CHAOTIC ORDER AMONG MEANS OF POSITIVE OPERATORS

Josip Pečarić and Jadranka Mićić

Received January 8, 2002

Abstract

M. Fujii and R. Nakamoto discuss the monotonity of the operator function $F(r)=\left((1-\mu) A^{r}+\mu B^{r}\right)^{\frac{1}{r}}(r \in \mathbf{R})$ for given $A, B>0$ and $\mu \in[0,1]$. They proved it under the usual operator order: $F(r) \leq F(s)$ if $1 \leq r \leq s$ or $1 \leq s \leq 2 r$. Furthermore, they proved it under the chaotic order: $F(r) \ll F(s)$ if $r<s$ and consequently s- $\lim _{r \rightarrow 0} F(r)=A \diamond_{\mu} B$, where \diamond_{μ} is the chaotic geometric mean defined by $A \diamond_{\mu} B:=e^{(1-\mu) \log A+\mu \log B}$.

The aim of this paper is to generalize the above mentioned as follows: Let $M_{k}^{[r]}(\mathbf{A} ; w):=\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}(r \in \mathbf{R} \backslash\{0\})$ be weighted power mean of positive operators $A_{j}, \operatorname{Sp}\left(\bar{A}_{j}\right) \subseteq[m, M](j=1, \ldots, k), 0<m<M$ and $\omega_{j} \in \mathbf{R}_{+}$, $\sum_{j=1}^{k} \omega_{j}=1$. Let $M_{k}^{[0]}(\mathbf{A} ; w)$ be the corresponding chaotic geometric mean. If $r \leq s$ then real constants α_{1} and α_{1} such that $\alpha_{2} M_{k}^{[s]}(\mathbf{A} ; w) \leq M_{k}^{[r]}(\mathbf{A} ; w) \leq \alpha_{1} M_{k}^{[s]}(\mathbf{A} ; w)$, are determined, when $r \notin\langle-1,1\rangle, r \neq 0$ or $s \notin\langle-1,1\rangle, s \neq 0$. Furthermore, if $r \leq s$ then real constant Δ such that $\Delta M_{k}^{[s]}(\mathbf{A} ; w) \ll M_{k}^{[r]}(\mathbf{A} ; w) \ll M_{k}^{[s]}(\mathbf{A} ; w)$, is determined.

1 Introduction. Let $\mathcal{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space $H, \mathcal{B}_{+}(H)$ be the set of all positive operators of $\mathcal{B}(H)$ and $\operatorname{Sp}(A)$ be the spectrum of the operator A. We denote by \geq the usual order among self-adjoint operator on H (i.e. $A \geq B$ if $A-B \in \mathcal{B}_{+}(H)$). We denote by \gg the chaotic order among invertible operators of $\mathcal{B}_{+}(H)$ (i.e. for $A, B>0, A \gg B$ if $\log A \geq \log B$).
M. Fujii and R. Nakamoto [2] discuss the monotonity of the operator function $F(r)=$ $\left((1-\mu) A^{r}+\mu B^{r}\right)^{\frac{1}{r}}(r \in \mathbf{R})$ for given $A, B>0$ and $\mu \in[0,1]$. They do it under the usual operator order:

Lemma A (M.Fujii-R.Nakamoto). Let $A, B>0$ and $\mu \in[0,1]$ be given. Then the operator function $F(r)=\left((1-\mu) A^{r}+\mu B^{r}\right)^{\frac{1}{r}}(r \in \mathbf{R})$ is monotone increasing on $[1, \infty)$, i.e. $F(r) \leq F(s)$ if $1 \leq r \leq s$. In addition $F(r) \leq F(s)$ if $1 \leq s \leq 2 r$, and $F(r)$ is not monotone increasing on $\langle 0,1]$ in general.

Next, they do it under the chaotic order:
Lemma B (M.Fujii-R.Nakamoto). The operator function $F(r)$ is monotone increasing under the chaotic order, i.e. $F(r) \ll F(s)$ if $r<s$. In particular, $\mathbf{s}-\lim _{r \rightarrow 0} F(r)=$ $A \diamond_{\mu} B$, where \diamond_{μ} is the chaotic geometric mean defined by $A \diamond_{\mu} B:=e^{(1-\mu) \log A+\mu \log B}$.

