EFFICIENT SOLUTIONS OF MULTICRITERIA LOCATION PROBLEMS WITH THE POLYHEDRAL GAUGE

MASAMICHI KON AND SHIGERU KUSHIMOTO

Received April 10, 2002

Abstract

A multicriteria location problem with the polyhedral gauge on a plane is considered. We propose an algorithm to find all efficient solutions of the location problem.

1. Introduction. Everything will take place in \mathbb{R}^{2}, equipped with its Euclidean norm, denoted by $\|\cdot\|$ and its canonical inner product, denoted by $\langle\cdot, \cdot\rangle$. Given demand points in \mathbb{R}^{2}, a problem to locate a new facility in \mathbb{R}^{2} is called a single facility location problem. The problem is usually formulated as a minimization problem with an objective function involving distances between the facility and demand points. It is assumed that $m(\geq 2)$ distinct demand points $\boldsymbol{d}_{i} \in \mathbb{R}^{2}, i \in M \equiv\{1,2, \cdots, m\}$ and a gauge $\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}$, in the sense of Minkowski, are given. Let $\boldsymbol{x} \in \mathbb{R}^{2}$ be the variable location of the facility. We put $D \equiv\left\{\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \cdots, \boldsymbol{d}_{m}\right\}$. Then a multicriteria location problem is formulated as follows:

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{2}}\left(\gamma\left(\boldsymbol{x}-\boldsymbol{d}_{1}\right), \gamma\left(\boldsymbol{x}-\boldsymbol{d}_{2}\right), \cdots, \gamma\left(\boldsymbol{x}-\boldsymbol{d}_{m}\right)\right)^{T} \tag{P}
\end{equation*}
$$

(P) is a problem to find an efficient solution. A point $\boldsymbol{x}_{0} \in \mathbb{R}^{2}$ is called an efficient solution of (P) if there is no $\boldsymbol{x} \in \mathbb{R}^{2}$ such that $\gamma\left(\boldsymbol{x}-\boldsymbol{d}_{\boldsymbol{i}}\right) \leq \gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{i}\right)$ for all $i \in M$ and $\gamma\left(\boldsymbol{x}-\boldsymbol{d}_{\ell}\right)$ $<\gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{\ell}\right)$ for some $\ell \in M$. Let $E(D)$ be the set of all efficient solutions of (P). By the above definition and the definition of γ, given in section $2, D \subset E(D)$.

Various distances or norms are used in multicriteria location problems. For example, rectilinear distance in $[9,15]$, asymmetric rectilinear distance in [11], the block norm in $[8,13]$, the gauge in [3, 4]. In particular, the polyhedral gauge is used in [4]. These distances and norm are special cases of the guage. In particular, rectilinear distance, asymmetric rectilinear distance, the block norm and the A-distance $[7,12]$ are special cases of the polyhedral gauge. In [4], the procedure for finding all efficient solutions of (P) with the polyhedral gauge is given. In this article, a multicriteria location problem with the polyhedral gauge in \mathbb{R}^{2} is considered. First, we characterize efficient solutions of (P). Next, we propose the Frame Generating Algorithm to find $E(D)$, which requires $O\left(m^{3}\right)$ computational time.

In section 2, we give some properties of the polyhedral gauge. In section 3, main results in [4] are given. In section 4, we give some properties of efficient solutions of (P). In section 5, we propose the Frame Generating Algorithm to find $E(D)$, which requires $O\left(m^{3}\right)$ computational time. Finally, some conclusions are given in section 6 .
2. Preliminaries. In this section, we give some properties of the polyhedral gauge. The gauge of $\boldsymbol{x} \in \mathbb{R}^{2}$ in the sense of Minkowski, $\gamma(\boldsymbol{x})$, is denoted by $\gamma(\boldsymbol{x}) \equiv \inf \{\mu>0$: $\boldsymbol{x} \in \mu B\}$, where $B \subset \mathbb{R}^{2}$ is a closed bounded convex set having the origin in its interior. For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{2}$, the distance from \boldsymbol{y} to \boldsymbol{x} is denoted by $\gamma(\boldsymbol{x}-\boldsymbol{y})$. The set B is called the

[^0]unit ball associated with γ. The set $B^{\circ} \equiv\left\{\boldsymbol{p} \in \mathbb{R}^{2}:\langle\boldsymbol{p}, \boldsymbol{x}\rangle \leq 1, \forall \boldsymbol{x} \in B\right\}$ is called the polar of B. If B is a closed bounded convex set having the origin in its interior, then so is B° and $B^{\circ \circ}=B$ (see [14]). It can be checked that the subdifferentail of the gauge γ of B at $\boldsymbol{x} \in \mathbb{R}^{2}, \partial \gamma(\boldsymbol{x})$, is given by
\[

\partial \gamma(\boldsymbol{x})= $$
\begin{cases}B^{\circ} & \text { if } \boldsymbol{x}=\mathbf{0}, \tag{1}\\ \left\{\boldsymbol{p} \in B^{\circ}:\langle\boldsymbol{p}, \boldsymbol{x}\rangle=\gamma(\boldsymbol{x})\right\} & \text { if } \boldsymbol{x} \neq \mathbf{0} .\end{cases}
$$
\]

A guage γ is said to be polyhedral if its unit ball is a polytope, i.e. the convex hull of a finite number of points. Throughout this paper, a gauge γ is polyhedral. Moreover, we denote the set of all extreme points of B by $\operatorname{Ext}(B)$, and assume that if $\boldsymbol{e} \in \operatorname{Ext}(B)$ then $-\mu \boldsymbol{e} \in \operatorname{Ext}(B)$ for some $\mu>0$. We put $\operatorname{Ext}(B)=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \cdots, \boldsymbol{e}_{2 r}\right\}$, assuming that $\boldsymbol{e}_{j}=$ $\left\|e_{j}\right\|\left(\cos \theta_{j}, \sin \theta_{j}\right)^{T}, j \in\{1,2, \cdots, 2 r\}, 0 \leq \theta_{1}<\theta_{2}<\cdots<\theta_{r}<\pi \leq \theta_{r+1}<\cdots<\theta_{2 r}$ $<2 \pi$. Note that for each $j \in\{1,2, \cdots, r\}, \boldsymbol{e}_{r+j}=-\mu \boldsymbol{e}_{j}$ for some $\mu>0$. For each $j \in\{1$, $2, \cdots, 2 r\}$ and each $n \in \mathbb{Z}$, we put $e_{2 n r+j} \equiv e_{j}, \theta_{2 n r+j} \equiv 2 n \pi+\theta_{j}, K_{2 n r+j} \equiv \mathcal{C}\left\{e_{2 n r+j}\right.$, $\left.\boldsymbol{e}_{2 n r+j+1}\right\}$ and $L_{2 n r+j} \equiv K_{2 n r+j-1} \bigcap K_{2 n r+j}=\left\{\mu \boldsymbol{e}_{2 n r+j}: \mu \geq 0\right\}$, where \mathbb{Z} is the set of all integers and $\mathcal{C}\left\{e_{2 n r+j}, e_{2 n r+j+1}\right\} \equiv\left\{\lambda e_{2 n+j}+\mu e_{2 n r+j+1}: \lambda, \mu \geq 0\right\}$. Note that for each $j \in\{1,2, \cdots, 2 r\}$ and each $n \in \mathbb{Z}, K_{2 n r+j}=K_{j}=-K_{r+j}$ and $L_{2 n r+j}=L_{j}=-L_{r+j}$. We put $L \equiv \bigcup_{i=1}^{m} \bigcup_{j=1}^{2 r}\left(\left\{\boldsymbol{d}_{i}\right\}+L_{j}\right)$.

