CHAOTIC ORDER AMONG MEANS OF POSITIVE OPERATORS

Josip Pečarić and Jadranka Mićić

Received January 8, 2002

ABSTRACT. M. Fujii and R. Nakamoto discuss the monotonity of the operator function $F(r) = ((1 - \mu)A^r + \mu B^r)^{\frac{1}{r}}$ $(r \in \mathbf{R})$ for given A, B > 0 and $\mu \in [0, 1]$. They proved it under the usual operator order: $F(r) \leq F(s)$ if $1 \leq r \leq s$ or $1 \leq s \leq 2r$. Furthermore, they proved it under the chaotic order: $F(r) \ll F(s)$ if r < s and consequently $\mathbf{s} - \lim_{r \to 0} F(r) = A \Diamond_{\mu} B$, where \Diamond_{μ} is the chaotic geometric mean defined by $A \Diamond_{\mu} B := e^{(1-\mu) \log A + \mu \log B}$.

The aim of this paper is to generalize the above mentioned as follows: Let $M_k^{[r]}(\mathbf{A}; w) := (\sum_{j=1}^k \omega_j \ A_j^r)^{1/r} \ (r \in \mathbf{R} \setminus \{0\})$ be weighted power mean of positive operators A_j , $\mathsf{Sp}(A_j) \subseteq [m, M] \ (j = 1, \ldots, k)$, 0 < m < M and $\omega_j \in \mathbf{R}_+$, $\sum_{j=1}^k \omega_j = 1$. Let $M_k^{[0]}(\mathbf{A}; w)$ be the corresponding chaotic geometric mean. If $r \leq s$ then real constants α_1 and α_1 such that $\alpha_2 M_k^{[s]}(\mathbf{A}; w) \leq M_k^{[r]}(\mathbf{A}; w) \leq \alpha_1 M_k^{[s]}(\mathbf{A}; w)$, are determined, when $r \notin \langle -1, 1 \rangle$, $r \neq 0$ or $s \notin \langle -1, 1 \rangle$, $s \neq 0$. Furthermore, if $r \leq s$ then real constant Δ such that $\Delta M_k^{[s]}(\mathbf{A}; w) \ll M_k^{[r]}(\mathbf{A}; w) \ll M_k^{[s]}(\mathbf{A}; w)$, is determined.

1 Introduction. Let $\mathcal{B}(H)$ be the C^* -algebra of all bounded linear operators on a Hilbert space H, $\mathcal{B}_+(H)$ be the set of all positive operators of $\mathcal{B}(H)$ and $\mathsf{Sp}(A)$ be the spectrum of the operator A. We denote by \geq the usual order among self-adjoint operator on H (i.e. $A \geq B$ if $A - B \in \mathcal{B}_+(H)$). We denote by \gg the chaotic order among invertible operators of $\mathcal{B}_+(H)$ (i.e. for $A, B > 0, A \gg B$ if $\log A \geq \log B$).

M. Fujii and R. Nakamoto [2] discuss the monotonity of the operator function $F(r) = ((1-\mu)A^r + \mu B^r)^{\frac{1}{r}}$ $(r \in \mathbf{R})$ for given A, B > 0 and $\mu \in [0, 1]$. They do it under the usual operator order:

Lemma A (M.Fujii-R.Nakamoto). Let A, B > 0 and $\mu \in [0, 1]$ be given. Then the operator function $F(r) = ((1 - \mu)A^r + \mu B^r)^{\frac{1}{r}}$ $(r \in \mathbf{R})$ is monotone increasing on $[1, \infty)$, i.e. $F(r) \leq F(s)$ if $1 \leq r \leq s$. In addition $F(r) \leq F(s)$ if $1 \leq s \leq 2r$, and F(r) is not monotone increasing on (0, 1] in general.

Next, they do it under the chaotic order:

Lemma B (M.Fujii-R.Nakamoto). The operator function F(r) is monotone increasing under the chaotic order, i.e. $F(r) \ll F(s)$ if r < s. In particular, $\mathbf{s} - \lim_{r \to 0} F(r) = A \diamondsuit_{\mu} B$, where \diamondsuit_{μ} is the chaotic geometric mean defined by $A \diamondsuit_{\mu} B := e^{(1-\mu)\log A + \mu \log B}$.

We consider the following weighted power means of positive operators (see [6, 4, 1]). Let $A_j \in \mathcal{B}_+(H)$ with $\mathsf{Sp}(A_j) \subseteq [m, M], \ 0 < m < M, \ (j = 1, \dots, k)$ and $\omega_j \in \mathbf{R}_+$ such that

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A63.