We consider the following weighted power means of positive operators (see [6, 4, 1]). Let $A_{j} \in \mathcal{B}_{+}(H)$ with $\operatorname{Sp}\left(A_{j}\right) \subseteq[m, M], 0<m<M,(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that

2000 Mathematics Subject Classification. Primary 47A63.
Key words and phrases. Power mean of positive operators, operator order, chaotic order, Mond-Pečarić method.
$\sum_{j=1}^{k} \omega_{j}=1$. We define

$$
M_{k}^{[r]}(\mathbf{A} ; w):= \begin{cases}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} & \text { if } \quad r \in \mathbf{R} \backslash\{0\}, \tag{1}\\ \exp \left(\sum_{j=1}^{k} \omega_{j} \log A_{j}\right) & \text { if } \quad r=0 .\end{cases}
$$

The limit

$$
\mathbf{s}-\lim _{r \rightarrow 0} M_{k}^{[r]}(\mathbf{A} ; w)=M_{k}^{[0]}(\mathbf{A} ; w)
$$

exists (see [1] or Lemma 7) and $M_{k}^{[0]}(\mathbf{A} ; w)$ reduces to the usual geometric mean in the case of commuting operators. To remind, we define usual geometric mean by $G(\mathbf{A} ; w):=A_{k}^{1 / 2}$ $\left(A_{k}^{-1 / 2} A_{k-1}^{1 / 2} \cdots\left(A_{3}^{-1 / 2} A_{2}^{1 / 2}\left(A_{2}^{-1 / 2} A_{1} A_{2}^{-1 / 2}\right)^{u_{1}} A_{2}^{1 / 2} A_{3}^{-1 / 2}\right)^{u_{2}} \cdots A_{k-1}^{1 / 2} A_{k}^{-1 / 2}\right)^{u_{k-1}} A_{k}^{1 / 2}$ where $u_{j}=1-\omega_{j+1} / \sum_{l=1}^{j+1} \omega_{l}(j=1, \ldots, k-1)$.

The aim of this paper is to generalize the above results of Fujii-Nakamoto as follows: We shall determine real constants α_{1} and α_{1} such that

$$
\alpha_{2} M_{k}^{[s]}(\mathbf{A} ; w) \leq M_{k}^{[r]}(\mathbf{A} ; w) \leq \alpha_{1} M_{k}^{[s]}(\mathbf{A} ; w)
$$

holds if $r \leq s, r \notin\langle-1,1\rangle, r \neq 0$ or $s \notin\langle-1,1\rangle, s \neq 0$.
Furthermore, we shall determine real constant Δ such that

$$
\Delta M_{k}^{[s]}(\mathbf{A} ; w) \ll M_{k}^{[r]}(\mathbf{A} ; w) \ll M_{k}^{[s]}(\mathbf{A} ; w)
$$

holds if $r \leq s$.

2 The usual operator order among means. In this section we discuss the usual operator order among power means (1) when $r \in \mathbf{R} \backslash\{0\}$.

Theorem 1. Let $A_{j} \in \mathcal{B}_{+}(H)$ with $\operatorname{Sp}\left(A_{j}\right) \subseteq[m, M], 0<m<M,(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that $\sum_{j=1}^{k} \omega_{j}=1$. If $r, s \in \mathbf{R}, r \leq s$, then

$$
\begin{equation*}
\alpha_{2} M_{k}^{[s]}(\mathbf{A} ; w) \leq M_{k}^{[r]}(\mathbf{A} ; w) \leq \alpha_{1} M_{k}^{[s]}(\mathbf{A} ; w) \tag{2}
\end{equation*}
$$

where

$$
\alpha_{2}=\Delta \quad \text { if }(\mathrm{vi}), \quad \alpha_{1}= \begin{cases}1 & \text { if (i) or (ii) or (iii) } \\ \Delta^{-1} & \text { if (iv) or }(\mathrm{v}),\end{cases}
$$

and

$$
\Delta=\left\{\frac{r\left(\kappa^{s}-\kappa^{r}\right)}{(s-r)\left(\kappa^{r}-1\right)}\right\}^{-\frac{1}{s}}\left\{\frac{s\left(\kappa^{r}-\kappa^{s}\right)}{(r-s)\left(\kappa^{s}-1\right)}\right\}^{\frac{1}{r}}, \quad \kappa=\frac{M}{m}
$$