Figure 1. B, B° and $\boldsymbol{e}_{j}, \boldsymbol{p}_{j}, K_{j}, L_{j}$.
For $\boldsymbol{x} \in \mathbb{R}^{2}, \gamma(\boldsymbol{x})$ can be represented as follows (see [3]):

$$
\begin{equation*}
\gamma(\boldsymbol{x})=\min \left\{\sum_{j=1}^{2 r} \mu_{j}: \boldsymbol{x}=\sum_{j=1}^{2 r} \mu_{j} \boldsymbol{e}_{j}, \mu_{j} \geq 0, j \in\{1,2, \cdots, 2 r\}\right\} . \tag{2}
\end{equation*}
$$

In other words, this means that the distance from \boldsymbol{y} to \boldsymbol{x} is the length of one of the shortest possible routes to travel from \boldsymbol{y} to \boldsymbol{x} by going only in the directions defined and oriented by the vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \cdots, \boldsymbol{e}_{2 r}$. From (2), for each $j \in\{1,2, \cdots, 2 r\}$ and each $n \in \mathbb{Z}$ and each $\boldsymbol{x}=\left(x^{1}, x^{2}\right)^{T} \in \mathbb{R}^{2}$, if $\boldsymbol{x} \in K_{2 n r+j}$, then $\gamma(\boldsymbol{x})=a x^{1}+b x^{2}$, where $\boldsymbol{p}_{2 n r+j} \equiv(a, b)^{T}$ $=1 /\left(e_{j}^{1} e_{j+1}^{2}-e_{j}^{2} e_{j+1}^{1}\right)\left(e_{j+1}^{2}-e_{j}^{2}, e_{j}^{1}-e_{j+1}^{1}\right)^{T}$ and $\boldsymbol{e}_{j} \equiv\left(e_{j}^{1}, e_{j}^{2}\right)^{T}, \boldsymbol{e}_{j+1} \equiv\left(e_{j+1}^{1}, e_{j+1}^{2}\right)^{T}$. Note that $e_{j}^{1} e_{j+1}^{2}-e_{j}^{2} e_{j+1}^{1} \neq 0$ since \boldsymbol{e}_{j} and \boldsymbol{e}_{j+1} are linearly independent, and that $\boldsymbol{p}_{2 n r+j}$ $=\boldsymbol{p}_{j}$. It is assumed that $\boldsymbol{p}_{j}=\left\|\boldsymbol{p}_{j}\right\|\left(\cos \alpha_{j}, \sin \alpha_{j}\right)^{T}, j \in\{1,2, \cdots, 2 r\}, \alpha_{1}<\alpha_{2}<\cdots<$ $\alpha_{2 r}, \alpha_{2 r}-\alpha_{1}<2 \pi$. For each $j \in\{1,2, \cdots, 2 r\}$ and each $n \in \mathbb{Z}$, we put $\alpha_{2 n r+j} \equiv 2 n \pi+$ α_{j}. Note that $\alpha_{j+1}-\alpha_{j}<\pi$.

We denote by int (A), bd (A) and co (A), the interior, the boundary and the convex hull of a set $A \subset \mathbb{R}^{2}$ and by ri (C) the relative interior of a convex set $C \subset \mathbb{R}^{2}$.

From [2, Theorem 9.1, pp.57-58], we have

$$
\begin{aligned}
B^{\circ} & =\bigcap_{i=1}^{2 r}\left\{\boldsymbol{x} \in \mathbb{R}^{2}:\left\langle\boldsymbol{e}_{i}, \boldsymbol{x}\right\rangle \leq 1\right\}=\operatorname{co}\left(\left\{\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{2 r}\right\}\right) \\
\operatorname{Ext}\left(B^{\circ}\right) & =\left\{\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{2 r}\right\}, \\
\operatorname{bd}\left(B^{\circ}\right) & =\bigcup_{j=1}^{2 r}\left[\boldsymbol{p}_{j}, \boldsymbol{p}_{j+1}\right]
\end{aligned}
$$

where $\left[\boldsymbol{p}_{j}, \boldsymbol{p}_{j+1}\right] \equiv\left\{\mu \boldsymbol{p}_{j}+(1-\mu) \boldsymbol{p}_{j+1}: 0 \leq \mu \leq 1\right\}$. From (1), for each $j \in\{1,2, \cdots, 2 r\}$ and each $n \in \mathbb{Z}$, we have

$$
\partial \gamma(\boldsymbol{x})= \begin{cases}\left\{\boldsymbol{p}_{2 n r+j}\right\} & \text { if } \boldsymbol{x} \in \operatorname{int}\left(K_{2 n r+j}\right), \tag{3}\\ {\left[\boldsymbol{p}_{2 n r+j-1}, \boldsymbol{p}_{2 n r+j}\right]} & \text { if } \boldsymbol{x} \in L_{2 n r+j} \backslash\{\mathbf{0}\}, \\ \operatorname{co}\left(\left\{\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{2 r}\right\}\right) & \text { if } \boldsymbol{x}=\mathbf{0} .\end{cases}
$$

3. Main results in [4]. In this section, main results in [4] are given.

We recall some notations and results in [4]. A finite family $\left\{C_{1}, C_{2}, \cdots, C_{m}\right\}$ of nonempty sets in \mathbb{R}^{2} is said to be suitably contained in a halfspace if there exists a hyperplane containing the origin and such that one of its associated closed halfspaces contains all of the C_{i} 's, with at least one of the C_{i} 's contained in the corresponding open halfspace. In other words, a family $\left\{C_{1}, C_{2}, \cdots, C_{m}\right\}$ is suitably contained in a halfspace if and only if there exists $\boldsymbol{a} \neq \mathbf{0}$ such that, first, $\langle\boldsymbol{a}, \boldsymbol{x}\rangle \leq 0$ for every \boldsymbol{x} in $\bigcup_{i=1}^{m} C_{i}$, and second, $\langle\boldsymbol{a}, \boldsymbol{x}\rangle$ <0 for every \boldsymbol{x} in some C_{ℓ}. For $\boldsymbol{x} \in \mathbb{R}^{2}$, we put $\Gamma(\boldsymbol{x}) \equiv\left\{\partial \gamma\left(\boldsymbol{x}-\boldsymbol{d}_{1}\right), \partial \gamma\left(\boldsymbol{x}-\boldsymbol{d}_{2}\right), \cdots\right.$, $\left.\partial \gamma\left(\boldsymbol{x}-\boldsymbol{d}_{m}\right)\right\}$.

Theorem 1.([4]) The set $E(D)$ is the set of all $\boldsymbol{x} \in \mathbb{R}^{2}$ such that $\Gamma(\boldsymbol{x})$ is not suitably contained in a halfspace.