Key words and phrases. Power mean of positive operators, operator order, chaotic order, Mond-Pečarić method.

 $\sum_{i=1}^{k} \omega_i = 1$. We define

(1)
$$M_k^{[r]}(\mathbf{A}; w) := \begin{cases} \left(\sum_{j=1}^k \omega_j \ A_j^r\right)^{1/r} & \text{if } r \in \mathbf{R} \setminus \{0\},\\ \exp\left(\sum_{j=1}^k \omega_j \ \log A_j\right) & \text{if } r = 0. \end{cases}$$

The limit

$$\mathbf{s} - \lim_{r \to 0} M_k^{[r]}(\mathbf{A}; w) = M_k^{[0]}(\mathbf{A}; w)$$

exists (see [1] or Lemma 7) and $M_k^{[0]}(\mathbf{A}; w)$ reduces to the usual geometric mean in the case of commuting operators. To remind, we define usual geometric mean by $G(\mathbf{A};w):=A_k^{1/2}$ $\left(A_k^{-1/2} A_{k-1}^{1/2} \cdots \left(A_3^{-1/2} A_2^{1/2} \left(A_2^{-1/2} A_1 A_2^{-1/2} \right)^{u_1} A_2^{1/2} A_3^{-1/2} \right)^{u_2} \cdots A_{k-1}^{1/2} A_k^{-1/2} \right)^{u_{k-1}} A_k^{1/2}$ where $u_j = 1 - \omega_{j+1} / \sum_{l=1}^{j+1} \omega_l$ $(j = 1, \dots, k-1)$. The aim of this paper is to generalize the above results of Fujii-Nakamoto as follows:

We shall determine real constants α_1 and α_1 such that

$$\alpha_2 M_k^{[s]}(\mathbf{A}; w) \le M_k^{[r]}(\mathbf{A}; w) \le \alpha_1 M_k^{[s]}(\mathbf{A}; w),$$

holds if $r \leq s, r \notin \langle -1, 1 \rangle, r \neq 0$ or $s \notin \langle -1, 1 \rangle, s \neq 0$.

Furthermore, we shall determine real constant Δ such that

$$\Delta M_k^{[s]}(\mathbf{A};w) \ll M_k^{[r]}(\mathbf{A};w) \ll M_k^{[s]}(\mathbf{A};w)$$

holds if $r \leq s$.

 $\mathbf{2}$ The usual operator order among means. In this section we discuss the usual operator order among power means (1) when $r \in \mathbf{R} \setminus \{0\}$.

Theorem 1. Let $A_j \in \mathcal{B}_+(H)$ with $\mathsf{Sp}(A_j) \subseteq [m, M]$, 0 < m < M, (j = 1, ..., k) and $\omega_j \in \mathbf{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$. If $r, s \in \mathbf{R}$, $r \leq s$, then

(2)
$$\alpha_2 M_k^{[s]}(\mathbf{A}; w) \le M_k^{[r]}(\mathbf{A}; w) \le \alpha_1 M_k^{[s]}(\mathbf{A}; w),$$

where

$$\alpha_2 = \Delta \quad if \quad (vi)$$

and

$$\Delta = \left\{ \frac{r(\kappa^s - \kappa^r)}{(s - r)(\kappa^r - 1)} \right\}^{-\frac{1}{s}} \left\{ \frac{s(\kappa^r - \kappa^s)}{(r - s)(\kappa^s - 1)} \right\}^{\frac{1}{r}}, \qquad \kappa = \frac{M}{m}.$$

 $\alpha_1 = \begin{cases} 1 & \textit{if} \quad (i) \textit{ or } (ii) \textit{ or } (iii), \\ \Delta^{-1} & \textit{if} \quad (iv) \textit{ or } (v), \end{cases}$

Here we denote intervals from (i) to (vi) as on the Table 1 (see Figure 1).