Here we denote intervals from (i) to (vi) as on the Table 1 (see Figure 1).
Remark 2. B. Mond and J. Pečarić [6, 4] proved the following inequalities

$$
\begin{array}{lll}
M_{k}^{[r]}(\mathbf{A} ; w) \leq M_{k}^{[s]}(\mathbf{A} ; w) \quad \text { if } & \text { (i) or (ii) or (iii) } \\
M_{k}^{[s]}(\mathbf{A} ; w) \leq \Delta^{-1} M_{k}^{[r]}(\mathbf{A} ; w) & \text { if } \quad \text { (vi). }
\end{array}
$$

(i) $s \geq r, s \notin\langle-1,1\rangle, r \notin\langle-1,1\rangle$,
(ii) $s \geq 1 \geq r \geq 1 / 2$,
(iii) $r \leq-1 \leq s \leq-1 / 2$,
(iv) $s \geq 1,-1<r<1 / 2, r \neq 0$,
(v) $\quad r \leq-1,-1 / 2<s<1, s \neq 0$,
(vi) $s>r, s \notin\langle-1,1\rangle, \quad r \neq 0$ or $r \notin\langle-1,1\rangle, s \neq 0$.

Table 1: Intervals from (i) to (vi)

Figure 1

For the proof of Theorem 1 we need some results. If Jensen's inequality and MondPečarić method applied, then the following two theorems hold:

Theorem J ([6, Theorem 1]). Let $\mathcal{J} \subseteq \mathbf{R}$ be an interval. Let $A_{j} \in \mathcal{B}_{+}(H)$ with $\operatorname{Sp}\left(A_{j}\right) \subseteq \mathcal{J}(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that $\sum_{j=1}^{k} \omega_{j}=1$. If f is a operator convex
function on \mathcal{J}, then

$$
\begin{equation*}
f\left(\sum_{j=1}^{k} \omega_{j} A_{j}\right) \leq \sum_{j=1}^{k} \omega_{j} f\left(A_{j}\right) \tag{3}
\end{equation*}
$$

Theorem MP ([5, Theorem 5]). Let $A_{j} \in \mathcal{B}_{+}(H)$ with $\operatorname{Sp}\left(A_{j}\right) \subseteq[m, M], 0<m<$ $M,(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that $\sum_{j=1}^{k} \omega_{j}=1$. Let f be a strictly convex twice differentiable function on $[m, M]$. Suppose in addition that either of the following conditions holds (i) $f>0$ on $[m, M]$ or (ii) $f<0$ on $[m, M]$. Then the following inequality

$$
\begin{equation*}
\sum_{j=1}^{k} \omega_{j} f\left(A_{j}\right) \leq \alpha f\left(\sum_{j=1}^{k} \omega_{j} A_{j}\right) \tag{4}
\end{equation*}
$$

holds for some $\alpha>1$ in case (i) or $0<\alpha<1$ in case (ii).
More precisely, a value of α for (4) may be determined as follows: Let $\mu_{f}=(f(M)-$ $f(m)) /(M-m)$. If $\mu_{f}=0$, let $t=t_{o}$ be the unique solution of the equation $f^{\prime}(t)=0(m<$ $\left.t_{o}<M\right)$; then $\alpha=f(m) / f\left(t_{o}\right)$ suffices for (4). If $\mu_{f} \neq 0$, let $t=t_{o}$ be the unique solution of the equation $\mu_{f} f(t)-f^{\prime}(t)\left(f(m)+\mu_{f}(t-m)\right)=0$; then $\alpha=\mu_{f} / f^{\prime}\left(t_{o}\right)$ suffices for (4).

Corollary 3. Let $A_{j} \in \mathcal{B}_{+}(H)$ with $\operatorname{Sp}\left(A_{j}\right) \subseteq[m, M], 0<m<M,(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that $\sum_{j=1}^{k} \omega_{j}=1$. If $p \in \mathbf{R}$, then

$$
\begin{equation*}
\alpha_{2}\left(\sum_{j=1}^{k} \omega_{j} A_{j}\right)^{p} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{p} \leq \alpha_{1}\left(\sum_{j=1}^{k} \omega_{j} A_{j}\right)^{p} \tag{5}
\end{equation*}
$$

with

$$
\alpha_{2}=\left\{\begin{array}{ll}
\tilde{\Delta}^{-1} & \text { if } p<-1 \text { or } p>2 \\
1 & \text { if }-1 \leq p<0 \text { or } 1 \leq p \leq 2 \\
\tilde{\Delta} & \text { if } 0<p<1
\end{array} \quad \alpha_{1}= \begin{cases}\tilde{\Delta} & \text { if } p<0 \text { or } p>1 \\
1 & \text { if } 0<p \leq 1\end{cases}\right.
$$

where

$$
\begin{aligned}
\tilde{\Delta} & \equiv C(m, M ; p)=\frac{M m^{p}-m M^{p}}{(1-p)(M-m)}\left(\frac{1-p}{p} \frac{M^{p}-m^{p}}{M m^{p}-m M^{p}}\right)^{p} \\
& =\frac{\kappa^{p}-\kappa}{(p-1)(\kappa-1)}\left(\frac{(p-1)\left(\kappa^{p}-1\right)}{p\left(\kappa^{p}-\kappa\right)}\right)^{p}, \quad \kappa=\frac{M}{m}
\end{aligned}
$$