A nonempty closed convex set $C \subset \mathbb{R}^{2}$ is called an elementary convex set with respect to D and γ if $C=\bigcap_{i=1}^{m}\left(\left\{\boldsymbol{d}_{i}\right\}+N\left(\boldsymbol{q}_{i}\right)\right)$ for some $\boldsymbol{q}_{i} \in B^{\circ}, i \in M$, where

$$
N(\boldsymbol{p})= \begin{cases}K_{2 n r+j} & \text { if } \boldsymbol{p}=\boldsymbol{p}_{2 n r+j}, \\ L_{2 n r+j+1} & \text { if } \boldsymbol{p} \in \operatorname{ri}\left(\left[\boldsymbol{p}_{2 n r+j}, \boldsymbol{p}_{2 n r+j+1}\right]\right), \\ \{\mathbf{0}\} & \text { if } \boldsymbol{p} \in \operatorname{int}\left(B^{\circ}\right)\end{cases}
$$

for each $j \in\{1,2, \cdots, 2 r\}$ and each $n \in \mathbb{Z}$. For each $\boldsymbol{x} \in C$, we have $\boldsymbol{q}_{i} \in \partial \gamma\left(\boldsymbol{x}-\boldsymbol{d}_{i}\right)$.

Figure 2. Elementary convex sets. (•: demand points)

Corollary 1.([4]) If C is an elementary convex set, then either C is contained in $E(D)$ or else ri (C) and $E(D)$ are disjoint.

Theorem 2.([4]) The set $E(D)$ is a connected finite union of polytopes, each of which is an elementary convex set.

In [4], practical rules with which the whole set $E(D)$ can be found are given. They are obvious consequences of Theorem 1 and Corollary 1, and described as follows:

Rule 1. If $\boldsymbol{x} \notin D$ is such that the family $\Gamma(\boldsymbol{x})$ is suitably contained in a halfspace, then for every elementary convex set C containing \boldsymbol{x}, ri (C) and $E(D)$ are disjoint.

Rule 2. If $\boldsymbol{x} \in \mathbb{R}^{2}$ is in the relative interior of an elementary convex set C and if the family $\Gamma(\boldsymbol{x})$ is not suitably contained in a halfspace, then C is contained in $E(D)$.

A point $\boldsymbol{x} \in \mathbb{R}^{2}$ is called an intersection point if \boldsymbol{x} is an extreme point of some elementary convex set. Let I be the set of all intersection points. When I is known and it is possible to check whether $\Gamma(\boldsymbol{x})$ for $\boldsymbol{x} \in \mathbb{R}^{2}$ is suitably contained in a halfspace or not, the procedure for finding $E(D)$ can be described. First apply Rule 1 to every point of I. In this way, many elementary convex sets are eliminated. Then apply Rule 2 to every remaining elementary convex set, by considering first the elementary convex sets whose dimension is two, then one. This method is clearly finite. Implementing it efficiently, however, is a hard task.
4. Properties of efficient solutions. In this section, we give some properties of efficient solutions of (P).

Theorem 3. Let C be a bounded elementary convex set such that int $(C) \neq \emptyset$. If bd (C) $\subset E(D)$, then $C \subset E(D)$.

Proof. For $\boldsymbol{y} \in \operatorname{int}(C)$, assume that $\boldsymbol{y} \notin E(D)$. From Theorem $1, \Gamma(\boldsymbol{y})$ is suitably contained in a halfspace. For each $i \in M$, there exists $j_{i} \in\{1,2, \cdots, 2 r\}$ such that $\boldsymbol{y} \in$ $\left\{\boldsymbol{d}_{i}\right\}+\operatorname{int}\left(K_{j_{i}}\right)$. Then $C=\bigcap_{i=1}^{m}\left(\left\{\boldsymbol{d}_{i}\right\}+K_{j_{i}}\right)$ and $\partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{i}\right)=\left\{\boldsymbol{p}_{j_{i}}\right\}, i \in M$. Since $\Gamma(\boldsymbol{y})$ is suitably contained in a halfspace, $\bigcup_{i=1}^{m} K_{r+j_{i}}=-\bigcup_{i=1}^{m} K_{j_{i}} \neq \mathbb{R}^{2}$. Note that $\bigcup_{i=1}^{m} K_{j_{i}} \neq$ K_{j} for any $j \in\{1,2, \cdots, 2 r\}$ since C is bounded. We put $G(\boldsymbol{y}) \equiv \bigcup_{i=1}^{m}$ int $\left(\{\boldsymbol{y}\}+K_{r+j_{i}}\right)$. Then we see that $D \subset G(\boldsymbol{y})$.

Without loss of generality, assume that $\alpha_{j_{1}} \leq \alpha_{j_{2}} \leq \cdots \leq \alpha_{j_{2}}$. For each $i \in M$ and each $n \in \mathbb{Z}$, we put $j_{n m+i} \equiv 2 n r+j_{i}$. Note that $\boldsymbol{p}_{j_{n m+i}}=\boldsymbol{p}_{2 n r+j_{i}}=\boldsymbol{p}_{j_{i}}$ and $\alpha_{j_{n m+i}}=$ $\alpha_{2 n r+j_{i}}=2 n \pi+\alpha_{j_{i}}$. Since $\Gamma(\boldsymbol{y})$ is suitably contained in a halfspace, one of the following conditions is satisfied.
(i) $0<\alpha_{j_{m+k-1}}-\alpha_{j_{k}}<\pi$ for some $k \in M$.
(ii) $\alpha_{j_{m+k-1}}-\alpha_{j_{k}}=\pi$ for some $k \in M$, and $\alpha_{j_{k}}<\alpha_{j_{\ell}}<\alpha_{j_{m+k-1}}$ for some $\ell(k<\ell<$ $m+k-1)$.