Remark 2. B. Mond and J. Pečarić [6, 4] proved the following inequalities

$$\begin{split} M_k^{[r]}(\mathbf{A};w) &\leq M_k^{[s]}(\mathbf{A};w) \quad if \quad (\text{i}) \ or \ (\text{ii}) \ or \ (\text{iii}), \\ M_k^{[s]}(\mathbf{A};w) &\leq \Delta^{-1} M_k^{[r]}(\mathbf{A};w) \quad if \quad (\text{vi}). \end{split}$$

$$\begin{array}{lll} ({\rm i}) & s \geq r, \ s \not\in \langle -1, 1 \rangle, \ r \not\in \langle -1, 1 \rangle, \\ ({\rm ii}) & s \geq 1 \geq r \geq 1/2, \\ ({\rm iii}) & r \leq -1 \leq s \leq -1/2, \\ ({\rm iv}) & s \geq 1, \ -1 < r < 1/2, \ r \neq 0, \\ ({\rm v}) & r \leq -1, \ -1/2 < s < 1, \ s \neq 0, \\ ({\rm vi}) & s > r, \ s \not\in \langle -1, 1 \rangle, \ r \neq 0 \ \text{ or } r \not\in \langle -1, 1 \rangle, \ s \neq 0. \end{array}$$

Table 1: Intervals from (i) to (vi)

For the proof of Theorem 1 we need some results. If Jensen's inequality and Mond-Pečarić method applied, then the following two theorems hold:

Theorem J ([6, Theorem 1]). Let $\mathcal{J} \subseteq \mathbf{R}$ be an interval. Let $A_j \in \mathcal{B}_+(H)$ with $\mathsf{Sp}(A_j) \subseteq \mathcal{J}$ $(j = 1, \ldots, k)$ and $\omega_j \in \mathbf{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$. If f is a operator convex

Josip Pečarić and Jadranka Mićić

function on \mathcal{J} , then

(3)
$$f\left(\sum_{j=1}^{k}\omega_{j}A_{j}\right) \leq \sum_{j=1}^{k}\omega_{j}f(A_{j}).$$

Theorem MP ([5, Theorem 5]). Let $A_j \in \mathcal{B}_+(H)$ with $\operatorname{Sp}(A_j) \subseteq [m, M]$, 0 < m < M, $(j = 1, \ldots, k)$ and $\omega_j \in \mathbf{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$. Let f be a strictly convex twice differentiable function on [m, M]. Suppose in addition that either of the following conditions holds (i) f > 0 on [m, M] or (ii) f < 0 on [m, M]. Then the following inequality

(4)
$$\sum_{j=1}^{k} \omega_j f(A_j) \le \alpha f\left(\sum_{j=1}^{k} \omega_j A_j\right),$$

holds for some $\alpha > 1$ in case (i) or $0 < \alpha < 1$ in case (ii).

More precisely, a value of α for (4) may be determined as follows: Let $\mu_f = (f(M) - f(m))/(M-m)$. If $\mu_f = 0$, let $t = t_o$ be the unique solution of the equation f'(t) = 0 ($m < t_o < M$); then $\alpha = f(m)/f(t_o)$ suffices for (4). If $\mu_f \neq 0$, let $t = t_o$ be the unique solution of the equation $\mu_f f(t) - f'(t) (f(m) + \mu_f(t-m)) = 0$; then $\alpha = \mu_f/f'(t_o)$ suffices for (4).

Corollary 3. Let $A_j \in \mathcal{B}_+(H)$ with $Sp(A_j) \subseteq [m, M]$, 0 < m < M, (j = 1, ..., k)and $\omega_j \in \mathbf{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$. If $p \in \mathbf{R}$, then

(5)
$$\alpha_2 \left(\sum_{j=1}^k \omega_j A_j\right)^p \le \sum_{j=1}^k \omega_j A_j^p \le \alpha_1 \left(\sum_{j=1}^k \omega_j A_j\right)^p$$

with

$$\alpha_2 = \begin{cases} \tilde{\Delta}^{-1} & \text{if } p < -1 \text{ or } p > 2, \\ 1 & \text{if } -1 \le p < 0 \text{ or } 1 \le p \le 2, \\ \tilde{\Delta} & \text{if } 0 < p < 1, \end{cases} \qquad \alpha_1 = \begin{cases} \tilde{\Delta} & \text{if } p < 0 \text{ or } p > 1, \\ 1 & \text{if } 0$$

where

$$\begin{split} \tilde{\Delta} &\equiv C(m,M;p) = \frac{Mm^p - mM^p}{(1-p)(M-m)} \left(\frac{1-p}{p} \frac{M^p - m^p}{Mm^p - mM^p}\right)^p \\ &= \frac{\kappa^p - \kappa}{(p-1)(\kappa-1)} \left(\frac{(p-1)(\kappa^p - 1)}{p(\kappa^p - \kappa)}\right)^p, \qquad \kappa = \frac{M}{m}. \end{split}$$

Remark 4. Note that

(6)
$$C(m,M;p) := \frac{Mm^p - mM^p}{(1-p)(M-m)} \left(\frac{1-p}{p} \frac{M^p - m^p}{Mm^p - mM^p}\right)^p$$

is called Furuta's constant [7] when p > 0.