Remark 4. Note that

$$
\begin{equation*}
C(m, M ; p):=\frac{M m^{p}-m M^{p}}{(1-p)(M-m)}\left(\frac{1-p}{p} \frac{M^{p}-m^{p}}{M m^{p}-m M^{p}}\right)^{p} \tag{6}
\end{equation*}
$$

is called Furuta's constant [7] when $p>0$.

Proof of Corollary 3. We first consider α_{1}. If $0<p \leq 1$, then the function $f(t)=t^{p}$ is operator concave and from the inequality (3) follows $\alpha_{1}=1$. But, if $p<0$ or $p>1$, then the function $f(t)=t^{p}$ is strictly convex (and $f>0$). From the inequality (4) follows:

$$
t_{0}=\frac{p}{p-1} \frac{m M^{p}-M m^{p}}{M^{p}-m^{p}} \quad \text { and } \quad \alpha_{1}=\frac{m^{p}+\frac{M^{p}-m^{p}}{M-m}\left(t_{0}-m\right)}{t_{0}^{p}}=\tilde{\Delta}
$$

Next, we consider α_{2}. If $0<p<1$, then the function $f(t)=t^{p}$ is strictly concave and it follows from inequality (4) that $\alpha_{2}=\tilde{\Delta}$. If $-1 \leq p<0$ or $1 \leq p \leq 2$, then the function $f(t)=t^{p}$ is operator convex and from the inequality (3) follows $\alpha_{2}=1$. If $p<-1$ or $p>2$, then the function $f(t)=t^{p}$ is strictly convex. Similar to Mond-Mond-Pečarić method, for any $s \in[m, M]$ we have $g_{s}(t) \equiv f(s)+f^{\prime}(s)(t-s) \leq f(t)$ for all $t \in[m, M]$. Then the following inequality holds (see [3, Remark 4.13]):

$$
\sum_{j=1}^{k} \omega_{j} f\left(A_{j}\right) \geq \alpha_{2} f\left(\sum_{j=1}^{k} \omega_{j} A_{j}\right) \quad \text { with } \quad \alpha_{2}=\max _{0 \leq g_{s} \leq f} \min _{m \leq t \leq M} \frac{g_{s}(t)}{f(t)}
$$

We choose s which is the unique solution of $\frac{g_{s}(m)}{f(m)}=\frac{g_{s}(M)}{f(M)}$. A simple calculation implies $\alpha_{2}=\tilde{\Delta}^{-1}$.

Proof of Theorem 1. We prove this by a similar method as in [3, Theorem 5.7]. We shall consider only the case when $s \neq r$.

Suppose that $s \geq 1$. If $0<r<1$ then $m^{r} 1_{H} \leq A_{j}^{r} \leq M^{r} 1_{H}(j=1, \ldots, k)$ implies $m^{r} 1_{H} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{r} \leq M^{r} 1_{H}$. Putting $p=\frac{s}{r}$ in Corollary 3 (for $1<p \leq 2$ or $p>2$) and replaced A_{j} by A_{j}^{r} we have

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{s} \leq C\left(m^{r}, M^{r} ; \frac{s}{r}\right)\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r}
$$

if $s / 2 \leq r<1$ or

$$
C\left(m^{r}, M^{r} ; \frac{s}{r}\right)^{-1}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{s} \leq C\left(m^{r}, M^{r} ; \frac{s}{r}\right)\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r}
$$

