 
 =  
�



& � 2 C
(�; �) & � < � & � 2 C
(�; 
) ) 
 2 C
(�; �).

 
�


' minf� < 
 : C
(�; �) \ 
 = �g:

Lemma 2.2 (1) For any a � a
0 and � � �

0, C
(�; �) � C

(�0

; �
0).

(2) If � is limit, then C
(�; �) =
S
Æ<� C


(�; Æ).

(3) If � is limit, then C
(�; �) =
S

<� C


(
; �).

Proof. (1) and (2) are trivial. For (3), it suÆces to show that

8� (� 2 C
(�; �) ) 9
 < �(� 2 C
(
; �)))

by induction on �. This can be shown easily. <=

Lemma 2.3  
�

 is de�ned and  �
 < 
.

Proof. Let f�ngn<! be a sequence of ordinals de�ned by:

�0 = sup(C
(�; 0) \ 
) and �n+1 = sup(C
(�; �n) \ 
);

and let �� be supf�n : n < !g. Since the cardinality of C
(�; 0) is !, �0 < 
 by the

regularity of 
. By repetition of this argument, one obtains �n < 
 and �� < 
. So, by the

de�nition of �� and Le.2.2,

C

(�; ��) \ 
 =

[

n

C

(�; �n) \ 
 = �

�
:

Thus,  �


is an ordinal less than or equal to �� < 
. <=

Lemma 2.4 Each ordinal of the form  
�


is strongly critical, that is, for each �,  �



is

closed under '.

Proof.  �


= C


(�; �


) \ 
 follows from Def.3.1, and both of 
 and C
(�; �



) are closed

under the operations + and '. So,  �


is also closed under these operations. <=
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De�nition 2.5 (1) 
 =nf 
1 + : : :+ 
n : , 
 = 
1 + : : :+ 
n and 
 > 
1 � � � � � 
n and


1; � � � ; 
n 2 AP, where AP stands for f!� : � is an ordinalg.
(2) 
 =nf '�� : , 
 = '�� & �; � < 
.

(3) 
 =nf  
�


: , 
 =  

�


& � 2 C
(�; 
).

Lemma 2.6 (1) If � 2 C
(�; �


) and � < �, then  �



<  

�



.

(2) Let � =nf  
�


and � =nf  

�



. Then, � < � i� � < �.

(3) If � =nf  
�

, � =nf  

�


and if � = �, then � = �.

Proof.We can obtain (3) from (2), and (2) from (1). So, we show (1) as follows. By Def.2.1

and Le.2.2.(1),  
�



� C


(�; 
�



) \ 
 � C


(�;  
�



) \ 
 =  

�



. So, by the de�nition of  �



,

 
�


�  

�


. Thus, � 2 C


(�; �


) � C


(�;  
�


). Since we also have � < � and  

�


< 
,

 
�

 2 C


(�;  
�


) \ 
 = �. <=

De�nition 2.7 We de�ne the set T (
) of ordinals and the rank r(
) (< !) of each element


 of T (
), as follows:
(T
1) 0; I 2 T (
) and r(0) = r(I) = 0.

(T
2) If 
 =nf 
1+� � �+
n and 
1; � � � ; 
n 2 T (
), then 
 2 T (
) and r(
) = maxfr(
1); � � � ; r(
n)g+
1.

(T
3) If 
 =nf '�� & �; � 2 T (
) & (
 < 
 or � = 0), then 
 2 T (
) & r(
) =

maxfr(�); r(�)g + 1.

(T
4) If 
 =nf  
�

 and � 2 T (
), then 
 2 T (
) and r(
) = r(�) + 1.

We omit proofs of the following lemmas 2.8 and 2.9. We will show the more generalized

versions of them in the next section (see Le.3.10 and Le.3.11).

Lemma 2.8 Every element of T (
) has a unique expression,

Lemma 2.9 T (
) = C

("
+1; 0) \ "
+1, in particular,  

"
+1



= T (
) \ 
.

Remark 2.10 One can consider T (
), =nf and several properties of the sets C
(�; �) to

be formalized as expressions by �nite strings of suitable symbols (for example, see [Ra91;

Sec.2]). Indeed, we can regard T (
) as a primitive recursive order structure.