Case 1. First, assume that condition (i) is satisfied. We put $\boldsymbol{a}=-\left(\cos \frac{\alpha_{j_{k}}+\alpha_{j_{m+k-1}}}{2}\right.$, $\left.\sin \frac{\alpha_{j_{k}}+\alpha_{j_{m+k-1}}}{2^{2}}\right)^{T}$. Then we see that $\left\langle\boldsymbol{a}, \boldsymbol{p}_{j_{i}}\right\rangle<0$ for any $i \in M$, i.e. $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any \boldsymbol{x} $\in \bigcup_{i=1}^{m} \partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{i}\right)$. Since $\alpha_{j_{m+k-1}}-\alpha_{j_{k}}<\pi$, we have $R(\boldsymbol{y}) \equiv\left(\{\boldsymbol{y}\}+K_{r+j_{k}}\right) \bigcup(\{\boldsymbol{y}\}+$ $\left.K_{r+j_{k}+1}\right) \bigcup \cdots \bigcup\left(\{\boldsymbol{y}\}+K_{r+j_{m+k-1}}\right) \neq \mathbb{R}^{2} . R(\boldsymbol{y})$ is a cone with a vertex at \boldsymbol{y}. We put $P(\boldsymbol{y}) \equiv(\operatorname{int}(R(\boldsymbol{y})))^{c}$. Since $D \subset G(\boldsymbol{y}) \subset \operatorname{int}(R(\boldsymbol{y}))$, we have $D \bigcap P(\boldsymbol{y})=\emptyset$. Moreover, $P(\boldsymbol{y})=\left(\{\boldsymbol{y}\}+K_{p}\right) \bigcup\left(\{\boldsymbol{y}\}+K_{p+1}\right) \bigcup \cdots \bigcup\left(\{\boldsymbol{y}\}+K_{p+t}\right)$ for some $p \in\{1,2, \cdots$, $2 r\}$ and some $t \geq 0$, where $K_{p}=K_{r+j_{m+k-1}+1}$ and $K_{p+t}=K_{r+j_{k}-1}$. There exists $\boldsymbol{z} \in$ bd $(C) \cap P(\boldsymbol{y})$ such that \boldsymbol{z} is not a vertex of C, i.e. \boldsymbol{z} is a relative interior point of some
edge of C. Let \boldsymbol{x}_{1} and \boldsymbol{x}_{2} be two end points of the edge containing \boldsymbol{z}. We put $Q \equiv\left\{\mu \boldsymbol{x}_{1}+\right.$ $\left.(1-\mu) \boldsymbol{x}_{2}: \mu \in \mathbb{R}\right\}$. Then $Q=\left\{\boldsymbol{z}+\mu \boldsymbol{e}_{j_{0}}: \mu \in \mathbb{R}\right\}=\{\boldsymbol{z}\}+L_{j_{0}} \bigcup L_{r+j_{0}}$ for some $j_{0} \in\{1$, $2, \cdots, 2 r\}$. Since $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)=\partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{i}\right)=\left\{\boldsymbol{p}_{j_{i}}\right\}$ for $\boldsymbol{d}_{i} \notin Q$, we see that $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)$. Let \boldsymbol{d}_{i} be a demand point in Q. If $\boldsymbol{d}_{i} \in\{\boldsymbol{z}\}+L_{j_{0}}$, then $\boldsymbol{z} \in\left\{\boldsymbol{d}_{i}\right\}+$ $L_{r+j_{0}}$, and $L_{r+j_{0}}=L_{q}$ for some $q \in\left\{j_{k}+1, \cdots, j_{m+k-1}\right\}$ since $D \bigcap P(\boldsymbol{z})=\emptyset$. If $\boldsymbol{d}_{i} \in\{\boldsymbol{z}\}$ $+L_{r+j_{0}}$, then $\boldsymbol{z} \in\left\{\boldsymbol{d}_{i}\right\}+L_{j_{0}}$, and $L_{j_{0}}=L_{q}$ for some $q \in\left\{j_{k}+1, \cdots, j_{m+k-1}\right\}$ since $D \bigcap$ $P(\boldsymbol{z})=\emptyset$. In either case, $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)$ can be represented as $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)=\left[\boldsymbol{p}_{q-1}, \boldsymbol{p}_{q}\right]$, and we have $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)$ since $j_{k} \leq q-1, q \leq j_{m+k-1}$. Thus, $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \bigcup_{i=1}^{m} \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)$. Therefore, $\boldsymbol{z} \notin E(D)$ from Theorem 1 since $\Gamma(\boldsymbol{z})$ is suitably contained in a halfspace. However, this contradicts our assumption that bd $(C) \subset E(D)$.

Case 2. Next, assume that condition (ii) is satisfied. Let $\boldsymbol{a}, R(\boldsymbol{y})$ and $P(\boldsymbol{y})$ be the same ones as in Case 1. In this case, $\left\langle\boldsymbol{a}, \boldsymbol{p}_{j_{i}}\right\rangle \leq 0$ for any $i \in M$ and $\left\langle\boldsymbol{a}, \boldsymbol{p}_{j_{\ell}}\right\rangle<0$, i.e. $\langle\boldsymbol{a}, \boldsymbol{x}\rangle$ ≤ 0 for any $\boldsymbol{x} \in \bigcup_{i=1}^{m} \partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{i}\right)$ and $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{\ell}\right)$.

First, assume that $K_{j_{\ell}} \subset P(\mathbf{0})$ for some $\ell(k<\ell<m+k-1)$ such that $\alpha_{j_{k}}<\alpha_{j_{\ell}}<$ $\alpha_{j_{m+k-1}}$. There exists $\boldsymbol{z} \in \operatorname{bd}(C) \cap\left(\{\boldsymbol{y}\}+K_{j_{\ell}}\right)$ such that \boldsymbol{z} is not a vertex of C. Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, Q$ and j_{0} be the same ones as in Case 1. By the similar argument in Case 1, we see that $\langle\boldsymbol{a}, \boldsymbol{x}\rangle \leq 0$ for any $\boldsymbol{x} \in \bigcup_{i=1}^{m} \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)$. In this case, $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in$ $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{\ell}\right)$ since $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{\ell}\right)=\partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{\ell}\right)=\left\{\boldsymbol{p}_{j_{\ell}}\right\}$ by the definition of \boldsymbol{z}. Thus, $\boldsymbol{z} \notin E(D)$ from Theorem 1 since $\Gamma(\boldsymbol{z})$ is suitably contained in a halfspace. However, this contradicts our assumption that bd $(C) \subset E(D)$.

Next, assume that $K_{j_{\ell}} \not \subset P(\mathbf{0})$ for any $\ell(k<\ell<m+k-1)$ such that $\alpha_{j_{k}}<\alpha_{j_{\ell}}<$ $\alpha_{j_{m+k-1}}$. Then $K_{j_{\ell}} \neq K_{j}, j \in\{p, p+1, \cdots, p+t\}$ for any $\ell(k<\ell<m+k-1)$ such that $\alpha_{j_{k}}<\alpha_{j_{\ell}}<\alpha_{j_{m+k-1}}$. And $0<\theta_{p+t+1}-\theta_{p}<\pi$ since if $\theta_{p+t+1}-\theta_{p} \geq \pi$, then $K_{j_{\ell}} \subset$ $P(\mathbf{0})$ for any $\ell(k<\ell<m+k-1)$ such that $\alpha_{j_{k}}<\alpha_{j_{\ell}}<\alpha_{j_{m+k-1}}$. Moreover, we see that $D \bigcap P^{-}(\boldsymbol{y})=\emptyset$, where $P^{-}(\boldsymbol{y}) \equiv\left(\{\boldsymbol{y}\}-K_{p}\right) \bigcup\left(\{\boldsymbol{y}\}-K_{p+1}\right) \bigcup \cdots \bigcup\left(\{\boldsymbol{y}\}-K_{p+t}\right)$. If $D \bigcap P^{-}(\boldsymbol{y}) \neq \emptyset$, then there exists $\boldsymbol{d}_{u} \in D \bigcap P^{-}(\boldsymbol{y})$ such that $\alpha_{j_{k}}<\alpha_{j_{n m+u}}<\alpha_{j_{m+k-1}}, k$ $<n m+u<m+k-1$ for some $n \in \mathbb{Z}$ and that $\boldsymbol{d}_{u} \in\{\boldsymbol{y}\}-K_{q}$ for some $q \in\{p, p+1$, $\cdots, p+t\}$. Since $\boldsymbol{d}_{u} \in\{\boldsymbol{y}\}-K_{j_{n m+u}}$, we have $K_{j_{n m+u}}=K_{q} \subset P(\mathbf{0})$.

Since $\theta_{p+t+1}-\theta_{p}<\pi, D \bigcap P^{-}(\boldsymbol{y})=\emptyset$, we see that $P(\mathbf{0}) \subset \mathcal{C}\left\{\boldsymbol{e}_{j_{k}+1}, \boldsymbol{e}_{j_{k}+2}, \cdots, \boldsymbol{e}_{j_{\ell}}\right\}$ or $P(\mathbf{0}) \subset \mathcal{C}\left\{\boldsymbol{e}_{j_{\ell}+1}, \boldsymbol{e}_{j_{\ell}+2}, \cdots, \boldsymbol{e}_{j_{m+k-1}}\right\}$. It is sufficient to show the case $P(\mathbf{0}) \subset \mathcal{C}\left\{\boldsymbol{e}_{j_{k}+1}\right.$, $\left.\boldsymbol{e}_{j_{k}+2}, \cdots, \boldsymbol{e}_{j_{\ell}}\right\}$. It can be shown similarly the case $P(\mathbf{0}) \subset \mathcal{C}\left\{\boldsymbol{e}_{j_{\ell}+1}, \boldsymbol{e}_{j_{\ell}+2}, \cdots, \boldsymbol{e}_{j_{m+k-1}}\right\}$. Thus, we assume that $P(\mathbf{0}) \subset \mathcal{C}\left\{\boldsymbol{e}_{j_{k}+1}, \boldsymbol{e}_{j_{k}+2}, \cdots, \boldsymbol{e}_{j_{\ell}}\right\}$.