if $0<r<s / 2$, where

$$
\begin{aligned}
C\left(m^{r}, M^{r} ; \frac{s}{r}\right) & =\frac{m^{r}\left(M^{r}\right)^{\frac{s}{r}}-M^{r}\left(m^{r}\right)^{\frac{s}{r}}}{\left(\frac{s}{r}-1\right)\left(M^{r}-m^{r}\right)}\left(\frac{\left(\frac{s}{r}-1\right)\left(\left(M^{r}\right)^{\frac{s}{r}}-\left(m^{r}\right)^{\frac{s}{r}}\right)}{\frac{s}{r}\left(m^{r}\left(M^{r}\right)^{\frac{s}{r}}-M^{r}\left(m^{r}\right)^{\frac{s}{r}}\right)}\right)^{\frac{s}{r}} \\
& =\frac{r\left(\kappa^{s}-\kappa^{r}\right)}{(s-r)\left(\kappa^{r}-1\right)}\left(\frac{s\left(\kappa^{r}-\kappa^{s}\right)}{(r-s)\left(\kappa^{s}-1\right)}\right)^{-\frac{s}{r}}
\end{aligned}
$$

The function $f(t)=t^{\frac{1}{s}}$ is operator increasing if $s \geq 1$ and it follows that

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq C\left(m^{r}, M^{r} ; \frac{s}{r}\right)^{1 / s}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $s / 2 \leq r<1$ or

$$
C\left(m^{r}, M^{r} ; \frac{s}{r}\right)^{-1 / s}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq C\left(m^{r}, M^{r} ; \frac{s}{r}\right)^{1 / s}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $0<r<s / 2$, where $C\left(m^{r}, M^{r} ; \frac{s}{r}\right)^{1 / s}=\left\{\frac{r\left(\kappa^{s}-\kappa^{r}\right)}{(s-r)\left(\kappa^{r}-1\right)}\right\}^{\frac{1}{s}}\left\{\frac{s\left(\kappa^{r}-\kappa^{s}\right)}{(r-s)\left(\kappa^{s}-1\right)}\right\}^{-\frac{1}{r}}=\Delta^{-1}$.
Furthermore, consider the case of $s=1$. Then for $1 \leq 1 / r \leq 2$ we have $\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j}$, so for $s>1$ we have

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq \Delta^{-1}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $1 / 2 \leq r<1$ or

$$
\Delta\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq \Delta^{-1}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $0<r<1 / 2$. Then we obtain desired inequalities for $1 / 2 \leq r<1$ or $0<r<1 / 2$.
If $r<0$ then $M^{r} 1_{H} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{r} \leq m^{r} 1_{H}$ and Corollary 3 (for $-1 \leq p<0$ or $p<$ -1), with the fact that the function $f(t)=t^{\frac{1}{s}}$ is operator increasing, gives

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $r \leq-s$ or

$$
\begin{aligned}
& C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{-1 / s}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \\
& \text { if }-s<r<0 \text {, where } C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s}=\left\{\frac{r\left(\kappa^{-s}-\kappa^{-r}\right)}{(s-r)\left(\kappa^{-r}-1\right)}\right\}^{\frac{1}{s}}\left\{\frac{s\left(\kappa^{-r}-\kappa^{-s}\right)}{(r-s)\left(\kappa^{-s}-1\right)}\right\}^{-\frac{1}{r}}=\Delta^{-1} .
\end{aligned}
$$

Therefore, similarly to above mentioned case $s=1$ we have

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq \Delta^{-1}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $r \leq-1$ or

$$
\Delta\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq \Delta^{-1}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r}
$$

if $-1<r<0$. Then we obtain desired inequalities for $r \leq-1$ or $-1<r<0$.

Next, suppose that $1 \leq r<s$. In this case we put $p=\frac{r}{s}$. Then Corollary 3 (for $0<p \leq 1$), with the fact that the function $f(t)=t^{\frac{1}{r}}$ is operator increasing, gives

$$
C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{1 / r} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s}
$$

where $C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r}=\Delta$.
Therefore, we obtain the desired results on the intervals (ii), (iv) and the part of (i) in case $s \geq 1$ and $r \leq s$.

Secondly, suppose that $s<1$. Then it follows that $r \leq-1$. Similarly, due to the mirror reflection direction $s=-r$, we obtain the desired results on the intervals (iii), (v) and the part of (i) in case $s<1$ and $r \leq s$.