Now we de�ne primitive recursive analogues of regular cardinals by using T (
).

De�nition 2.11 A primitive recursive ordinal 
 is called a proof-theoretically regular or-

dinal based on T (
) if 
 is an element of T (
) and of the form  
�


, where � is a regular

cardinal.

Proposition 2.12  




is the least proof-theoretically regular ordinal based on T (
). In

fact, T (
) contains only one proof-theoretically regular ordinal based on T (
).

Proof. It is straightforward since no element of T (
) besides 
 which is a regular cardinal
1. <=

By Le.2.4,  0


� �0 which is the least strongly critical ordinal. (In fact, one can easily

check  
0


= �0.) This means  




is much larger than �0. In Section 4, the reader shall

know that T (
) is an EORS for KP!, that is,  
"
+1



is equal to the proof theoretic ordinal

of KP!. Therefore, we can consider  



to be an ordinal related to the least admissible

ordinal > ! as well as the least regular cardinal.

1In this paper, we consider each regular cardinal to be uncountable. So, we do not regard ! (= '00) as

a regular cardinal.
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3 A primitive recursive analogue of the least weakly inaccessible cardinal In

this section, we de�ne a candidate for a primitive recursive ordinal corresponding to the least

weakly inaccessible cardinal. For this discussion, we introduce Skolem hulls and collapsing

functions de�ned in [Bu93] and refer to ideas in [Bu92], [Bu93] and [Ra98].

By I we always denote the least weakly inaccessible cardinal. For each ordinal �, we let


� denote the �th cardinal. For example, 
0 = !, 
1 = 
 and 
I = I. Also we let � and

� denote elements of RI := fIg [ f
�+1 : � < Ig.

De�nition 3.1 ([Bu93]: Def.4.2) For each ordinal � and �, we de�ne a set CI(�; �) as

well as a function  �I by recursion on �:

(I1) � [ f0; Ig � C
I(�; �).

(I2) 
 = 
1 + 
2 & 
1; 
2 2 C
I(�; �) ) 
 2 CI(�; �).

(I3) 
 = '
1
2 & 
1; 
2 2 C
I(�; �) ) 
 2 CI(�; �).

(I4) 
 = 

1 & 
1 2 C
I(�; �) ) 
 2 CI(�; �).

(I5) 
 =  
�

I (�) & �; � 2 CI(�; �) & � < � & � 2 CI(�; 
) ) 
 2 CI(�; �).

 
�
I (�) ' minf� < � : CI(�; �) \ � = � ^ � 2 CI(�; �)g:

One can show properties of CI and  I similarly to the previous section. (We omit proofs

of lemmas below whenever they are proved quite similarly to the previous section.)

Lemma 3.2 (1) For any � � �
0 and � � �

0, CI(�; �) � C
I(�0

; �
0).

(2) If � is limit, then CI(�; �) =
S
Æ<� C

I(�; Æ). If � is limit, then CI(�; �) =
S

<�C

I(
; �).

Lemma 3.3 If � 2 CI(�; �), then  �I (�) is de�ned and  �I (�) < �.

Proof. By Le.3.2, � 2 CI(�; �) implies that there exists an � < � with � 2 CI(�; �). So, by

considering a sequence f�ngn<! with �0 = sup(CI(�; �)\�) and �n+1 = sup(CI(�; �n)\�),
we can show this lemma in a way similar to the proof of Le.2.3. <=

Remark 3.4 (1) If � < I, then � is of the form 
�+1 and � < �, and hence, � 2 CI(�; �)

and hence � 2 CI(�; �). Thus,  �I (�) is de�ned whenever � < I.

(2) Le.3.3 implies that � 2 C
I(�; �I (�)) whenever � 2 C

I(�; �). One can also see that

 
�
I (�) is not regular, by seeing the proofs of Le.3.3 and Le.2.3.

Lemma 3.5 Each ordinal of the form  
�
I (�) is strongly critical.

De�nition 3.6 (1) 
 =nf 
� : , 
 = 
� & � < 
.

(2) 
 =nf  
�
I (�) : , 
 =  

�
I (�) & � 2 CI(�; 
).

Lemma 3.7 If 
 =nf  
�
I (�), Æ =nf  

�

I (�) and 
 = Æ, then � = � and � = �.