100

Proof of Corollary 3. We first consider α_1 . If $0 , then the function <math>f(t) = t^p$ is operator concave and from the inequality (3) follows $\alpha_1 = 1$. But, if p < 0 or p > 1, then the function $f(t) = t^p$ is strictly convex (and f > 0). From the inequality (4) follows:

$$t_0 = \frac{p}{p-1} \frac{mM^p - Mm^p}{M^p - m^p}$$
 and $\alpha_1 = \frac{m^p + \frac{M^p - m^p}{M - m}(t_0 - m)}{t_0^p} = \tilde{\Delta}$

Next, we consider α_2 . If $0 , then the function <math>f(t) = t^p$ is strictly concave and it follows from inequality (4) that $\alpha_2 = \tilde{\Delta}$. If $-1 \leq p < 0$ or $1 \leq p \leq 2$, then the function $f(t) = t^p$ is operator convex and from the inequality (3) follows $\alpha_2 = 1$. If p < -1 or p > 2, then the function $f(t) = t^p$ is strictly convex. Similar to Mond-Mond-Pečarić method, for any $s \in [m, M]$ we have $g_s(t) \equiv f(s) + f'(s)(t-s) \leq f(t)$ for all $t \in [m, M]$. Then the following inequality holds (see [3, Remark 4.13]):

$$\sum_{j=1}^{k} \omega_j f(A_j) \ge \alpha_2 f\left(\sum_{j=1}^{k} \omega_j A_j\right) \quad \text{with} \quad \alpha_2 = \max_{0 \le g_s \le f} \min_{m \le t \le M} \frac{g_s(t)}{f(t)}.$$

We choose s which is the unique solution of $\frac{g_s(m)}{f(m)} = \frac{g_s(M)}{f(M)}$. A simple calculation implies $\alpha_2 = \tilde{\Delta}^{-1}$.

Proof of Theorem 1. We prove this by a similar method as in [3, Theorem 5.7]. We shall consider only the case when $s \neq r$.

Suppose that $s \ge 1$. If 0 < r < 1 then $m^r 1_H \le A_j^r \le M^r 1_H$ (j = 1, ..., k) implies $m^r 1_H \le \sum_{j=1}^k \omega_j A_j^r \le M^r 1_H$. Putting $p = \frac{s}{r}$ in Corollary 3 (for 1 or <math>p > 2) and replaced A_j by A_j^r we have

$$\left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r} \le \sum_{j=1}^k \omega_j A_j^s \le C(m^r, M^r; \frac{s}{r}) \left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r}$$

if $s/2 \leq r < 1$ or

$$C(m^r, M^r; \frac{s}{r})^{-1} \left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r} \le \sum_{j=1}^k \omega_j A_j^s \le C(m^r, M^r; \frac{s}{r}) \left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r}$$

if 0 < r < s/2, where

$$\begin{split} C(m^r, M^r; \frac{s}{r}) &= \frac{m^r (M^r)^{\frac{s}{r}} - M^r (m^r)^{\frac{s}{r}}}{(\frac{s}{r} - 1)(M^r - m^r)} \left(\frac{(\frac{s}{r} - 1)((M^r)^{\frac{s}{r}} - (m^r)^{\frac{s}{r}})}{\frac{s}{r}(m^r (M^r)^{\frac{s}{r}} - M^r (m^r)^{\frac{s}{r}})}\right)^{\frac{s}{r}} \\ &= \frac{r(\kappa^s - \kappa^r)}{(s - r)(\kappa^r - 1)} \left(\frac{s(\kappa^r - \kappa^s)}{(r - s)(\kappa^s - 1)}\right)^{-\frac{s}{r}}. \end{split}$$

The function $f(t) = t^{\frac{1}{s}}$ is operator increasing if $s \ge 1$ and it follows that

$$\left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r} \le \left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s} \le C(m^r, M^r; \frac{s}{r})^{1/s} \left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r}$$

$$\begin{split} &\text{if } s/2 \le r < 1 \text{ or} \\ & C(m^r, M^r; \frac{s}{r})^{-1/s} \left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r} \le \left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s} \le C(m^r, M^r; \frac{s}{r})^{1/s} \left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r} \\ &\text{if } 0 < r < s/2, \text{ where } C(m^r, M^r; \frac{s}{r})^{1/s} = \left\{\frac{r(\kappa^s - \kappa^r)}{(s - r)(\kappa^r - 1)}\right\}^{\frac{1}{s}} \left\{\frac{s(\kappa^r - \kappa^s)}{(r - s)(\kappa^s - 1)}\right\}^{-\frac{1}{r}} = \Delta^{-1}. \end{split}$$