3 The chaotic order among means. In this section we discuss the chaotic order among power means (1).

Theorem 5. Let $A_{j} \in \mathcal{B}_{+}(H)$ with $\operatorname{Sp}\left(A_{j}\right) \subseteq[m, M], 0<m<M,(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that $\sum_{j=1}^{k} \omega_{j}=1$. Denote $\kappa=\frac{M}{m}$. If $r, s \in \mathbf{R}$ then

$$
\begin{equation*}
\Delta(\kappa ; r, s) M_{k}^{[s]}(\mathbf{A} ; w) \ll M_{k}^{[r]}(\mathbf{A} ; w) \ll M_{k}^{[s]}(\mathbf{A} ; w) \tag{7}
\end{equation*}
$$

where
(8) $\Delta(\kappa ; r, s)=\left\{\begin{array}{l}\left\{\frac{r\left(\kappa^{s}-\kappa^{r}\right)}{(s-r)\left(\kappa^{r}-1\right)}\right\}^{-\frac{1}{s}}\left\{\frac{s\left(\kappa^{r}-\kappa^{s}\right)}{(r-s)\left(\kappa^{s}-1\right)}\right\}^{\frac{1}{r}} \quad \text { if } r<s, r, s \neq 0, \\ \left(\frac{e \log \kappa^{\frac{p}{\beta^{p}-1}}}{\kappa^{\frac{\beta}{\kappa^{p}-1}}}\right)^{\frac{s i g n(p)}{p}} \quad \text { if } r=0<s=p \text { or } r=p<s=0 .\end{array}\right.$

Remark 6. Note that $\Delta(\kappa ; 0,1)^{-1} \equiv M_{\kappa}(1):=\frac{\kappa^{\frac{1}{\kappa-1}}}{e \log \kappa^{\frac{1}{\kappa-1}}}, \quad\left(\kappa=\frac{M}{m}\right)$ is called Specht's ratio and

$$
\begin{equation*}
\Delta(\kappa ; 0, s)^{-s} \equiv M_{\kappa}(s):=\frac{\kappa^{\frac{s}{\kappa^{s}-1}}}{e \log \kappa^{\frac{s}{\kappa^{s}-1}}} \tag{9}
\end{equation*}
$$

is the generalized Specht's ratio [9, 8]. We remark that $M_{\kappa^{r}}(1)=M_{\kappa}(r)$.
Also, note that $\lim _{s \rightarrow 0} \Delta(\kappa ; 0, s)=1$ by the Yamazaki-Yanagida result [9, Lemma 12]: $\lim _{s \rightarrow 0}\left\{M_{\kappa}(s)\right\}^{\frac{1}{s}}=1$.

For the proof of Theorem 5 we need two more results.
Lemma 7. Let $A_{j} \in \mathcal{B}_{+}(H), A_{j}>0(j=1, \ldots, k)$ and $\omega_{j} \in \mathbf{R}_{+}$such that $\sum_{j=1}^{k} \omega_{j}=1$. Then

$$
\mathbf{s}-\lim _{t \rightarrow 0} M_{k}^{[t]}(\mathbf{A} ; w)=M_{k}^{[0]}(\mathbf{A} ; w)
$$

Proof. This limit was discussed in [1] for $\omega_{j}=1 / k$ and proved in [2, Lemma 2] for $k=2$. As a matter of fact, applying the concavity of log-function and Krein's inequality we have

$$
\begin{gathered}
\qquad \sum_{j=1}^{k} \omega_{j} \log A_{j} \leq \frac{1}{t} \log \left(\sum_{j=1}^{k} \omega_{j} A_{j}^{t}\right) \rightarrow \sum_{j=1}^{k} \omega_{j} \log A_{j} \quad(t \rightarrow+0) . \\
\text { So s-lim} \\
t \rightarrow+0 \\
M_{k}^{[t]}(\mathbf{A} ; w)=M_{k}^{[0]}(\mathbf{A} ; w) . \text { Besides, for } t>0
\end{gathered}
$$

$$
M_{k}^{[-t]}(\mathbf{A} ; w)=\left[\left(\sum_{j=1}^{k} \omega_{j}\left(A_{j}^{-1}\right)^{t}\right)^{1 / t}\right]^{-1} \rightarrow\left[\exp \left(\sum_{j=1}^{k} \omega_{j} \log \left(A_{j}^{-1}\right)\right)\right]^{-1}=M_{k}^{[0]}(\mathbf{A} ; w)
$$

So $\mathbf{s}-\lim _{t \rightarrow-0} M_{k}^{[t]}(\mathbf{A} ; w)=M_{k}^{[0]}(\mathbf{A} ; w)$.
Lemma 8. Let $M>m>0$ and $\Delta(\kappa ; r, s)$ be defined by (8). Then

$$
\lim _{s \rightarrow 0} \Delta(\kappa ; r, s)=\Delta(\kappa ; r, 0) \quad \text { and } \quad \lim _{r \rightarrow 0} \Delta(\kappa ; r, s)=\Delta(\kappa ; 0, s)
$$

For the proof of lemma 8 we need the following Yamazaki-Yanagida result $[9$, Proposition 14].