Lemma 3.8 Let � =nf  
�
I (�) and � =nf  

�
I (�). Then, � < � i� all the following properties

hold.

(i) If � < �, then � < �.

(ii) If � = �, then � < �.

(iii) If � > �, then � < �.

De�nition 3.9 ([Ra98]: Def.3.3) We de�ne the set T (I) of ordinals and the rank r(
) (<

!) of each element 
 of T (I), as follows:
(TI1) 0; I 2 T (I) and r(0) = r(I) = 0.
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(TI2) If 
 =nf 
1+� � �+
n & 
1; � � � ; 
n 2 T (I), then 
 2 T (I) & r(
) = maxfr(
1); � � � ; r(
n)g+
1.

(TI3) If 
 =nf '�� & �; � 2 T (I) & (
 < I or � = 0), then 
 2 T (I) & r(
) =

maxfr(�); r(�)g + 1.

(TI4) If 
 =nf 
� < I, � > 0 & � 2 T (I), then 
 2 T (I) & r(
) = r(�) + 1.

(TI5) If 
 =nf  
�
I (�) & �;� 2 T (I), then 
 2 T (I) & r(
) = maxfr(�); r(�)g + 1.

Lemma 3.10 (1) For each i = 1; � � � ; 4, any element which is constructed by (TI i) at the
last step can not be constructed by (TIj) at the last step for any j = i+ 1; � � � ; 5.
(2) Every element of T (I) has a unique expression,

Proof. (1) We check this lemma, as follows.

(i) Clearly, we can obtain 0 and I only by (TI1).
(ii) While AP does not contain any element constructed by (TI2) (at the last step), AP

contains every element constructed by each of (TI3)�(TI5) (at the last step).
(iii) Any element constructed by (TI2) or (TI3) is not strongly critical. However, by Le.3.5,
every element constructed by (TI4) or (TI5) is strongly critical.
(iv) Let 
 be an element constructed by (TI4). Then, 
 is a regular cardinal less than I.

So, by Re.3.4.(2), we can not obtain 
 by (TI5).
(2) The results follows from (1) immediately above and Le.3.7. <=

Lemma 3.11 (1) T (I) = C
I("I+1; 0) \ "I+1.

(2) For each � � "I+1, C
I(�; �I (
1)) = C

I(�; 0).

(3) In particular,  
"I+1
I (
1) = T (I) \ 
1.

Proof. (1) �: By induction on the de�nition of C("I+1; 0). �: By induction on the rank of

each element of T (I).

(2) By induction on �. Assume that, for each � < �, CI(�;  
�

I (
1)) = C
I(�; 0): It suÆces

to show  
�
I (
1) � C

I(�; 0).

Claim 1: 8
 2 CI(�; 0) \ 
1 (
 � C
I(�; 0)).

(Proof of Claim 1: (Case 1) Let 
 be a strongly critical ordinal less than 
1. Then, 
 has the

form  
�
I (�) for some � < � and some �. Since � > 
1 implies 
1 2 C

I(�;  
�
I (�)) \ � = 
,

we have � = 
1 from 
 < 
1. Therefore, since CI(�;  
�

I (
1)) = C
I(�; 0) by induction

hypothesis, 
 =  
�

I (
1) � C
I(�; 0) � C

I(�; 0).

(Case 2) Let 
 be an ordinal less than 
1. Then, let 
0 = maxff0g[SC(
)g, where SC(
)
denotes a set de�ned by:

(i) SC(0) := the empty set;

(ii) SC(
) := f
g if 
 is a strongly critical ordinal;

(iii) SC(
 + Æ) := SC(
) [ SC(Æ);
(iv) SC('
Æ) := SC(
) [ SC(Æ).
Then, by (Case 1), 
0 [ f
0g � C

I(�; 0). So, 
 � 

� � C

I(�; 0), where 
� = minf� :

� is a strongly critical ordinal larger than 
0g. <=)

By Claim 1, CI(�; 0) \
1 is an ordinal. Let � = C
I(�; 0) \
1. Then, by induction on the

de�nition of CI(�; �), we can easily show

8
 2 CI(�; �) \ 
1 (
 2 C
I(�; 0) \ 
1):

So, � � C
I(�; �) \ 
1 � C

I(�; 0) \ 
1 = �. Therefore, since 
1 2 C
I(�; �), we have

 
�
I (
1) � � by the de�nition of  �I (
1). So, we have  

�
I (
1) � C

I(�; 0).
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(3) By (1) and (2) above, one obtain  
"I+1
I (
1) = C

I("I+1;  
"I+1
I (
1))\
1 = C

I("I+1; 0)\

1 = T (I) \ 
1. <=

In a way similar to Re.2.10, we can regard T (I) as a primitive recursive order structure.