There exists $\boldsymbol{z} \in \mathrm{bd}(C) \cap P(\boldsymbol{y})$ such that \boldsymbol{z} is not a vertex of C. Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, Q$ and j_{0} be the same ones as in Case 1. By the similar argument in Case 1, we see that $\langle\boldsymbol{a}, \boldsymbol{x}\rangle$ ≤ 0 for any $\boldsymbol{x} \in \bigcup_{i=1}^{m} \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{i}\right)$. Now, choose any $\ell(k<\ell<m+k-1)$ such that $\alpha_{j_{k}}$ $<\alpha_{j_{\ell}}<\alpha_{j_{m+k-1}}$. If $\boldsymbol{z} \in\left\{\boldsymbol{d}_{\ell}\right\}+\operatorname{int}\left(K_{j_{\ell}}\right)$, then $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{\ell}\right)=\partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{\ell}\right)=\left\{\boldsymbol{p}_{j_{\ell}}\right\}$, and $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{\ell}\right)$ since $\left\langle\boldsymbol{a}, \boldsymbol{p}_{j_{\ell}}\right\rangle<0$. If $\boldsymbol{z} \notin \operatorname{int}\left(K_{j_{\ell}}\right)$, then we see that $\boldsymbol{z} \in\left\{\boldsymbol{d}_{\ell}\right\}+L_{j_{\ell}}$ since $P(\mathbf{0}) \subset \mathcal{C}\left\{\boldsymbol{e}_{j_{k}+1}, \boldsymbol{e}_{j_{k}+2}, \cdots, \boldsymbol{e}_{j_{\ell}}\right\}$, and that $\partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{\ell}\right)=\left[\boldsymbol{p}_{j_{\ell}-1}, \boldsymbol{p}_{j_{\ell}}\right]$. Since $\alpha_{j_{k}}<\alpha_{j_{k}+1}<\alpha_{j_{\ell}}<\alpha_{j_{m+k-1}}$, we have $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{z}-\boldsymbol{d}_{\ell}\right)$. Thus, $\boldsymbol{z} \notin E(D)$ from Theorem 1 since $\Gamma(\boldsymbol{z})$ is suitably contained in a halfspace. However, this contradicts our assumption that bd $(C) \subset E(D)$.

Therefore, it is proved that $C \subset E(D)$.
For $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in I, \boldsymbol{x}_{1}$ is called an adjacent intersection point to \boldsymbol{x}_{2} and \boldsymbol{x}_{2} is called an adjacent intersection point to \boldsymbol{x}_{1} if $\boldsymbol{x}_{1} \neq \boldsymbol{x}_{2},\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right] \subset L$ and ri $\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]\right) \cap I=\emptyset$.

Theorem 4 It is assumed that polytope B, which defines the polyhedral gauge, is symmetric around the origin, i.e. γ is a norm. For mutually adjacent intersection points \boldsymbol{x}_{1} and \boldsymbol{x}_{2}, if $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in E(D)$, then $\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right] \subset E(D)$.

Proof. For $\boldsymbol{z} \in \operatorname{ri}\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]\right)$, we shall show that $\boldsymbol{z} \in E(D)$. When B is symmetric around
the origin, $\boldsymbol{x}_{0} \in E(D)$ if and only if \boldsymbol{x}_{0} satisfies one of the following conditions (see [13, Proposition 2 and 3]):
(i) $D \bigcap\left(\left\{\boldsymbol{x}_{0}\right\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right) \neq \emptyset$ for any $\ell \in\{1,2, \cdots, 2 r\}$.
(ii) There exists $\ell \in\{1,2, \cdots, 2 r\}$ such that $D \bigcap\left(\left\{\boldsymbol{x}_{0}\right\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right)=\emptyset, D \bigcap \operatorname{int}\left(\left\{\boldsymbol{x}_{0}\right\}\right.$ $\left.+\bigcup_{j=1}^{r-1} K_{r+\ell+j}\right)=\emptyset, D \bigcap\left(\left\{\boldsymbol{x}_{0}\right\}+K_{\ell}\right) \neq \emptyset$ and $D \bigcap\left(\left\{\boldsymbol{x}_{0}\right\}+K_{r+\ell}\right) \neq \emptyset$.
Without loss of generality, assume that $\boldsymbol{x}_{2}-\boldsymbol{x}_{1}=\mu \boldsymbol{e}_{1}$ for some $\mu>0$. We put $U \equiv$ $\bigcup_{j=2}^{r}\left(\operatorname{ri}\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]\right)+L_{j} \bigcup L_{r+j}\right)$. Then $D \bigcap U=\emptyset$ since \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are mutually adjacent intersection points.

Case 1. First, assume that \boldsymbol{x}_{1} and \boldsymbol{x}_{2} satisfy condition (i). Since \boldsymbol{x}_{1} and \boldsymbol{x}_{2} satisfy condition (i), $D \bigcap\left(\{\boldsymbol{z}\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right) \supset D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right) \neq \emptyset$ for each $\ell \in\{1,2$, $\cdots, r\}$, and $D \bigcap\left(\{\boldsymbol{z}\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right) \supset D \bigcap\left(\left\{\boldsymbol{x}_{2}\right\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right) \neq \emptyset$ for each $\ell \in\{r+1$, $\cdots, 2 r\}$. Thus, $\boldsymbol{z} \in E(D)$ since \boldsymbol{z} satisfies condition (i).