Furthermore, consider the case of s = 1. Then for $1 \le 1/r \le 2$ we have $\left(\sum_{j=1}^{k} \omega_j A_j^r\right)^{1/r} \le \sum_{j=1}^{k} \omega_j A_j$, so for s > 1 we have

$$\left(\sum_{j=1}^{k} \omega_j A_j^r\right)^{1/r} \le \sum_{j=1}^{k} \omega_j A_j \le \left(\sum_{j=1}^{k} \omega_j A_j^s\right)^{1/s} \le \Delta^{-1} \left(\sum_{j=1}^{k} \omega_j A_j^r\right)^{1/r}$$

if $1/2 \le r < 1$ or

$$\Delta\left(\sum_{j=1}^{k}\omega_j A_j^r\right)^{1/r} \le \sum_{j=1}^{k}\omega_j A_j \le \left(\sum_{j=1}^{k}\omega_j A_j^s\right)^{1/s} \le \Delta^{-1}\left(\sum_{j=1}^{k}\omega_j A_j^r\right)^{1/r}$$

if 0 < r < 1/2. Then we obtain desired inequalities for $1/2 \le r < 1$ or 0 < r < 1/2.

If r < 0 then $M^r 1_H \leq \sum_{j=1}^k \omega_j A_j^r \leq m^r 1_H$ and Corollary 3 (for $-1 \leq p < 0$ or p < -1), with the fact that the function $f(t) = t^{\frac{1}{s}}$ is operator increasing, gives

$$\left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r} \le \left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s} \le C(M^r, m^r; \frac{s}{r})^{1/s} \left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r}$$

if $r \leq -s$ or

$$C(M^{r}, m^{r}; \frac{s}{r})^{-1/s} \left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r} \right)^{1/r} \leq \left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s} \right)^{1/s} \leq C(M^{r}, m^{r}; \frac{s}{r})^{1/s} \left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r} \right)^{1/r}$$

 $\begin{array}{l} \text{if } -s < r < 0, \text{ where } C(M^r, m^r; \frac{s}{r})^{1/s} = \left\{ \frac{r(\kappa^{-s} - \kappa^{-r})}{(s-r)(\kappa^{-r} - 1)} \right\}^{\frac{1}{s}} \left\{ \frac{s(\kappa^{-r} - \kappa^{-s})}{(r-s)(\kappa^{-s} - 1)} \right\}^{-\frac{1}{r}} = \Delta^{-1}. \\ \text{Therefore, similarly to above mentioned case } s = 1 \text{ we have} \end{array}$

$$\left(\sum_{j=1}^{k}\omega_j A_j^r\right)^{1/r} \le \sum_{j=1}^{k}\omega_j A_j \le \left(\sum_{j=1}^{k}\omega_j A_j^s\right)^{1/s} \le \Delta^{-1} \left(\sum_{j=1}^{k}\omega_j A_j^r\right)^{1/r}$$

if $r \leq -1$ or

$$\Delta\left(\sum_{j=1}^{k}\omega_j A_j^r\right)^{1/r} \le \sum_{j=1}^{k}\omega_j A_j \le \left(\sum_{j=1}^{k}\omega_j A_j^s\right)^{1/s} \le \Delta^{-1}\left(\sum_{j=1}^{k}\omega_j A_j^r\right)^{1/s}$$

if -1 < r < 0. Then we obtain desired inequalities for $r \leq -1$ or -1 < r < 0.

Next, suppose that $1 \leq r < s$. In this case we put $p = \frac{r}{s}$. Then Corollary 3 (for $0), with the fact that the function <math>f(t) = t^{\frac{1}{r}}$ is operator increasing, gives

$$C(m^s, M^s; \frac{r}{s})^{1/r} \left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s} \le \left(\sum_{j=1}^k \omega_j A_j^r\right)^{1/r} \le \left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s},$$

where $C(m^s, M^s; \frac{r}{s})^{1/r} = \Delta$.

Therefore, we obtain the desired results on the intervals (ii), (iv) and the part of (i) in case $s \ge 1$ and $r \le s$.

Secondly, suppose that s < 1. Then it follows that $r \leq -1$. Similarly, due to the mirror reflection direction s = -r, we obtain the desired results on the intervals (iii), (v) and the part of (i) in case s < 1 and $r \leq s$.

