ROUGHNESS OF IDEALS IN BCK-ALGEBRAS

YOUNG BAE JUN

Received April 4, 2002

ABSTRACT. As a generalization of ideals in BCK-lagberas, the notion of rough ideals is discussed.

1. INTRODUCTION

In 1982, Pawlak introduced the concept of a rough set (see [5]). This concept is fundamental for the examination of granularity in knowledge. It is a concept which has many applications in data analysis (see [6]). Rough set theory is applied to semigroups and groups (see [2, 3]). In this paper, we apply the rough set theory to BCK-algebras, and we introduce the notion of upper/lower rough subalgebras/ideals which is an extended notion of an ideal in a BCK-algebra.

2. Preliminaries

Recall that a *BCK-algebra* is an algebra (X, *, 0) of type (2,0) satisfying the following axioms: for every $x, y, z \in X$,

- ((x * y) * (x * z)) * (z * y) = 0,
- (x * (x * y)) * y = 0,
- x * x = 0,
- 0 * x = 0,
- x * y = 0 and y * x = 0 imply x = y.

For any BCK-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X. A nonempty subset S of a BCK-algebra X is said to be a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$. A nonempty subset A of a BCK-algebra X is called an *ideal* of X, denoted by $A \triangleleft X$, if it satisfies

- $0 \in A$,
- $x * y \in A$ and $y \in A$ imply $x \in A$ for all $x, y \in X$.

Note that every ideal of a BCK-algebra X is a subalgebra of X.

Let V be a set and E an equivalence relation on V and let $\mathcal{P}(V)$ denote the power set of V. For all $x \in V$, let $[x]_E$ denote the equivalence class of x with respect to E. Define the functions $E_-, E^- : \mathcal{P}(V) \to \mathcal{P}(V)$ as follows: $\forall S \in \mathcal{P}(V)$,

$$E_{-}(S) = \{x \in V \mid [x]_E \subseteq S\} \text{ and } E^{-}(S) = \{x \in V \mid [x]_E \cap S \neq \emptyset\}.$$

The pair (V, E) is called an approximation space. Let S be a subset of V. Then S is said to be definable if $E_{-}(S) = E^{-}(S)$ and rough otherwise. $E_{-}(S)$ is called the lower approximation of S while $E^{-}(S)$ is called the upper approximation.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. lower/upper approximation, definable subset, lower/upper rough subalgebra/ideal.

Y. B. Jun

3. Roughness of ideals

Throughout this section X is a BCK-algebra. Let A be an ideal of X. Define a relation Θ on X by

 $(x,y) \in \Theta$ if and only if $x * y \in A$ and $y * x \in A$.

Then Θ is an equivalence relation on X related to an ideal A of X. Moreover Θ satisfies

 $(x,y) \in \Theta$ and $(u,v) \in \Theta$ imply $(x * u, y * v) \in \Theta$.

Hence Θ is a congruence relation on X. Let A_x denote the equivalence class of x with respect to the equivalence relation Θ related to the ideal A of X, and X/A denote the collection of all equivalence classes, that is, $X/A = \{A_x \mid x \in X\}$. Then $A_0 = A$. If $A_x * A_y$ is defined as the class containing x * y, that is, $A_x * A_y = A_{x*y}$, then $(X/A, *, A_0)$ is a BCK-algebra (see [4]). Let Θ be an equivalence relation on X related to an ideal A of X. For any nonempty subset S of X, the lower and upper approximation of S are denoted by $\underline{\Theta}(A; S)$ and $\overline{\Theta}(A; S)$ respectively, that is,

$$\underline{\Theta}(A;S) = \{ x \in X \mid A_x \subseteq S \} \text{ and } \overline{\Theta}(A;S) = \{ x \in X \mid A_x \cap S \neq \emptyset \}.$$

If A = S, then $\underline{\Theta}(A; S)$ and $\overline{\Theta}(A; S)$ are denoted by $\underline{\Theta}(A)$ and $\overline{\Theta}(A)$, respectively.

Example 3.1. (1) Let $X = \{0, 1, 2, 3\}$ be a *BCK*-algebra with the Cayley table as follows (see [4]).