Case 2. Next, assume that \boldsymbol{x}_{1} or \boldsymbol{x}_{2} satisfies condition (ii). It is sufficient to show the case \boldsymbol{x}_{1} satisfies condition (ii). It can be shown similarly the case \boldsymbol{x}_{2} satisfies condition (ii). Thus, we assume that \boldsymbol{x}_{1} satisfies condition (ii). In this case, $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\right.$ ri $\left.\left(L_{1}\right)\right) \neq \emptyset$ or $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\operatorname{ri}\left(L_{r+1}\right)\right) \neq \emptyset$. We shall show only the case $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\right.$ ri $\left.\left(L_{1}\right)\right) \neq \emptyset$. It can be shown similarly the case $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\right.$ ri $\left.\left(L_{r+1}\right)\right) \neq \emptyset$. In this case, we have D $\bigcap\left(\{\boldsymbol{z}\}+L_{r+1}\right)=\emptyset$. Because if $D \bigcap\left(\{\boldsymbol{z}\}+L_{r+1}\right) \neq \emptyset$, then \boldsymbol{x}_{1} satisfies condition (i) and so \boldsymbol{x}_{1} does not satisfy condition (ii). Since \boldsymbol{x}_{1} satisfies condition (ii), it needs that ℓ in condition (ii) is 1 or r. Because $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{\ell+j}\right) \supset D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\operatorname{ri}\left(L_{1}\right)\right) \neq \emptyset$ for ℓ $\in\{r+1, \cdots, 2 r\}$, and $D \bigcap \operatorname{int}\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{r+\ell+j}\right) \supset D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\operatorname{ri}\left(L_{1}\right)\right) \neq \emptyset$ for $\ell \in$ $\{1,2, \cdots, r\} \backslash\{1, r\}$. We shall show only the case ℓ in condition (ii) is 1 . It can be shown similarly the case ℓ in condition (ii) is r. Since $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{1+j}\right)=\emptyset$, we see that $D \bigcap\left(\{\boldsymbol{z}\}+\bigcup_{j=1}^{r-1} K_{1+j}\right)=D \bigcap\left[\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{1+j}\right) \bigcup\left(\left[\boldsymbol{x}_{1}, \boldsymbol{z}\right] \backslash\left\{\boldsymbol{x}_{1}\right\}+L_{2}\right)\right] \subset[D \bigcap$ $\left.\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{1+j}\right)\right] \bigcup(D \bigcap U)=\emptyset$. Since $D \bigcap \operatorname{int}\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{r+1+j}\right)=\emptyset$, we see that $D \bigcap \operatorname{int}\left(\{\boldsymbol{z}\}+\bigcup_{j=1}^{r-1} K_{r+1+j}\right) \subset D \bigcap \operatorname{int}\left(\left\{\boldsymbol{x}_{1}\right\}+\bigcup_{j=1}^{r-1} K_{r+1+j}\right)=\emptyset$. We have $D \cap$ $\left(\{\boldsymbol{z}\}+K_{1}\right) \neq \emptyset$ since $D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+K_{1}\right)=D \bigcap\left[\left(\left[\boldsymbol{x}_{1}, \boldsymbol{z}\right]+L_{2}\right) \bigcup\left(\{\boldsymbol{z}\}+K_{1}\right)\right]=[D \bigcap$ $\left.\left(\left[\boldsymbol{x}_{1}, \boldsymbol{z}\right]+L_{2}\right)\right] \bigcup\left[D \bigcap\left(\{\boldsymbol{z}\}+K_{1}\right)\right] \neq \emptyset$ and $D \cap\left(\left[\boldsymbol{x}_{1}, \boldsymbol{z}\right]+L_{2}\right)=D \bigcap\left[\left(\left\{\boldsymbol{x}_{1}\right\}+L_{2}\right) \bigcup\right.$ $\left.\left(\left[\boldsymbol{x}_{1}, \boldsymbol{z}\right] \backslash\left\{\boldsymbol{x}_{1}\right\}+L_{2}\right)\right]=\left[D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+L_{2}\right)\right] \bigcup\left[D \bigcap\left(\left[\boldsymbol{x}_{1}, \boldsymbol{z}\right] \backslash\left\{\boldsymbol{x}_{1}\right\}+L_{2}\right)\right] \subset\left[D \cap\left(\left\{\boldsymbol{x}_{1}\right\}\right.\right.$ $\left.\left.+\bigcup_{j=1}^{r-1} K_{1+j}\right)\right] \bigcup(D \bigcap U)=\emptyset$. Since $D \cap\left(\left\{\boldsymbol{x}_{1}\right\}+K_{r+1}\right) \neq \emptyset$, we see that $D \cap(\{\boldsymbol{z}\}+$ $\left.K_{r+1}\right) \supset D \bigcap\left(\left\{\boldsymbol{x}_{1}\right\}+K_{r+1}\right) \neq \emptyset$. Therefore, $\boldsymbol{z} \in E(D)$ since \boldsymbol{z} satisfies condition (ii).
Theorem 5. It is assumed that polytope B, which defines the polyhedral gauge, is symmetric around the origin, i.e. γ is a norm. Let C be a bounded elementary convex set such that int $(C) \neq \emptyset$. If every extreme point of C is efficient solution of (P), then $C \subset E(D)$.
Proof. From Theorem 4, bd $(C) \subset E(D)$. Thus, $C \subset E(D)$ from Theorem 3 .
Theorem 6 It is assumed that $r=2$ and that $D \subset\left\{\boldsymbol{x}_{0}\right\}+L_{j_{0}} \cup L_{r+j_{0}}$ for some $\boldsymbol{x}_{0} \in$ \mathbb{R}^{2} and some $j_{0} \in\{1,2, \cdots, r\}$. Then $E(D)=\operatorname{co}(D)$.
Proof. For $\boldsymbol{y} \notin \operatorname{co}(D), \boldsymbol{y} \in \operatorname{ri}(C)$ for some unbounded elementary convex set C. Since C is unbounded, $C \not \subset E(D)$ from Theorem 2 , and so ri $(C) \cap E(D)=\emptyset$ from Corollary 1. Thus, we have $\boldsymbol{y} \notin E(D)$. We know $D \subset E(D)$. Without loss of generality, assume that j_{0} $=1, \theta_{1}=0$ and $d_{1}^{1}<d_{2}^{1}<\cdots<d_{m}^{1}$, where $\boldsymbol{d}_{i} \equiv\left(d_{i}^{1}, d_{i}^{2}\right)^{T}, i \in M$. For $\boldsymbol{y} \in \operatorname{co}(D) \backslash D=$ $\left[\boldsymbol{d}_{1}, \boldsymbol{d}_{m}\right] \backslash D=\bigcup_{i=1}^{m-1}$ ri $\left(\left[\boldsymbol{d}_{i}, \boldsymbol{d}_{i+1}\right]\right), \boldsymbol{y} \in \operatorname{ri}\left(\left[\boldsymbol{d}_{i_{0}}, \boldsymbol{d}_{i_{0}+1}\right]\right)$ for some $i_{0} \in\{1,2, \cdots, m-1\}$. Since $r=2$, we have

$$
\partial \gamma\left(\boldsymbol{y}-\boldsymbol{d}_{\boldsymbol{i}}\right)= \begin{cases}{\left[\boldsymbol{p}_{4}, \boldsymbol{p}_{1}\right]} & \text { if } i \leq i_{0} \\ {\left[\boldsymbol{p}_{2}, \boldsymbol{p}_{3}\right]} & \text { if } i>i_{0}\end{cases}
$$

Note that $\left[\boldsymbol{p}_{4}, \boldsymbol{p}_{1}\right]$ and $\left[\boldsymbol{p}_{2}, \boldsymbol{p}_{3}\right]$ are mutually opposite edges of the quadrangle $B^{\circ}=\mathrm{co}\left(\left\{\boldsymbol{p}_{1}\right.\right.$, $\left.\left.\boldsymbol{p}_{2}, \boldsymbol{p}_{3}, \boldsymbol{p}_{4}\right\}\right)$. Since $\mathbf{0} \in \operatorname{int}\left(B^{\circ}\right), \Gamma(\boldsymbol{y})$ is not suitably contained in a halfspace. Thus, $\boldsymbol{y} \in$ $E(D)$ from Theorem 1. Therefore, it is proved that $E(D)=c o(D)$.
5. Algorithm to find all efficient solutions. In this section, we propose the Frame Generating Algorithm to find $E(D)$, which requires $O\left(m^{3}\right)$ computational time.