3 The chaotic order among means. In this section we discuss the chaotic order among power means (1).

Theorem 5. Let $A_j \in \mathcal{B}_+(H)$ with $\operatorname{Sp}(A_j) \subseteq [m, M]$, 0 < m < M, $(j = 1, \ldots, k)$ and $\omega_j \in \mathbf{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$. Denote $\kappa = \frac{M}{m}$. If $r, s \in \mathbf{R}$ then

(7)
$$\Delta(\kappa; r, s) M_k^{[s]}(\mathbf{A}; w) \ll M_k^{[r]}(\mathbf{A}; w) \ll M_k^{[s]}(\mathbf{A}; w)$$

where

$$(8) \qquad \Delta(\kappa; r, s) = \begin{cases} \left\{ \frac{r(\kappa^s - \kappa^r)}{(s-r)(\kappa^r - 1)} \right\}^{-\frac{1}{s}} \left\{ \frac{s(\kappa^r - \kappa^s)}{(r-s)(\kappa^s - 1)} \right\}^{\frac{1}{r}} & \text{if } r < s, r, s \neq 0, \\ \\ \left(\frac{e \log \kappa^{\frac{p}{\kappa p - 1}}}{\kappa^{\frac{p}{\kappa p - 1}}} \right)^{\frac{sign(p)}{p}} & \text{if } r = 0 < s = p \text{ or } r = p < s = 0 \end{cases}$$

Remark 6. Note that $\Delta(\kappa; 0, 1)^{-1} \equiv M_{\kappa}(1) := \frac{\kappa^{\frac{1}{\kappa-1}}}{e \log \kappa^{\frac{1}{\kappa-1}}}, \ (\kappa = \frac{M}{m})$ is called **Specht's ratio** and

(9)
$$\Delta(\kappa; 0, s)^{-s} \equiv M_{\kappa}(s) := \frac{\kappa^{\frac{s}{\kappa^s - 1}}}{e \log \kappa^{\frac{s}{\kappa^s - 1}}}$$

is the generalized Specht's ratio [9, 8]. We remark that $M_{\kappa^r}(1) = M_{\kappa}(r)$.

Also, note that $\lim_{s\to 0} \Delta(\kappa; 0, s) = 1$ by the Yamazaki-Yanagida result [9, Lemma 12]: $\lim_{s\to 0} \{M_{\kappa}(s)\}^{\frac{1}{s}} = 1.$

For the proof of Theorem 5 we need two more results.

Lemma 7. Let $A_j \in \mathcal{B}_+(H)$, $A_j > 0$ (j = 1, ..., k) and $\omega_j \in \mathbf{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$. Then

$$\mathbf{s} - \lim_{t \to 0} M_k^{[t]}(\mathbf{A}; w) = M_k^{[0]}(\mathbf{A}; w).$$

Proof. This limit was discussed in [1] for $\omega_j = 1/k$ and proved in [2, Lemma 2] for k = 2. As a matter of fact, applying the concavity of log-function and Krein's inequality we have

$$\sum_{j=1}^{k} \omega_j \log A_j \le \frac{1}{t} \log \left(\sum_{j=1}^{k} \omega_j A_j^t \right) \to \sum_{j=1}^{k} \omega_j \log A_j \quad (t \to +0).$$

So $\mathbf{s} - \lim_{t \to +0} M_k^{[t]}(\mathbf{A}; w) = M_k^{[0]}(\mathbf{A}; w)$. Besides, for t > 0

$$M_{k}^{[-t]}(\mathbf{A};w) = \left[\left(\sum_{j=1}^{k} \omega_{j} (A_{j}^{-1})^{t} \right)^{1/t} \right]^{-1} \to \left[\exp\left(\sum_{j=1}^{k} \omega_{j} \log(A_{j}^{-1}) \right) \right]^{-1} = M_{k}^{[0]}(\mathbf{A};w).$$

So $\mathbf{s} - \lim_{t \to -0} M_k^{[t]}(\mathbf{A}; w) = M_k^{[0]}(\mathbf{A}; w).$

Lemma 8. Let M > m > 0 and $\Delta(\kappa; r, s)$ be defined by (8). Then

$$\lim_{s \to 0} \Delta(\kappa; r, s) = \Delta(\kappa; r, 0) \qquad \text{and} \qquad \lim_{r \to 0} \Delta(\kappa; r, s) = \Delta(\kappa; 0, s).$$

For the proof of lemma 8 we need the following Yamazaki-Yanagida result [9, Proposition 14].