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	2
3	3	3	3	0

Let $A = \{0, 1\} \triangleleft X$ and let Θ be an equivalence relation on X related to A. Then $A_0 = A_1 = A, A_2 = \{2\}$, and $A_3 = \{3\}$. Hence $\underline{\Theta}(A; \{0, 2\}) = \{2\} = \underline{\Theta}(A; \{2\}), \underline{\Theta}(A; \{0\}) = \emptyset, \underline{\Theta}(A; \{0, 3\}) = \{3\}, \underline{\Theta}(A; \{0, 1, 3\}) = \{0, 1, 3\} \triangleleft X, \overline{\Theta}(A; \{0, 2\}) = \{0, 1, 2\} \triangleleft X$, and $\overline{\Theta}(A; \{0, 3\}) = \{0, 1, 3\} \triangleleft X$.

(2) Let $X = \{0, 1, 2, 3, 4\}$ be a *BCK*-algebra with the Cayley table as follows (see [4]).

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	2	0	2	0
3	3	3	3	0	0
4	4	$\begin{array}{c} 0 \\ 0 \\ 2 \\ 3 \\ 4 \end{array}$	4	4	0

Consider $A = \{0, 1, 2\} \triangleleft X$ and let Θ be an equivalence relation on X related to A. Then the equivalence classes are as follows: $A_0 = A_1 = A_2 = A, A_3 = \{3\}$, and $A_4 = \{4\}$. Thus $\underline{\Theta}(A; \{0, 1, 3\}) = \{3\}, \underline{\Theta}(A; \{0, 2, 4\}) = \{4\}, \underline{\Theta}(A; \{0, 1, 2, 3\}) = \{0, 1, 2, 3\} \triangleleft X, \underline{\Theta}(A; \{0, 1, 2, 4\}) = \{0, 1, 2, 4\} \triangleleft X, \overline{\Theta}(A; \{0, 2\}) = \{0, 1, 2\} \triangleleft X, \text{ and } \overline{\Theta}(A; \{0, 3\}) = \{0, 1, 2, 3\} \triangleleft X.$

In Example 3.1, we know that there exists a non-ideal U of X such that $\underline{\Theta}(A; U) \triangleleft X$; and there exists a non-ideal V of X such that $\overline{\Theta}(A; V) \triangleleft X$, where Θ is an equivalence relation on X related to $A \triangleleft X$.

Proposition 3.2. Let Θ and Ψ be equivalence relations on X related to ideals A and B of X, respectively. If $A \subseteq B$, then $\Theta \subseteq \Psi$.

Proof. If $(x, y) \in \Theta$, then $x * y \in A \subseteq B$ and $y * x \in A \subseteq B$. Hence $(x, y) \in \Psi$, and so $\Theta \subseteq \Psi$.

Proposition 3.3. Let Θ be an equivalence relation on X related to an ideal A of X. Then

- (1) $\underline{\Theta}(A; S) \subseteq S \subseteq \overline{\Theta}(A; S), \forall S \in \mathcal{P}(X).$
- (2) $\overline{\Theta}(A; S \cup T) = \overline{\Theta}(A; S) \cup \overline{\Theta}(A; T), \, \forall S, T \in \mathcal{P}(X).$
- $(3) \ \underline{\Theta}(A;S\cap T) = \underline{\Theta}(A;S) \cap \underline{\Theta}(A;T), \, \forall S,T \in \mathcal{P}(X).$
- (4) $\forall S, T \in \mathcal{P}(X), S \subseteq T \Rightarrow \underline{\Theta}(A; S) \subseteq \underline{\Theta}(A; T) \text{ and } \overline{\Theta}(A; S) \subseteq \overline{\Theta}(A; T).$
- (5) $\underline{\Theta}(A; S \cup T) \supseteq \underline{\Theta}(A; S) \cup \underline{\Theta}(A; T), \forall S, T \in \mathcal{P}(X).$
- (6) $\overline{\Theta}(A; S \cap T) \subseteq \overline{\Theta}(A; S) \cap \overline{\Theta}(A; T), \forall S, T \in \mathcal{P}(X).$
- (7) If Ψ is an equivalence relation on X related to an ideal B of X and if $A \subseteq B$, then $\overline{\Theta}(A; S) \subseteq \overline{\Psi}(B; S), \forall S \in \mathcal{P}(X).$

Proof. (1) is straightforward.