In a way similar to Def.2.11, we de�ne primitive recursive analogues of certain regular

cardinals, as follows. Let Reg denote the class of all regular cardinals.

De�nition 3.12 A primitive recursive ordinal 
 is called a proof-theoretically regular or-

dinal based on T (I) if 
 is an element of T (I) and of the form  
�
I (
1) with � 2 Reg.

Note that the condition of a regular cardinal � to be an inaccessible cardinal is that

� = sup(Reg \ �). (We should also remark that, by the regularity of �, this condition implies

that � is the �th regular cardinal.) Thus, similarly to the condition above, we can de�ne

primitive recursive analogues of inaccessible cardinals by using T (I), as follows.

De�nition 3.13 A primitive recursive ordinal 
 is called a proof-theoretically inaccessible

ordinal based on T (I) if 
 is an element of Reg(T (I)) as well as the supremumof Reg(T (I))\

, where Reg(T (I)) denotes the set of p.t.r.o.s (proof-theoretically regular ordinals) under

T (I).

Theorem 3.14  
I
I (
1) is the least proof-theoretically inaccessible ordinal based on T (I).

Proof. (I) We �rst show  
I
I (
1) = sup(Reg(T (I)) \  II (
1)). By Le.3.8, this property

follows from  
I
I (
1) = supf  �I (
1) 2 T (I) : � 2 Reg\ I g. Moreover, by Le.3.8, it is clear

that  II (
1) � supf �I (
1) 2 T (I) : � 2 Reg \ Ig. So, we show that

(�) 8
 ( 
 <  
I
I (
1) ) 9� < I (  


�+1

I (
1) 2 T (I) & 
 <  

�+1

I (
1) ) )

by induction on the rank of 
. (Note that Le.3.11.(2) enables us to use induction on the

rank of 
 to show (�).)

(i) If 
 is constructed by (TI1) � (TI3), (�) follows from Le.3.5.

(ii) There is not a case where 
 is constructed by (TI4), since  
I
I (
1) < 
1 by Le.3.3.

(iii) Suppose that 
 is constructed by (TI5). So, we assume 
 =nf  
Æ
I (�). Note that � � 
1.

Claim 2: For any  
�

I (�);  
�

I (
1) 2 T (I), if  
�

I (�) <  
�

I (
1), then � = 
1 and � < �.

(Proof of Claim 2: Suppose that � > 
1. Since  
�

I (�) = C
I(�;  

�

I (�)) \ � and 
1 2

C
I(�;  

�
I (�)), it holds that 
1 <  

�
I (�). On the other hand,  

�
I (�) <  

�
I (
1) < 
1. It is

contradict. So, � = 
, and hence, by Le.3.8, � < �. <=)

By Claim 2, � = 
1 and Æ < I. Since I is the Ith regular cardinal, Æ < 
Æ+1 < I. Thus,

we must only show  

Æ+1

I (
1) 2 T (I) and 
 <  

Æ+1

I (
1) <  
I
I (
1).

Claim 3:  

Æ+1

I (
1) 2 T (I) and 
 <  

Æ+1

I (
1) <  
I
I (
1).

(Proof of Claim 3: By Def.3.1 and Le.2.2.(1), one obtains

 

Æ+1

I (
1) � C
I(Æ;  


Æ+1

I (
1)) \ 
1 � C
I(
Æ+1;  


Æ+1

I (
1)) \ 
1 =  

Æ+1

I (
1):

So, by the de�nition of 
 (=  
Æ
I (
1)), 
 �  


Æ+1

I (
1). 
 2 T (I) implies Æ 2 C
I(Æ; 
),

and hence, Æ 2 C
I(Æ;  


Æ+1

I (
1)). This means 
Æ+1 2 C
I(
Æ+1;  


Æ+1

I (
1)), and hence,
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Æ+1

I (
1) 2 T (I). Also we obtain 
 2 C
I(
Æ+1;  


Æ+1

I (
1))\
1 and hence 
 <  

Æ+1

I (
1).