Let \boldsymbol{x}_{1}^{*} and \boldsymbol{x}_{2}^{*} be any two efficient solutions of (P). From Corollary 1 and Theorem 2, there exists polygonal line in $E(D)$, which connects \boldsymbol{x}_{1}^{*} and \boldsymbol{x}_{2}^{*}, i.e. there exists $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n} \in E(D)$ such that $\left[\boldsymbol{x}_{1}^{*}, \boldsymbol{x}_{1}\right],\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right], \cdots,\left[\boldsymbol{x}_{n}, \boldsymbol{x}_{2}^{*}\right] \subset E(D)$. In particular, if \boldsymbol{x}_{1}^{*} and \boldsymbol{x}_{2}^{*} are in L, then there exists polygonal line in $L \bigcap E(D)$, which connects \boldsymbol{x}_{1}^{*} and \boldsymbol{x}_{2}^{*}. The set $L \bigcap E(D)$ is called the frame of $E(D)$. Note that the frame of $E(D)$ is the union of all one-dimensional elementary convex sets in $E(D)$. From Theorem 3, if the frame of $E(D)$ is determined, then $E(D)$ can be constructed. Thus, we give the Frame Generating Algorithm to find the frame of $E(D)$ in the following.

In the Frame Generating Algorithm, finding adjacent intersection points to an intersection point and checking that $\Gamma\left(\boldsymbol{x}_{0}\right)$ for $\boldsymbol{x}_{0} \notin D$ is suitably contained in a halfplane or not are needed. First, adjacent intersection points to an intersection point can be found efficiently by using the method given in [7]. Next, we shall state how to check that $\Gamma\left(\boldsymbol{x}_{0}\right)$ for $\boldsymbol{x}_{0} \notin D$ is suitably contained in a halfplane or not. For each $i \in M$, there exists $j_{i} \in\{1,2, \cdots, 2 r\}$ such that $\boldsymbol{x}_{0} \in\left\{\boldsymbol{d}_{i}\right\}+\operatorname{int}\left(K_{j_{i}}\right)$ or $\boldsymbol{x}_{0} \in\left\{\boldsymbol{d}_{i}\right\}+L_{j_{i}}$. From (3), we have

$$
\partial \gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{i}\right)= \begin{cases}\left\{\boldsymbol{p}_{j_{i}}\right\} & \text { if } \boldsymbol{x}_{0} \in\left\{\boldsymbol{d}_{i}\right\}+\operatorname{int}\left(K_{j_{i}}\right), \\ {\left[\boldsymbol{p}_{j_{i}-1}, \boldsymbol{p}_{j_{i}}\right]} & \text { if } \boldsymbol{x}_{0} \in\left\{\boldsymbol{d}_{i}\right\}+L_{j_{i}} .\end{cases}
$$

For each $i \in M$, we put $\boldsymbol{q}_{i}^{1} \equiv \boldsymbol{p}_{j_{i}}, \boldsymbol{q}_{i}^{2} \equiv \boldsymbol{p}_{j_{i}}, \beta_{i}^{1} \equiv \alpha_{j_{i}}$ and $\beta_{i}^{2} \equiv \alpha_{j_{i}}$ if $\partial \gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{i}\right)=\left\{\boldsymbol{p}_{j_{i}}\right\}$ and put $\boldsymbol{q}_{i}^{1} \equiv \boldsymbol{p}_{j_{i}-1}, \boldsymbol{q}_{i}^{2} \equiv \boldsymbol{p}_{j_{i}}, \beta_{i}^{1} \equiv \alpha_{j_{i}-1}$ and $\beta_{i}^{2} \equiv \alpha_{j_{i}}$ if $\partial \gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{i}\right)=\left[\boldsymbol{p}_{j_{i}-1}, \boldsymbol{p}_{j_{i}}\right]$. Without loss of generality, we assume that $\beta_{1}^{1} \leq \beta_{2}^{1} \leq \cdots \leq \beta_{m}^{1}$ and that, for each $i \in\{1$, $2, \cdots, m-1\}, \beta_{i}^{2} \leq \beta_{i+1}^{2}$ if $\beta_{i}^{1}=\beta_{i+1}^{1}$. For each $i \in M$ and each $n \in \mathbb{Z}$ and each $j \in\{1$, 2\}, we put $\boldsymbol{q}_{n m+i}^{j} \equiv \boldsymbol{q}_{i}^{j}, \beta_{n m+i}^{j} \equiv 2 n \pi+\beta_{i}^{j}$. Then we see that $\Gamma\left(\boldsymbol{x}_{0}\right)$ is suitably contained in a halfspace if and only if one of the following conditions is satisfied.
(i) $\beta_{m+k-1}^{2}-\beta_{k}^{1}<\pi$ for some $k \in M$.
(ii) $\beta_{m+k-1}^{2}-\beta_{k}^{1}=\pi$ for some $k \in M$, and there exists $\ell \in M$ such that $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{\ell}\right)$, where $\boldsymbol{a}=-\left(\cos \frac{\beta_{k}^{1}+\beta_{m+k-1}^{2}}{2}, \sin \frac{\beta_{k}^{1}+\beta_{m+k-1}^{2}}{2}\right)^{T}$.
When $\beta_{m+k-1}^{2}-\beta_{k}^{1}=\pi$ for some $k \in M$, if for $\boldsymbol{a} \neq \mathbf{0},\langle\boldsymbol{a}, \boldsymbol{x}\rangle \leq 0$ for any $\boldsymbol{x} \in \bigcup_{i=1}^{m} \partial \gamma\left(\boldsymbol{x}_{0}-\right.$ $\left.\boldsymbol{d}_{i}\right)$, then $\boldsymbol{a}=-\mu\left(\cos \frac{\beta_{k}^{1}+\beta_{m+k-1}^{2}}{2}, \sin \frac{\beta_{k}^{1}+\beta_{m+k-1}^{2}}{2}\right)^{T}$ for some $\mu>0$. For such \boldsymbol{a} and each $\ell \in$ M, we see that $\langle\boldsymbol{a}, \boldsymbol{x}\rangle<0$ for any $\boldsymbol{x} \in \partial \gamma\left(\boldsymbol{x}_{0}-\boldsymbol{d}_{\ell}\right)$ if and only if $\left\langle\boldsymbol{a}, \boldsymbol{q}_{\ell}^{1}\right\rangle<0$ and $\left\langle\boldsymbol{a}, \boldsymbol{q}_{\ell}^{2}\right\rangle$ <0. Now, it can be checked that $\Gamma\left(\boldsymbol{x}_{0}\right)$ is suitably contained in a halfspace or not, i.e. one of the above conditions is satisfied or not. From Theorem 1, it can be checked that \boldsymbol{x}_{0} is an efficient solution of (P) or not by checking that $\Gamma\left(\boldsymbol{x}_{0}\right)$ is suitably contained in a halfspace or not.

Remark. In view of the fact that the frame of $E(D)$ is the union of all one-dimensional elementary convex sets in $E(D)$, which is connected, we can construct a connected graph $(I \cap E(D), E)$, where E is the set of arcs in the graph. Given $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in I \cap E(D)$, the arc $a\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ which connects \boldsymbol{x}_{1} and \boldsymbol{x}_{2} is in E if and only if \boldsymbol{x}_{1} and \boldsymbol{x}_{2} are mutually adjacent and $\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right] \subset E(D)$. This concept will be guide for describing an algorithm to locate the frame of $E(D)$. It can be checked that $\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]$ is contained in $E(D)$ or not by checking $\Gamma\left(\boldsymbol{x}_{0}\right)$ for any one point $\boldsymbol{x}_{0} \in \mathrm{ri}\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]\right)$ is suitably contained in a halfspace or not. If
$\Gamma\left(\boldsymbol{x}_{0}\right)$ is suitably contained in a halfspace, then $\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]$ is not contained in $E(D)$ from Theorem 1. If $\Gamma\left(\boldsymbol{x}_{0}\right)$ is not suitably contained in a halfspace, then $\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]$ is contained in $E(D)$ from Theorem 1 and Corollary 1.

