ROUGHNESS OF IDEALS IN $B C K$-ALGEBRAS

YOUNG BAE JUN

Received April 4, 2002

Abstract

As a generalization of ideals in $B C K$-lagberas, the notion of rough ideals is discussed.

1. Introduction

In 1982, Pawlak introduced the concept of a rough set (see [5]). This concept is fundamental for the examination of granularity in knowledge. It is a concept which has many applications in data analysis (see [6]). Rough set theory is applied to semigroups and groups (see $[2,3]$). In this paper, we apply the rough set theory to $B C K$-algebras, and we introduce the notion of upper/lower rough subalgebras/ideals which is an extended notion of an ideal in a $B C K$-algebra.

2. Preliminaries

Recall that a $B C K$-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms: for every $x, y, z \in X$,

- $((x * y) *(x * z)) *(z * y)=0$,
- $(x *(x * y)) * y=0$,
- $x * x=0$,
- $0 * x=0$,
- $x * y=0$ and $y * x=0$ imply $x=y$.

For any $B C K$-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X. A nonempty subset S of a $B C K$-algebra X is said to be a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A nonempty subset A of a $B C K$-algebra X is called an ideal of X, denoted by $A \triangleleft X$, if it satisfies

- $0 \in A$,
- $x * y \in A$ and $y \in A$ imply $x \in A$ for all $x, y \in X$.

Note that every ideal of a $B C K$-algebra X is a subalgebra of X.
Let V be a set and E an equivalence relation on V and let $\mathcal{P}(V)$ denote the power set of V. For all $x \in V$, let $[x]_{E}$ denote the equivalence class of x with respect to E. Define the functions $E_{-}, E^{-}: \mathcal{P}(V) \rightarrow \mathcal{P}(V)$ as follows: $\forall S \in \mathcal{P}(V)$,

$$
E_{-}(S)=\left\{x \in V \mid[x]_{E} \subseteq S\right\} \text { and } E^{-}(S)=\left\{x \in V \mid[x]_{E} \cap S \neq \emptyset\right\}
$$

The pair (V, E) is called an approximation space. Let S be a subset of V. Then S is said to be definable if $E_{-}(S)=E^{-}(S)$ and rough otherwise. $E_{-}(S)$ is called the lower approximation of S while $E^{-}(S)$ is called the upper approximation.

[^0]
3. Roughness of ideals

Throughout this section X is a $B C K$-algebra. Let A be an ideal of X. Define a relation Θ on X by

$$
(x, y) \in \Theta \text { if and only if } x * y \in A \text { and } y * x \in A
$$

Then Θ is an equivalence relation on X related to an ideal A of X. Moreover Θ satisfies

$$
(x, y) \in \Theta \text { and }(u, v) \in \Theta \text { imply }(x * u, y * v) \in \Theta
$$

Hence Θ is a congruence relation on X. Let A_{x} denote the equivalence class of x with respect to the equivalence relation Θ related to the ideal A of X, and X / A denote the collection of all equivalence classes, that is, $X / A=\left\{A_{x} \mid x \in X\right\}$. Then $A_{0}=A$. If $A_{x} * A_{y}$ is defined as the class containing $x * y$, that is, $A_{x} * A_{y}=A_{x * y}$, then $\left(X / A, *, A_{0}\right)$ is a $B C K$-algebra (see [4]). Let Θ be an equivalence relation on X related to an ideal A of X. For any nonempty subset S of X, the lower and upper approximation of S are denoted by $\underline{\Theta}(A ; S)$ and $\bar{\Theta}(A ; S)$ respectively, that is,

$$
\underline{\Theta}(A ; S)=\left\{x \in X \mid A_{x} \subseteq S\right\} \text { and } \bar{\Theta}(A ; S)=\left\{x \in X \mid A_{x} \cap S \neq \emptyset\right\}
$$

If $A=S$, then $\underline{\Theta}(A ; S)$ and $\bar{\Theta}(A ; S)$ are denoted by $\underline{\Theta}(A)$ and $\bar{\Theta}(A)$, respectively.
Example 3.1. (1) Let $X=\{0,1,2,3\}$ be a $B C K$-algebra with the Cayley table as follows (see [4]).