(2) For any subsets S and T of X, we have

$$\begin{array}{lll} x\in\overline{\Theta}(A;S\cup T) &\Leftrightarrow& A_x\cap(S\cup T)\neq\emptyset\\ &\Leftrightarrow& (A_x\cap S)\cup(A_x\cap T)\neq\emptyset\\ &\Leftrightarrow& A_x\cap S\neq\emptyset \text{ or }A_x\cap T\neq\emptyset\\ &\Leftrightarrow& x\in\overline{\Theta}(A;S) \text{ or }x\in\overline{\Theta}(A;T)\\ &\Leftrightarrow& x\in\overline{\Theta}(A;S)\cup\overline{\Theta}(A;T), \end{array}$$

and hence $\overline{\Theta}(A; S \cup T) = \overline{\Theta}(A; S) \cup \overline{\Theta}(A; T).$

(3) For any subsets S and T of X we have

$$\begin{array}{lll} x \in \underline{\Theta}(A; S \cap T) & \Leftrightarrow & A_x \subseteq S \cap T \\ & \Leftrightarrow & A_x \subseteq S \text{ and } A_x \subseteq T \\ & \Leftrightarrow & x \in \underline{\Theta}(A; S) \text{ and } x \in \underline{\Theta}(A; T) \\ & \Leftrightarrow & x \in \underline{\Theta}(A; S) \cap \underline{\Theta}(A; T). \end{array}$$

Hence $\underline{\Theta}(A; S \cap T) = \underline{\Theta}(A; S) \cap \underline{\Theta}(A; T).$

(4) Let $S, T \in \mathcal{P}(X)$ be such that $S \subseteq T$. Then $S \cap T = S$ and $S \cup T = T$. It follows from (3) and (2) that

$$\underline{\Theta}(A;S) = \underline{\Theta}(A;S \cap T) = \underline{\Theta}(A;S) \cap \underline{\Theta}(A;T)$$

 and

$$\overline{\Theta}(A;T) = \overline{\Theta}(A;S \cup T) = \overline{\Theta}(A;S) \cup \overline{\Theta}(A;T),$$

which yield $\underline{\Theta}(A; S) \subseteq \underline{\Theta}(A; T)$ and $\overline{\Theta}(A; S) \subseteq \overline{\Theta}(A; T)$, respectively. (5) Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, it follows from (4) that

$$\underline{\Theta}(A;S) \subseteq \underline{\Theta}(A;S \cup T) \text{ and } \underline{\Theta}(A;T) \subseteq \underline{\Theta}(A;S \cup T).$$

Thus $\underline{\Theta}(A; S) \cup \underline{\Theta}(A; T) \subseteq \underline{\Theta}(A; S \cup T).$

(6) Since $S \cap T \subseteq S, T$, it follows from (4) that

 $\overline{\Theta}(A; S \cap T) \subseteq \overline{\Theta}(A; S)$ and $\overline{\Theta}(A; S \cap T) \subseteq \overline{\Theta}(A; T)$

so that $\overline{\Theta}(A; S \cap T) \subseteq \overline{\Theta}(A; S) \cap \overline{\Theta}(A; T)$.

(7) If $x \in \overline{\Theta}(A; S)$, then $A_x \cap S \neq \emptyset$, and so there exists $a \in S$ such that $a \in A_x$. Hence $(a, x) \in \Theta$, that is, $a * x \in A$ and $x * a \in A$. Since $A \subseteq B$, it follows that $a * x \in B$ and $x * a \in B$ so that $(a, x) \in \Psi$, that is, $a \in B_x$. Therefore $a \in B_x \cap S$, which means $x \in \Psi(B; S)$. This completes the proof.

Proposition 3.4. Let Θ be an equivalence relation on X related to any ideal A of X. Then $\underline{\Theta}(A; X) = X = \overline{\Theta}(A; X)$, that is, X is definable.

Proof. It is straightforward.