Lemma C (T.Yamazaki-M.Yanagida). Let C(m, M; p) and $M_{\kappa}(p)$ be defined by (6) and (9), respectively. Then for p > 0 and M > m > 0,

$$\lim_{\delta \to +0} C(m^{\delta}, M^{\delta}; \frac{p}{\delta}) = M_{\kappa}(p),$$

where $\kappa = \frac{M}{m} > 1$.

Proof of Lemma 8. We have the first limit putting $\delta = s$ and p = r in Lemma C and applying the following relations:

$$C(m^{s}, M^{s}; \frac{r}{s})^{\frac{1}{r}} = \Delta(\kappa; r, s) \text{ if } s > 0, \qquad C(M^{s}, m^{s}; \frac{r}{s}) = C(m^{s}, M^{s}; \frac{r}{s}) \text{ if } s < 0,$$

 and

$$M_{\kappa}(r)^{\frac{1}{r}} = \Delta(\kappa; r, 0).$$

Similarly, we obtain the second limit.

Proof of Theorem 5. We first show that for $r, s \in \mathbf{R} \setminus \{0\}, r < s$,

$$\log\left(\Delta(\kappa;r,s)M_k^{[s]}(\mathbf{A};w)\right) \le \log M_k^{[r]}(\mathbf{A};w) \le \log M_k^{[s]}(\mathbf{A};w)$$

We assume 0 < r < s. Then $m 1_H \leq A_j \leq M 1_H$ (j = 1, ..., k) implies $m^s 1_H \leq \sum_{j=1}^k \omega_j A_j^s \leq M^s 1_H$. Putting $p = \frac{r}{s}$ $(0 in Corollary 3 and replaced <math>A_j$ by A_j^s , we have

$$C(m^s, M^s; \frac{r}{s}) \left(\sum_{j=1}^k \omega_j A_j^s\right)^{r/s} \le \sum_{j=1}^k \omega_j A_j^r \le \left(\sum_{j=1}^k \omega_j A_j^s\right)^{r/s},$$

where

$$C(m^s, M^s; \frac{r}{s}) = \frac{s(\kappa^r - \kappa^s)}{(r-s)(\kappa^s - 1)} \left(\frac{r(\kappa^s - \kappa^r)}{(s-r)(\kappa^r - 1)}\right)^{-\frac{1}{s}}$$

As the function $f(t) = \log t$ is operator monotone on $(0, \infty)$ we have

$$r\log\left(C(m^s, M^s; \frac{r}{s})^{1/r} \left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s}\right) \le \log\left(\sum_{j=1}^k \omega_j A_j^r\right) \le r\log\left(\sum_{j=1}^k \omega_j A_j^s\right)^{1/s}$$

and so

(10)
$$\log\left(C(m^{s}, M^{s}; \frac{r}{s})^{1/r} M_{k}^{[s]}(\mathbf{A}; w)\right) \le \log M_{k}^{[r]}(\mathbf{A}; w) \le \log M_{k}^{[s]}(\mathbf{A}; w),$$

where $C(m^s, M^s; \frac{r}{s})^{1/r} = \Delta(\kappa; r, s)$. Next, we assume r < s < 0. Then $M^r 1_H \leq A_j^r \leq m^r 1_H$, $(j = 1, \dots, k)$ and so $M^r 1_H \leq \sum_{j=1}^k \omega_j A_j^r \leq m^r 1_H$. Putting $p = \frac{s}{r}$ $(0 in Corollary 3 and replaced <math>A_j$ by A_j^r , we have

$$C(M^r, m^r; \frac{s}{r}) \left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r} \le \sum_{j=1}^k \omega_j A_j^s \le \left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r},$$

and so

(11)
$$\log\left(C(M^{r}, m^{r}; \frac{s}{r})^{1/s} M_{k}^{[r]}(\mathbf{A}; w)\right) \ge \log M_{k}^{[s]}(\mathbf{A}; w) \ge \log M_{k}^{[r]}(\mathbf{A}; w),$$

where $C(M^r, m^r; \frac{s}{r})^{1/s} = \Delta(\kappa; r, s)^{-1}$. Next, we assume r < 0 < s. If 0 < -r < s or 0 < s < -r, we put $p = \frac{r}{s}$ or $p = \frac{s}{r}$ in Corollary 3 $(-1 \le p < 0)$, respectively. Then we have