Lemma C (T.Yamazaki-M.Yanagida). Let $C(m, M ; p)$ and $M_{\kappa}(p)$ be defined by (6) and (9), respectively. Then for $p>0$ and $M>m>0$,

$$
\lim _{\delta \rightarrow+0} C\left(m^{\delta}, M^{\delta} ; \frac{p}{\delta}\right)=M_{\kappa}(p)
$$

where $\kappa=\frac{M}{m}>1$.
Proof of Lemma 8. We have the the first limit putting $\delta=s$ and $p=r$ in Lemma C and applying the following relations:

$$
C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{\frac{1}{r}}=\Delta(\kappa ; r, s) \text { if } s>0, \quad C\left(M^{s}, m^{s} ; \frac{r}{s}\right)=C\left(m^{s}, M^{s} ; \frac{r}{s}\right) \text { if } s<0
$$

and

$$
M_{\kappa}(r)^{\frac{1}{r}}=\Delta(\kappa ; r, 0)
$$

Similarly, we obtain the second limit.
Proof of Theorem 5. We first show that for $r, s \in \mathbf{R} \backslash\{0\}, r<s$,

$$
\log \left(\Delta(\kappa ; r, s) M_{k}^{[s]}(\mathbf{A} ; w)\right) \leq \log M_{k}^{[r]}(\mathbf{A} ; w) \leq \log M_{k}^{[s]}(\mathbf{A} ; w)
$$

We assume $0<r<s$. Then $m 1_{H} \leq A_{j} \leq M 1_{H}(j=1, \ldots, k)$ implies $m^{s} 1_{H} \leq$ $\sum_{j=1}^{k} \omega_{j} A_{j}^{s} \leq M^{s} 1_{H}$. Putting $p=\frac{r}{s}(0<p<1)$ in Corollary 3 and replaced A_{j} by A_{j}^{s}, we have

$$
C\left(m^{s}, M^{s} ; \frac{r}{s}\right)\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{r / s} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{r} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{r / s}
$$

where

$$
C\left(m^{s}, M^{s} ; \frac{r}{s}\right)=\frac{s\left(\kappa^{r}-\kappa^{s}\right)}{(r-s)\left(\kappa^{s}-1\right)}\left(\frac{r\left(\kappa^{s}-\kappa^{r}\right)}{(s-r)\left(\kappa^{r}-1\right)}\right)^{-\frac{r}{s}}
$$

As the function $f(t)=\log t$ is operator monotone on $\langle 0, \infty\rangle$ we have

$$
r \log \left(C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r}\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s}\right) \leq \log \left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right) \leq r \log \left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{1 / s}
$$

and so

$$
\begin{equation*}
\log \left(C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r} M_{k}^{[s]}(\mathbf{A} ; w)\right) \leq \log M_{k}^{[r]}(\mathbf{A} ; w) \leq \log M_{k}^{[s]}(\mathbf{A} ; w) \tag{10}
\end{equation*}
$$

where $C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r}=\Delta(\kappa ; r, s)$.
Next, we assume $r<s<0$. Then $M^{r} 1_{H} \leq A_{j}^{r} \leq m^{r} 1_{H},(j=1, \ldots, k)$ and so $M^{r} 1_{H} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{r} \leq m^{r} 1_{H}$. Putting $p=\frac{s}{r}(0<p<1)$ in Corollary 3 and replaced A_{j} by A_{j}^{r}, we have

$$
C\left(M^{r}, m^{r} ; \frac{s}{r}\right)\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{s} \leq\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r}
$$

and so

$$
\begin{equation*}
\log \left(C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s} M_{k}^{[r]}(\mathbf{A} ; w)\right) \geq \log M_{k}^{[s]}(\mathbf{A} ; w) \geq \log M_{k}^{[r]}(\mathbf{A} ; w) \tag{11}
\end{equation*}
$$

where $C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s}=\Delta(\kappa ; r, s)^{-1}$.
Next, we assume $r<0<s$. If $0<-r<s$ or $0<s<-r$, we put $p=\frac{r}{s}$ or $p=\frac{s}{r}$ in Corollary $3(-1 \leq p<0)$, respectively. Then we have