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	2
3	3	3	3	0

Let $A=\{0,1\} \triangleleft X$ and let Θ be an equivalence relation on X related to A. Then $A_{0}=$ $A_{1}=A, A_{2}=\{2\}$, and $A_{3}=\{3\}$. Hence $\underline{\Theta}(A ;\{0,2\})=\{2\}=\underline{\Theta}(A ;\{2\}), \underline{\Theta}(A ;\{0\})=$ $\underline{\emptyset}, \underline{\Theta}(A ;\{0,3\})=\{3\}, \underline{\Theta}(A ;\{0,1,3\})=\{0,1,3\} \triangleleft X, \bar{\Theta}(A ;\{0,2\})=\{0,1,2\} \triangleleft X$, and $\bar{\Theta}(A ;\{0,3\})=\{0,1,3\} \triangleleft X$.
(2) Let $X=\{0,1,2,3,4\}$ be a $B C K$-algebra with the Cayley table as follows (see [4]).

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	2	0	2	0
3	3	3	3	0	0
4	4	4	4	4	0

Consider $A=\{0,1,2\} \triangleleft X$ and let Θ be an equivalence relation on X related to A. Then the equivalence classes are as follows: $A_{0}=A_{1}=A_{2}=A, A_{3}=\{3\}$, and $A_{4}=$ $\{4\}$. Thus $\underline{\Theta}(A ;\{0,1,3\})=\{3\}, \underline{\Theta}(A ;\{0,2,4\})=\{4\}, \underline{\Theta}(A ;\{0,1,2,3\})=\{0,1,2,3\} \triangleleft$ $X, \underline{\Theta}(A ;\{0,1,2,4\})=\{0,1,2,4\} \triangleleft X, \bar{\Theta}(A ;\{0,2\})=\{0,1,2\} \triangleleft X$, and $\bar{\Theta}(A ;\{0,3\})=$ $\{0,1,2,3\} \triangleleft X$.

In Example 3.1, we know that there exists a non-ideal U of X such that $\underline{\Theta}(A ; U) \triangleleft X$; and there exists a non-ideal V of X such that $\bar{\Theta}(A ; V) \triangleleft X$, where Θ is an equivalence relation on X related to $A \triangleleft X$.

Proposition 3.2. Let Θ and Ψ be equivalence relations on X related to ideals A and B of X, respectively. If $A \subseteq B$, then $\Theta \subseteq \Psi$.
Proof. If $(x, y) \in \Theta$, then $x * y \in A \subseteq B$ and $y * x \in A \subseteq B$. Hence $(x, y) \in \Psi$, and so $\Theta \subseteq \Psi$.

Proposition 3.3. Let Θ be an equivalence relation on X related to an ideal A of X. Then
(1) $\underline{\underline{\Theta}}(A ; S) \subseteq S \subseteq \overline{\bar{\Theta}}(A ; S), \forall S \in \mathcal{P}(X)$.
(2) $\overline{\bar{\Theta}}(A ; S \cup T)=\bar{\Theta}(A ; S) \cup \bar{\Theta}(A ; T), \forall S, T \in \mathcal{P}(X)$.
(3) $\underline{\Theta}(A ; S \cap T)=\underline{\Theta}(A ; S) \cap \underline{\Theta}(A ; T), \forall S, T \in \mathcal{P}(X)$.
(4) $\forall S, T \in \mathcal{P}(X), \bar{S} \subseteq T \Rightarrow \underline{\underline{\Theta}}(A ; S) \subseteq \underline{\Theta}(A ; T)$ and $\bar{\Theta}(A ; S) \subseteq \bar{\Theta}(A ; T)$.
(5) $\underline{\Theta}(A ; S \cup T) \supseteq \underline{\Theta}(\bar{A} ; S) \cup \underline{\underline{\Theta}}(A ; T), \forall S, T \in \mathcal{P}(X)$.
(6) $\bar{\Theta}(A ; S \cap T) \subseteq \bar{\Theta}(A ; S) \cap \bar{\Theta}(A ; T), \forall S, T \in \mathcal{P}(X)$.
(7) If Ψ is an equivalence relation on X related to an ideal B of X and if $A \subseteq B$, then $\bar{\Theta}(A ; S) \subseteq \bar{\Psi}(B ; S), \forall S \in \mathcal{P}(X)$.
Proof. (1) is straightforward.
(2) For any subsets S and T of X, we have