The Frame Generating Algorithm finds one-dimensional elementary convex sets in the frame of $E(D)$, which are connected with some demand point. The set V is the set of checked intersection points which are connected with some demand point. The set $S \subset V$ is the set of intersection points which have been checked that one-dimensional elementary convex sets connected with them are contained in $E(D)$ or not. The set T is the union of one-dimensional elementary convex sets in $E(D)$ which have been checked before.

The Frame Generating Algorithm

Step 1. Set $V=D, S=\emptyset$ and $T=\emptyset$.
Step 2. If $V=S$, then stop. (The set T is the frame of $E(D)$.) Otherwise, choose any \boldsymbol{x}_{0} $\in V \backslash S$ and set $S=S \bigcup\left\{\boldsymbol{x}_{0}\right\}$.

Step 3. Set W be the set of all adjacent intersection points to \boldsymbol{x}_{0}.
Step 4. If $W=\emptyset$, then go to Step 2 , otherwise choose any $\boldsymbol{y}_{0} \in W$.
Step 5. If $\left[\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right] \subset T$, then go to step 4. Otherwise, check $\Gamma\left(\boldsymbol{z}_{0}\right)$ for any one point \boldsymbol{z}_{0} \in ri $\left(\left[\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right]\right)$ is suitably contained in a halfspace or not. If $\Gamma\left(\boldsymbol{z}_{0}\right)$ is not suitably contained in a halfspace, then set $T=T \bigcup\left[\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right]$, and if $\boldsymbol{y}_{0} \notin V$, then set $V=V$ $\bigcup\left\{\boldsymbol{y}_{0}\right\}$. Go to Step 4.

In the Frame Generating Algorithm, the number of iterations is $O\left(m^{2}\right)$ since the number of intersection points is $O\left(m^{2}\right)$. In Step 3, determining all adjacent intersection points to \boldsymbol{x}_{0} requires $O(1)$ computational time, assuming that $\left\{\boldsymbol{d}_{i}\right\}+L_{j} \bigcup L_{r+j}, i \in M$ for each $j \in$ $\{1,2, \cdots, r\}$ have been sorted according to their x-intercept or y-intercept, which requires $O(m \log m)$ computational time (see [7]). The number of intersection points adjacent to \boldsymbol{x}_{0} is at most $2 r$. In Step 5 , checking that $\Gamma\left(\boldsymbol{z}_{0}\right)$ is suitably contained in a halfspace or not requires $O(m)$ computational time. Therefore, the Frame Generating Algorithm requires $O\left(m^{3}\right)$ computational time.

Finally, we consider an example problem for $\boldsymbol{d}_{1}=(3,4)^{T}, \boldsymbol{d}_{2}=(7,4)^{T}, \boldsymbol{d}_{3}=(6,7)^{T}$, $\boldsymbol{d}_{4}=(8,9)^{T}$ and $\boldsymbol{d}_{5}=(13,6)^{T}$, where $B=\operatorname{co}\left(\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}, \boldsymbol{e}_{5}, \boldsymbol{e}_{6}\right\}\right)$ and $\boldsymbol{e}_{1}=(2,0)^{T}$, $\boldsymbol{e}_{2}=\left(\frac{4}{3}, \frac{2}{3}\right)^{T}, \boldsymbol{e}_{3}=\left(-\frac{1}{3}, \frac{2}{3}\right)^{T}, \boldsymbol{e}_{4}=(-1,0)^{T}, \boldsymbol{e}_{5}=\left(-\frac{4}{3}, \frac{2}{3}\right)^{T}, \boldsymbol{e}_{6}=\left(\frac{2}{3},-\frac{4}{3}\right)^{T}$ (see Figure 1). Applying the Frame Generating Algorithm for the multicriteria location problem (P), we have the frame of $E(D)$ illustrated in Figure 3.

Figure 3. The frame of $E(D)$. ($:$ demand points)
6. Conclusions. We delt with a multicriteria location problem with the polyhedral gauge in \mathbb{R}^{2}. Our main interest was to find $E(D)$. First, we obtained characterizations of efficient solutions of (P) as Theorem 3-6 by using the concept of elementary convex sets. Next, we proposed the Frame Generating Algorithm to find the frame of $E(D)$. The Frame Generating Algorithm generates the frame of $E(D)$ by tracing one-dimensional elementary convex sets in $E(D)$. Furthermore, we gave the procedure for checking that a given point is an efficient solution of (P) or not.

References

[1] C. Berge, Topological spaces, Oliber \& Boyd (1963)
[2] A. Brøndsted, An introduction to convex polytopes, Springer, New York (1983)
[3] R. Durier and C. Michelot, Geometrical properties of the Fermat-Weber problem, Eur. J. Oper. Res., 20 (1985), 332-343
[4] R. Durier, On Pareto optima, the Fermat-Weber problem, and polyhedral gauges, Math. Programming, 47 (1990), 65-79
[5] Z. Drezner and G. O. Wesolowsky, The asymmetric distance location problem, Trans. Sci., 23 (1989), 201-207
[6] M. Fukushima, Introduction to mathematical programming(in Japanese), Asakura Syoten, Japan (1996)
[7] M. Kon and S. Kushimoto, A single facility location problem under the A-distance, Journal of the Operations Research Soc. of Japan, 40 (1997), 10-20
[8] M. Kon, Efficient solutions for multicriteria location problems under the block norm, Mathematica Japonica, 47 (1998), 295-303
[9] M. Kon, Efficient solutions of multicriteria location problems with rectilinear norm in \boldsymbol{R}^{3}, Scientiae Mathematicae Japonicae, 54 (2001), 289-299
[10] T. J. Lowe, J. -F. Thisse, J. E. Ward and R. E. Wendell, On efficient solutions to multiple objective mathematical programs, Manage. Sci., 30 (1984), 1346-1349
[11] T. Matsutomi and H. Ishii, Fuzzy facility location problem with asymmetric rectilinear distance (in Japanese), Journal of Japan Society for Fuzzy Theory and Systems, 8 (1996), 57-64
[12] T. Matsutomi and H. Ishii, Minimax location problem with A-distance, Journal of the Operations Research Soc. of Japan, 41 (1998), 181-195
[13] B. Pelegrin and F. R. Fernandez, Determination of efficient points in multiple-objective location problems, Nav. Res. Logist. q., 35 (1988), 697-705
[14] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, N. J. (1970)
[15] R. E. Wendell, A. P. Hurter, Jr. and T. J. Lowe, Efficient points in location problems, AIIE Trans., 9 (1977), 238-246

Faculty of Science and Technology, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan

E-mail: masakon@cc.hirosaki-u.ac.jp
Department of Industrial Engineering, Fukui University of Technology, Gakuen 3-6-1, Fukui, 910-8505, Japan

E-mail: kushimot@ccmails.fukui-ut.ac.jp

[^0]: 2000 Mathematics Subject Classification. 90B85.
 Key words and phrases, location problem, multicriteria, polyhedral gauge, efficiency.