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{r / s} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{r} \leq C\left(m^{s}, M^{s} ; \frac{r}{s}\right)\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{s}\right)^{r / s}
$$

or

$$
\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r} \leq \sum_{j=1}^{k} \omega_{j} A_{j}^{s} \leq C\left(M^{r}, m^{r} ; \frac{s}{r}\right)\left(\sum_{j=1}^{k} \omega_{j} A_{j}^{r}\right)^{s / r}
$$

So

$$
\begin{equation*}
\log M_{k}^{[s]}(\mathbf{A} ; w) \geq \log M_{k}^{[r]}(\mathbf{A} ; w) \geq \log \left(C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r} M_{k}^{[s]}(\mathbf{A} ; w)\right) \tag{12}
\end{equation*}
$$

with $C\left(m^{s}, M^{s} ; \frac{r}{s}\right)^{1 / r}=\Delta(\kappa ; r, s)$, or

$$
\begin{equation*}
\log M_{k}^{[r]}(\mathbf{A} ; w) \leq \log M_{k}^{[s]}(\mathbf{A} ; w) \leq \log \left(C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s} M_{k}^{[r]}(\mathbf{A} ; w)\right) \tag{13}
\end{equation*}
$$

with $C\left(M^{r}, m^{r} ; \frac{s}{r}\right)^{1 / s}=\Delta(\kappa ; r, s)^{-1}$. Then the inequality (7) holds when $r<s, r, s \neq 0$.
In the end, if $r \rightarrow 0$ in (10) and (12), then

$$
\Delta(\kappa ; 0, s) \quad M_{k}^{[s]}(\mathbf{A} ; w) \ll M_{k}^{[0]}(\mathbf{A} ; w) \ll M_{k}^{[s]}(\mathbf{A} ; w)
$$

by Lemma 8 and Lemma 7. Similarly, if $s \rightarrow 0$ in (11) and (13), then

$$
M_{k}^{[0]}(\mathbf{A} ; w) \ll \Delta(\kappa ; r, 0)^{-1} \quad M_{k}^{[r]}(\mathbf{A} ; w) \ll \Delta(\kappa ; r, 0)^{-1} \quad M_{k}^{[0]}(\mathbf{A} ; w)
$$

Then the inequality (7) holds when $r=0<s$ or $r<s=0$.
Remark 9. If we put $r=0$ and $s=1$ in Theorem 5, then we have the following inequality between arithmetic mean and geometric mean:

$$
\exp \left(\sum_{j=1}^{k} \omega_{j} \log A_{j}\right) \ll \sum_{j=1}^{k} \omega_{j} A_{j} \ll \frac{\kappa^{\frac{1}{\kappa-1}}}{e \log \kappa^{\frac{1}{k-1}}} \quad \exp \left(\sum_{j=1}^{k} \omega_{j} \log A_{j}\right) .
$$

References

[1] K. V. Bhagwat, R. Subramanian, Inequalities between means of positive operators, Math. Proc. Camb. Phil. Soc. 83 (1978), 393-401.
[2] M. Fujii, R. Nakamoto, A geometric mean in the Furuta inequality, preprint
[3] J. Mićić, J. Pečarić, Y. Seo, M. Tominaga, Inequalities for positive linear maps on Hermitian matrices, Math. Inequal. Appl. 3 (2000), 559-591.
[4] B. Mond, J. E. Pečarić, Difference and ratio operator inequalities in Hilbert space, Houston J. Math. 21 (1994), 103-108.
[5] B. Mond, J. E. Pečarić, Bounds for Jensen's inequality for several operators, Houston J. Math. 20 (1994), 645-651.
[6] B. Mond, J. E. Pečarić, Converses of Jensen's inequality for several operators, Revue d'analyse numer. et de théorie de l'approxim. 23 (1994) 2, 179-183.
[7] Y. Seo, S.-E. Takahasi, J. E. Pečarić and J. Mićić, Inequalities of Furuta and Mond-Pečarić on the Hadamrd product, J. Inequal. Appl., 5 (2000), 263-285.
[8] T. Yamazaki, An extension of Specht's theorem via Kantorovich inequality and related results, Math. Inequal. Appl. 3 (2000), 89-96.
[9] T. Yamazaki, M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37-50.
J. Pečarić: Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, CROATIA. E-mail: pecaric@hazu.hr
J. Mićić: Technical College Zagreb, University of Zagreb, Konavoska 2, 10000 Zagreb, CROATIA. E-mail: jmicic@public.srce.hr