$$
\begin{aligned}
x \in \bar{\Theta}(A ; S \cup T) & \Leftrightarrow A_{x} \cap(S \cup T) \neq \emptyset \\
& \Leftrightarrow\left(A_{x} \cap S\right) \cup\left(A_{x} \cap T\right) \neq \emptyset \\
& \Leftrightarrow A_{x} \cap S \neq \emptyset \text { or } A_{x} \cap T \neq \emptyset \\
& \Leftrightarrow x \in \bar{\Theta}(A ; S) \text { or } x \in \bar{\Theta}(A ; T) \\
& \Leftrightarrow x \in \bar{\Theta}(A ; S) \cup \bar{\Theta}(A ; T)
\end{aligned}
$$

and hence $\bar{\Theta}(A ; S \cup T)=\bar{\Theta}(A ; S) \cup \bar{\Theta}(A ; T)$.
(3) For any subsets S and T of X we have

$$
\begin{aligned}
x \in \underline{\Theta}(A ; S \cap T) & \Leftrightarrow A_{x} \subseteq S \cap T \\
& \Leftrightarrow A_{x} \subseteq S \text { and } A_{x} \subseteq T \\
& \Leftrightarrow x \in \underline{\Theta}(A ; S) \text { and } x \in \underline{\Theta}(A ; T) \\
& \Leftrightarrow x \in \underline{\Theta}(A ; S) \cap \underline{\Theta}(A ; T) .
\end{aligned}
$$

Hence $\underline{\Theta}(A ; S \cap T)=\underline{\Theta}(A ; S) \cap \underline{\Theta}(A ; T)$.
(4) Let $S, T \in \mathcal{P}(X)$ be such that $S \subseteq T$. Then $S \cap T=S$ and $S \cup T=T$. It follows from (3) and (2) that

$$
\underline{\Theta}(A ; S)=\underline{\Theta}(A ; S \cap T)=\underline{\Theta}(A ; S) \cap \underline{\Theta}(A ; T)
$$

and

$$
\bar{\Theta}(A ; T)=\bar{\Theta}(A ; S \cup T)=\bar{\Theta}(A ; S) \cup \bar{\Theta}(A ; T)
$$

which yield $\underline{\Theta}(A ; S) \subseteq \underline{\Theta}(A ; T)$ and $\bar{\Theta}(A ; S) \subseteq \bar{\Theta}(A ; T)$, respectively.
(5) Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, it follows from (4) that

$$
\underline{\Theta}(A ; S) \subseteq \underline{\Theta}(A ; S \cup T) \text { and } \underline{\Theta}(A ; T) \subseteq \underline{\Theta}(A ; S \cup T)
$$

Thus $\underline{\Theta}(A ; S) \cup \underline{\Theta}(A ; T) \subseteq \underline{\Theta}(A ; S \cup T)$.
(6) Since $S \cap \bar{T} \subseteq S, T$, it follows from (4) that

$$
\bar{\Theta}(A ; S \cap T) \subseteq \bar{\Theta}(A ; S) \text { and } \bar{\Theta}(A ; S \cap T) \subseteq \bar{\Theta}(A ; T)
$$

so that $\bar{\Theta}(A ; S \cap T) \subseteq \bar{\Theta}(A ; S) \cap \bar{\Theta}(A ; T)$.
(7) If $x \in \bar{\Theta}(A ; S)$, then $A_{x} \cap S \neq \emptyset$, and so there exists $a \in S$ such that $a \in A_{x}$. Hence $(a, x) \in \Theta$, that is, $a * x \in A$ and $x * a \in A$. Since $A \subseteq B$, it follows that $a * x \in B$ and $x * a \in B$ so that $(a, x) \in \Psi$, that is, $a \in B_{x}$. Therefore $a \in B_{x} \cap S$, which means $x \in \Psi(B ; S)$. This completes the proof.

Proposition 3.4. Let Θ be an equivalence relation on X related to any ideal A of X. Then $\underline{\Theta}(A ; X)=X=\bar{\Theta}(A ; X)$, that is, X is definable.