Proposition 3.5. Let Θ be an equivalence relation on X related to the trivial ideal $\{0\}$ of X. Then $\underline{\Theta}(\{0\}; S) = S = \overline{\Theta}(\{0\}; S)$ for every nonempty subset S of X, that is, every nonempty subset of X is definable.

Proof. Note that $\{0\}_x = \{x\}$ for all $x \in X$, since if $a \in \{0\}_x$ then $(a, x) \in \Theta$ and hence a * x = 0 and x * a = 0. It follows that a = x. Hence

$$\underline{\Theta}(\{0\}; S) = \{x \in X \mid \{0\}_x \subseteq S\} = S$$

and

$$\overline{\Theta}\big(\{0\};S\big) = \{x \in X \mid \{0\}_x \cap S \neq \emptyset\} = S.$$

This completes the proof.

Remark 3.6. Let Θ be an equivalence relation on X related to an ideal A of X. If B is an ideal of X such that $A \neq B$, then $\underline{\Theta}(A; B)$ is not an ideal of X in general. For, consider a *BCK*-algebra X in Example 3.1(2) and an equivalence relation Θ on X related to the ideal $A = \{0, 1, 2\}$. If we take an ideal $B = \{0, 1, 3\}$ of X, then $A \neq B$ and $\underline{\Theta}(A; B) = \{3\}$ which is not an ideal of X.

Definition 3.7. Let Θ be an equivalence relation on X related to an ideal A of X. A nonempty subset S of X is called an *upper* (resp. a *lower*) *rough subalgebra/ideal* of X if the upper (resp. nonempty lower) approximation of S is a subalgebra/ideal of X. If S is both an upper and a lower rough subalgebra/ideal of X, we say that S is a *rough subalgebra/ideal* of X.

Theorem 3.8. Let Θ be an equivalence relation on X related to an ideal A of X. Then every subalgebra S of X is a rough subalgebra of X.

Proof. Let $x, y \in \underline{\Theta}(A; S)$. Then $A_x \subseteq S$ and $A_y \subseteq S$. Since S is a subalgebra of X, it follows that $A_{x*y} = A_x * A_y \subseteq S$ so that $x * y \in \underline{\Theta}(A; S)$. Hence $\underline{\Theta}(A; S)$ is a subalgebra of X. Now if $x, y \in \overline{\Theta}(A; S)$, then $A_x \cap S \neq \emptyset$ and $A_y \cap S \neq \emptyset$, and so there exist $a, b \in S$ such that $a \in A_x$ and $b \in A_y$. It follows that $(a, x) \in \Theta$ and $(b, y) \in \Theta$. Since Θ is a congruence relation on X, we have $(a * b, x * y) \in \Theta$. Hence $a * b \in A_{x*y}$. Since S is a subalgebra of X, we get $a * b \in S$, and therefore $a * b \in A_{x*y} \cap S$, that is, $A_{x*y} \cap S \neq \emptyset$. This shows that $x * y \in \overline{\Theta}(A; S)$, and consequently $\overline{\Theta}(A; S)$ is a subalgebra of X. This completes the proof.

Corollary 3.9. Let Θ be an equivalence relation on X related to an ideal A of X. Then $\underline{\Theta}(A) \ (\neq \emptyset)$ and $\overline{\Theta}(A)$ are subalgebras of X, that is, A is a rough subalgebra of X.

Proof. It is straightforward.

Theorem 3.10. Let Θ be an equivalence relation on X related to an ideal A of X. If U is an ideal of X containing A, then

- (1) $\underline{\Theta}(A; U) \ (\neq \emptyset)$ is an ideal of X, that is, U is a lower rough ideal of X.
- (2) $\overline{\Theta}(A; U)$ is an ideal of X, that is, U is an upper rough ideal of X.