We also have  

Æ+1

I (
1) <  
I
I (
1) by Le.3.8. <=)

(II) We next show that for any  �I (
1) 2 Reg(T (I)) \  
I
I (
1),

 
�
I (
1) 6= supf �I (
1) 2 T (I) : � 2 Reg \ �g:

Since � 2 Reg \ I, � is the form of 
�+1 for some �. Since  
�
I (
1) 2 T (I), � 2

C
I(�;  �I (
1)), and hence, � 2 C

I(�;  �I (
1)), and hence,  
�I (
1) 2 C
I(�;  �I (
1)). So,

 

�
I (
1) <  

�
I (
1). On the other hand, for each  

�
I (
1) 2 T (I), one obtains � 2 Reg\� )

 
�
I (
1) �  


�
I (
1) in a way similar to the proof of Claim 3. So, we have the result. <=

In order to convince ourselves of the similarity of this ordinal and the least weakly

inaccessible cardinal we should establish the following property:

Conjecture  
I
I (
1) is the  

I
I (
1)

th element of Reg(T (I)).

4 A relationship between proof-theoretically regular ordinals based on T (
)
and those based on T (I) In this section, we compare proof-theoretically regular ordinals

based on T (
) with those based on T (I). Finally, we summarize certain regular cardinals,

admissible ordinals, and proof-theoretically regular ordinals.

De�nition 4.1 We de�ne a mapping � from T (
) into T (I) by recursion on the rank of

each element of T (
).

(i) 0� := 0 and 
� := 
1.

Let 
 be an element of T (
).

(ii) If 
 =nf 
1 + � � � + 
n, then 

� := 


�

1 + � � �+ 

�

n.

(iii) If 
 =nf '��, then 

� := '�

�
�
�.

(iv) If 
 =nf  
�

, then 


� :=  
��

I (
1).

Lemma 4.2 � is well-de�ned, that is, for each 
 2 T (
), 
� is uniquely determined as

an element of T (I). Moreover, � strictly preserves the order of T (
), that is, for each


; Æ 2 T (
), 
 < Æ ) 

�
< Æ

�.

Sketch of Proof. By Le.2.8, each element of T (
) is uniquely determined by 0, 
, +,  

and  
. So, for each 
 2 T (
), 

� is uniquely expressed by operators in T (I). So, it suÆces

to show that 8
 2 T (
) (
� 2 T (I)) and that � strictly preserves the order on T (
). So,
we de�ne a 2-ary predicate P (x; y) by:

P (x; y) :, (x�; y� 2 T (
) & (x < y ) x
�
< y

�));

and show the predicate P (x; y) by induction on ! �maxfr(x); r(y)g +minfr(x); r(y)g. Let

 denote an element of fx; yg whose rank is not less than the other's rank, and Æ denote the

other. One can check P (
; Æ) and P (Æ; 
) in the cases where 
 = 0, 
 = 
, 
 =nf 
1 + 
2,


 =nf  
1
2 and 
 =nf  

1


. However, for simplicity, we deal with only the most critical

part, that is, we show only 
� 2 T (I) in the case where 
 =nf  

1



in what follows.

Claim 4: Let �; � 2 T (
) with r(�); r(�) < r(
) and with � 2 C
(�;  
�



). Then,

� 2 C
(�;  
�


) ) �

� 2 CI(��
;  

��

I (
1)):
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(Proof of Claim 4: By induction on r(�). We deal with only the case where � =nf  
�

1
,

since the other cases are trivial. In this case, since � 2 C

(�;  

�


), it holds that  

�


<  

�



or that (� 2 C

(�;  

�



) & � < �).  

�



<  

�



implies � < � from Le.2.6, and hence, � 2

C

(�;  

�



) � C


(�;  
�



). Therefore, it follows �� < �

� from the main induction hypothesis,

and �
� 2 C

I(��
;  

��

I (
1)) >from the induction hypothesis of this claim. So, we have the

result. <=)

Since 
1 2 C

(
1;  


1


), it follows 
�

1 2 C
I(
�

1 ;  

�1
I (
1)) >from Claim 4. This implies



� =  


�1
I (
1) 2 T (I) by the main induction hypothesis. <=

Lemma 4.3 For each 
 <  
"
1+1

I (
1), there exists � 2 T (
) \ 
 such that �� = 
.