Proof. It is straightforward.

Proposition 3.5. Let Θ be an equivalence relation on X related to the trivial ideal $\{0\}$ of X. Then $\underline{\Theta}(\{0\} ; S)=S=\bar{\Theta}(\{0\} ; S)$ for every nonempty subset S of X, that is, every nonempty subset of X is definable.

Proof. Note that $\{0\}_{x}=\{x\}$ for all $x \in X$, since if $a \in\{0\}_{x}$ then $(a, x) \in \Theta$ and hence $a * x=0$ and $x * a=0$. It follows that $a=x$. Hence

$$
\underline{\Theta}(\{0\} ; S)=\left\{x \in X \mid\{0\}_{x} \subseteq S\right\}=S
$$

and

$$
\bar{\Theta}(\{0\} ; S)=\left\{x \in X \mid\{0\}_{x} \cap S \neq \emptyset\right\}=S
$$

This completes the proof.
Remark 3.6. Let Θ be an equivalence relation on X related to an ideal A of X. If B is an ideal of X such that $A \neq B$, then $\underline{\Theta}(A ; B)$ is not an ideal of X in general. For, consider a $B C K$-algebra X in Example $3.1(2)$ and an equivalence relation Θ on X related to the ideal $A=\{0,1,2\}$. If we take an ideal $B=\{0,1,3\}$ of X, then $A \neq B$ and $\underline{\Theta}(A ; B)=\{3\}$ which is not an ideal of X.

Definition 3.7. Let Θ be an equivalence relation on X related to an ideal A of X. A nonempty subset S of X is called an upper (resp. a lower) rough subalgebra/ideal of X if the upper (resp. nonempty lower) approximation of S is a subalgebra/ideal of X. If S is both an upper and a lower rough subalgebra/ideal of X, we say that S is a rough subalgebra/ideal of X.

Theorem 3.8. Let Θ be an equivalence relation on X related to an ideal A of X. Then every subalgebra S of X is a rough subalgebra of X.
Proof. Let $x, y \in \underline{\Theta}(A ; S)$. Then $A_{x} \subseteq S$ and $A_{y} \subseteq S$. Since S is a subalgebra of X, it follows that $A_{x * y}=A_{x} * A_{y} \subseteq S$ so that $x * y \in \underline{\Theta}(A ; S)$. Hence $\underline{\Theta}(A ; S)$ is a subalgebra of X. Now if $x, y \in \bar{\Theta}(A ; S)$, then $A_{x} \cap S \neq \emptyset$ and $A_{y} \cap S \neq \emptyset$, and so there exist $a, b \in S$ such that $a \in A_{x}$ and $b \in A_{y}$. It follows that $(a, x) \in \Theta$ and $(b, y) \in \Theta$. Since Θ is a congruence relation on X, we have $(a * b, x * y) \in \Theta$. Hence $a * b \in A_{x * y}$. Since S is a subalgebra of X, we get $a * b \in S$, and therefore $a * b \in A_{x * y} \cap S$, that is, $A_{x * y} \cap S \neq \emptyset$. This shows that $x * y \in \bar{\Theta}(A ; S)$, and consequently $\bar{\Theta}(A ; S)$ is a subalgebra of X. This completes the proof.

Corollary 3.9. Let Θ be an equivalence relation on X related to an ideal A of X. Then $\underline{\Theta}(A)(\neq \emptyset)$ and $\bar{\Theta}(A)$ are subalgebras of X, that is, A is a rough subalgebra of X.
Proof. It is straightforward.
Theorem 3.10. Let Θ be an equivalence relation on X related to an ideal A of X. If U is an ideal of X containing A, then
(1) $\underline{\underline{\Theta}}(A ; U)(\neq \emptyset)$ is an ideal of X, that is, U is a lower rough ideal of X.
(2) $\bar{\Theta}(A ; U)$ is an ideal of X, that is, U is an upper rough ideal of X.