Proof. Let U be an ideal of X containing A. Let $x \in A_0$. Then $x \in A \subseteq U$, and so $A_0 \subseteq U$. Hence $0 \in \underline{\Theta}(A; U)$. Let $x, y \in X$ be such that $y \in \underline{\Theta}(A; U)$ and $x * y \in \underline{\Theta}(A : U)$. Then $A_y \subseteq U$ and $A_x * A_y = A_{x*y} \subseteq U$. Let $a \in A_x$ and $b \in A_y$. Then $(a, x) \in \Theta$ and $(b, y) \in \Theta$, which implies $(a * b, x * y) \in \Theta$. Hence $a * b \in A_{x*y} \subseteq U$. Since $b \in A_y \subseteq U$ and U is an ideal, it follows that $a \in U$ so that $A_x \subseteq U$. Thus $x \in \underline{\Theta}(A; U)$. This shows that $\underline{\Theta}(A; U)$ is an ideal of X, that is, U is a lower rough ideal of X. Now, obviously $0 \in \overline{\Theta}(A; U)$. Let $x, y \in X$ be such that $y \in \overline{\Theta}(A; U)$ and $x * y \in \overline{\Theta}(A; U)$. Then $A_y \cap U \neq \emptyset$ and $A_{x*y} \cap U \neq \emptyset$, and so there exist $a, b \in U$ such that $a \in A_y$ and $b \in A_{x*y}$. Hence $(a, y) \in \Theta$ and $(b, x * y) \in \Theta$,

which implies $y * a \in A \subseteq U$ and $(x * y) * b \in A \subseteq U$. Since $a, b \in U$ and U is an ideal, we get $y \in U$ and $x * y \in U$; hence $x \in U$. Note that $x \in A_x$, thus $x \in A_x \cap U$, that is, $A_x \cap U \neq \emptyset$. Therefore $x \in \overline{\Theta}(A; U)$, and consequently U is an upper rough ideal of X. \Box

Corollary 3.11. Let Θ be an equivalence relation on X related to an ideal A of X. Then $\underline{\Theta}(A) \ (\neq \emptyset)$ and $\overline{\Theta}(A)$ are ideals of X, that is, A is a rough ideal of X.

Theorem 3.10 shows that the notion of an upper (resp. a lower) rough ideal is an extended notion of an ideal in a BCK-algebra. The following example provides that the converse of Theorem 3.10 may not be true.

Example 3.12. (1) Let $X = \{0, 1, 2, 3, 4\}$ be a *BCK*-algebra with the Cayley table as follows (see [4]).

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	2	0
3	3	3	3	0	3
4	4	$\begin{array}{c} 0 \\ 0 \\ 2 \\ 3 \\ 4 \end{array}$	4	4	0

Consider $A = \{0, 2\} \triangleleft X$ and a subset $U = \{0, 2, 3\}$ of X which is not an ideal of X. Let Θ be an equivalence relation on X related to A. Then $A_0 = A_2 = A$, $A_1 = \{1\}$, $A_3 = \{3\}$, and $A_4 = \{4\}$. Hence $\underline{\Theta}(A; U) = \{0, 2\} \triangleleft X$.

(2) Let $X = \{0, 1, 2, 3, 4\}$ be a *BCK*-algebra with the Cayley table as follows (see [4]).

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
	3	3	3	0	3
4	4	$\begin{array}{c}1\\0\\2\\3\\4\end{array}$	4	4	0

Consider $B = \{0, 2\} \triangleleft X$ and let Ψ be an equivalence relation on X related to B. Then all equivalence classes are $B_0 = B_2 = \{0, 2\}$, $B_1 = \{1\}$, $B_3 = \{3\}$ and $B_4 = \{4\}$. Note that $V = \{0, 1, 4\}$ is not an ideal of X, but $\overline{\Psi}(B; V) = \{0, 1, 2, 4\} \triangleleft X$.

Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1-26.
- [2] N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997), 139-163.
- [3] N. Kuroki and J. N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5(1) (1997), 183-191.
- [4] J. Meng and Y. B. Jun, BCK-algberas, Kyungmoonsa Co. Seoul, Korea, 1994.
- [5] Z. Pawlak, Rough sets, Int. J. Inform. Comp. Sci. 11 (1982), 341-356.
- [6] Z. Pawlak, Rough Sets-Theorical Aspects of Reasoning about Data, Kluwer Academic, Norwell, MA, 1991.

Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea. E-mail: ybjun@nongae.gsnu.ac.kr