Proof. By induction on r(
). The cases where 
 =nf 0, 
 =nf 
1+ 
2 and 
 =nf '
1
2 are

trivial. There is not the case where 
 =nf 

1 and 
1 > 0, since 
 <  
"
1+1

I (
1).

Let 
 =nf  
�
I (�). Then, � = 
1, and � < "
1+1 and � 2 C

I(�; �I (
1)).

Claim 5: Every subterm � of � is less then "
1+1.

(Proof of Claim 5: By induction on r(�)�r(�), we show � < "
1+1 and � 2 C
I(�; �I (
1)).

(i) If � = �, then it is straightforward.

(ii) If there exists a substructure of � which is of the form �1 + �2 or  �1�2 and if � is

�1 or �2, then it is trivial by the induction hypothesis of this claim. The case where there

exists a substructure of � which is of the form 
� is also trivial by the same reason.

(iii) Assume there exists a substructure of � which is of the form  
Æ
I (�) such that � = � or

� = Æ.

(iii-i) Let � = �. If � > 
1, then  
�

I (�) is a strongly critical ordinal larger than 
1 by

Le.3.5. It is contradict. So, � = 
1.

(iii-ii) Let � = Æ. >From  
�
I (�) 2 C

I(�; �I (
1)), it follows (� 2 C
I(�; �I (
1)) & � < �)

or  
�
I (�) <  

�
I (
1). If � 2 C

I(�; �I (
1)) and � < �, we have nothing to show any

more. Assume  
�

I (�) <  
�
I (
1). Then, � = 
1 and � < �. On the other hand, since

 
�

I (�) 2 T (I), � 2 C
I(�;  

�

I (�)). So, we have � 2 C
I(�; �I (
1)). <=)

Claim 6: For each �; Æ 2 T (
), if �� 2 C
I(Æ�;  Æ

�

I (
1)), then � 2 C

(Æ;  Æ
). (Proof of

Claim 6: By induction on r(�). Only the case where � =nf  
�


is not trivial. Let � =nf  

�


.

Then, (i) ��
<  

Æ�

I (
1); or (ii) (�
� 2 C

I(Æ�;  Æ
�

I (
1)) & �
�
< Æ

� & �
� 2 C

I(��;  
��

I (
1)).

(i) implies � <  
Æ


by Le.4.2, and (ii) implies (� 2 C
(Æ;  Æ



) & � < Æ & � 2 C
(�;  �



)) by

the induction hypothesis and Le.4.2. So, we have the result. <=)

By Claims 5 and 6, one can obtain � 2 T (
) with �
� = �, and Claim 6 implies � 2

C

(�;  

�


). Thus, we have the result. <=

Theorem 4.4  
"
+1



=  
"
1+1

I (
1), and  




=  


1
I (
1).

Proof. By virtue of Le.4.2, Le.4.3, Le.2.9 and Le.3.11, the restriction of � to  
"
+1



is the

order-preserving bijective map from  
"
+1



to  
"
1+1

I (
1), which means the results of this

theorem. <=

This theorem implies that the least proof-theoretically regular ordinal based on T (
) is
equal to that based on T (I). It also suggests the more general case: if one has two EORSs

T (�) and T (�) which are de�ned on suitable regular cardinals � and � with � < �, and
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if one can de�ne primitive recursive analogues of regular cardinals � � by using T (�) and
those � � by using T (�), the former form an initial segment of the latter.

By employing the result by W.Pohlers in [Po98], one can also obtain the following:

Corollary 4.5  
"
+1



is the proof theoretic ordinal of KP!.

Such a result suggests a relationship between the least proof-theoretically regular ordinal

based on T (
) (= that based on T (I)) and the least admissible ordinal > ! which can be

characterized by KP! and the least regular cardinal, and a relationship between the least

proof-theoretically inaccessible ordinal based on T (I) and the least recursively inaccessible

ordinal which can be characterized by KPi and the least weakly inaccessible cardinal.
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