$$\left(\sum_{j=1}^{k} \omega_j A_j^s\right)^{r/s} \le \sum_{j=1}^{k} \omega_j A_j^r \le C(m^s, M^s; \frac{r}{s}) \left(\sum_{j=1}^{k} \omega_j A_j^s\right)^{r/s}$$
$$\left(\sum_{j=1}^{k} \omega_j A_j^r\right)^{s/r} \le \sum_{j=1}^{k} \omega_j A_j^s \le C(M^r, m^r; \frac{s}{r}) \left(\sum_{j=1}^{k} \omega_j A_j^r\right)^{s/r}$$

or

$$\left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r} \le \sum_{j=1}^k \omega_j A_j^s \le C(M^r, m^r; \frac{s}{r}) \left(\sum_{j=1}^k \omega_j A_j^r\right)^{s/r}.$$

 \mathbf{So}

(12)
$$\log M_k^{[s]}(\mathbf{A}; w) \ge \log M_k^{[r]}(\mathbf{A}; w) \ge \log \left(C(m^s, M^s; \frac{r}{s})^{1/r} M_k^{[s]}(\mathbf{A}; w) \right),$$

with $C(m^s, M^s; \frac{r}{s})^{1/r} = \Delta(\kappa; r, s)$, or

(13)
$$\log M_k^{[r]}(\mathbf{A}; w) \le \log M_k^{[s]}(\mathbf{A}; w) \le \log \left(C(M^r, m^r; \frac{s}{r})^{1/s} M_k^{[r]}(\mathbf{A}; w) \right),$$

with $C(M^r, m^r; \frac{s}{r})^{1/s} = \Delta(\kappa; r, s)^{-1}$. Then the inequality (7) holds when $r < s, r, s \neq 0$. In the end, if $r \to 0$ in (10) and (12), then

$$\Delta(\kappa;0,s) \ \ M_k^{[s]}({\bf A};w) \ll M_k^{[0]}({\bf A};w) \ll M_k^{[s]}({\bf A};w)$$

by Lemma 8 and Lemma 7. Similarly, if $s \to 0$ in (11) and (13), then

$$M_k^{[0]}(\mathbf{A};w) \ll \Delta(\kappa;r,0)^{-1} \ M_k^{[r]}(\mathbf{A};w) \ll \Delta(\kappa;r,0)^{-1} \ M_k^{[0]}(\mathbf{A};w).$$

Then the inequality (7) holds when r = 0 < s or r < s = 0.

Remark 9. If we put r = 0 and s = 1 in Theorem 5, then we have the following inequality between arithmetic mean and geometric mean:

$$\exp\left(\sum_{j=1}^{k}\omega_j \, \log A_j\right) \ll \sum_{j=1}^{k}\omega_j \, A_j \ll \frac{\kappa^{\frac{1}{\kappa-1}}}{e\log \kappa^{\frac{1}{\kappa-1}}} \quad \exp\left(\sum_{j=1}^{k}\omega_j \, \log A_j\right).$$

References

- K. V. Bhagwat, R. Subramanian, Inequalities between means of positive operators, Math. Proc. Camb. Phil. Soc. 83 (1978), 393-401.
- [2] M. Fujii, R. Nakamoto, A geometric mean in the Furuta inequality, preprint
- [3] J. Mićić, J. Pečarić, Y. Seo, M. Tominaga, Inequalities for positive linear maps on Hermitian matrices, Math. Inequal. Appl. 3 (2000), 559–591.
- B. Mond, J. E. Pečarić, Difference and ratio operator inequalities in Hilbert space, Houston J. Math. 21 (1994), 103-108.
- [5] B. Mond, J. E. Pečarić, Bounds for Jensen's inequality for several operators, Houston J. Math. 20 (1994), 645-651.
- [6] B. Mond, J. E. Pečarić, Converses of Jensen's inequality for several operators, Revue d'analyse numer. et de théorie de l'approxim. 23 (1994) 2, 179–183.
- [7] Y. Seo, S.-E. Takahasi, J. E. Pečarić and J. Mićić, Inequalities of Furuta and Mond-Pečarić on the Hadamrd product, J. Inequal. Appl., 5 (2000), 263-285.
- [8] T. Yamazaki, An extension of Specht's theorem via Kantorovich inequality and related results, Math. Inequal. Appl. 3 (2000), 89–96.
- T. Yamazaki, M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37-50.

J. Pečarić: Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, CROATIA. E-mail: pecaric@hazu.hr

J. Mićić: Technical College Zagreb, University of Zagreb, Konavoska 2, 10000 Zagreb, CROATIA. E-mail: jmicic@public.srce.hr