Proof. Let U be an ideal of X containing A. Let $x \in A_{0}$. Then $x \in A \subseteq U$, and so $A_{0} \subseteq U$. Hence $0 \in \underline{\Theta}(A ; U)$. Let $x, y \in X$ be such that $y \in \underline{\Theta}(A ; U)$ and $x * y \in \underline{\Theta}(A: U)$. Then $A_{y} \subseteq U$ and $A_{x} * A_{y}=A_{x * y} \subseteq U$. Let $a \in A_{x}$ and $b \in A_{y}$. Then $(a, x) \in \Theta$ and $(b, y) \in \Theta$, which implies $(a * b, x * y) \in \Theta$. Hence $a * b \in A_{x * y} \subseteq U$. Since $b \in A_{y} \subseteq U$ and U is an ideal, it follows that $a \in U$ so that $A_{x} \subseteq U$. Thus $x \in \underline{\Theta}(A ; U)$. This shows that $\underline{\Theta}(A ; U)$ is an ideal of X, that is, U is a lower rough ideal of X. Now, obviously $0 \in \bar{\Theta}(A ; U)$. Let $x, y \in X$ be such that $y \in \bar{\Theta}(A ; U)$ and $x * y \in \bar{\Theta}(A ; U)$. Then $A_{y} \cap U \neq \emptyset$ and $A_{x * y} \cap U \neq \emptyset$, and so there exist $a, b \in U$ such that $a \in A_{y}$ and $b \in A_{x * y}$. Hence $(a, y) \in \Theta$ and $(b, x * y) \in \Theta$,
which implies $y * a \in A \subseteq U$ and $(x * y) * b \in A \subseteq U$. Since $a, b \in U$ and U is an ideal, we get $y \in U$ and $x * y \in U$; hence $x \in U$. Note that $x \in A_{x}$, thus $x \in A_{x} \cap U$, that is, $A_{x} \cap U \neq \emptyset$. Therefore $x \in \bar{\Theta}(A ; U)$, and consequently U is an upper rough ideal of X.

Corollary 3.11. Let Θ be an equivalence relation on X related to an ideal A of X. Then $\underline{\Theta}(A)(\neq \emptyset)$ and $\bar{\Theta}(A)$ are ideals of X, that is, A is a rough ideal of X.

Theorem 3.10 shows that the notion of an upper (resp. a lower) rough ideal is an extended notion of an ideal in a $B C K$-algebra. The following example provides that the converse of Theorem 3.10 may not be true.
Example 3.12. (1) Let $X=\{0,1,2,3,4\}$ be a $B C K$-algebra with the Cayley table as follows (see [4]).

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	2	0
3	3	3	3	0	3
4	4	4	4	4	0

Consider $A=\{0,2\} \triangleleft X$ and a subset $U=\{0,2,3\}$ of X which is not an ideal of X. Let Θ be an equivalence relation on X related to A. Then $A_{0}=A_{2}=A, A_{1}=\{1\}, A_{3}=\{3\}$, and $A_{4}=\{4\}$. Hence $\underline{\Theta}(A ; U)=\{0,2\} \triangleleft X$.
(2) Let $X=\{0,1,2,3,4\}$ be a $B C K$-algebra with the Cayley table as follows (see [4]).

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
3	3	3	3	0	3
4	4	4	4	4	0

Consider $B=\{0,2\} \triangleleft X$ and let Ψ be an equivalence relation on X related to B. Then all equivalence classes are $B_{0}=B_{2}=\{0,2\}, B_{1}=\{1\}, B_{3}=\{3\}$ and $B_{4}=\{4\}$. Note that $V=\{0,1,4\}$ is not an ideal of X, but $\bar{\Psi}(B ; V)=\{0,1,2,4\} \triangleleft X$.

Acknowledgements. This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

[1] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1-26.
[2] N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997), 139-163.
[3] N. Kuroki and J. N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5(1) (1997), 183-191.
[4] J. Meng and Y. B. Jun, BCK-algberas, Kyungmoonsa Co. Seoul, Korea, 1994.
[5] Z. Pawlak, Rough sets, Int. J. Inform. Comp. Sci. 11 (1982), 341-356.
[6] Z. Pawlak, Rough Sets-Theorical Aspects of Reasoning about Data, Kluwer Academic, Norwell, MA, 1991.

Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea. E-mail: ybjun@nongae.gsnu.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases, lower/upper approximation, definable subset, lower/upper rough subalgebra/ideal.

