ON $\mathcal{SL}(\mathcal{LG})$ -TYPE SUBSEMIGROUPS OF THE FINITE FULL TRANSFORMATION SEMIGROUP

ΤΑΤΣUΗΙΚΟ SAITO

Received January 24, 2002

Dedicated to Professor Masami Ito on his 60th birthday

ABSTRACT. A semilattice of left groups is called an $\mathcal{SL}(\mathcal{LG})$ -type semigroup. For a finite set X, the semigroup \mathcal{T}_X of all mappings from X into itself under composition of mappings is called the finite full transformation semigroup. In this paper, we determine all $\mathcal{SL}(\mathcal{LG})$ -type subsemigroups, especially all maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroups, of \mathcal{T}_X

For a finite set X, let \mathcal{T}_X be the full transformation semigroup on X, i.e., the semigroup of all mapping from X into itself under composition of mappings. The identity mapping on X is denoted by 1_X . The set of all subsemigroups of \mathcal{T}_X is denoted by $S(\mathcal{T}_X)$. Throughout this paper, we write mapping symboles on the right and X denotes a finite set.

For $S \in S(\mathcal{T}_X)$, we define a relation ω_S on X by $x \omega_S y$ iff $x = y\alpha$ for some $\alpha \in S^1$, where $S^1 = S \cup \{1_X\}$. Then ω_S is reflexive and transitive. Define a relation σ_S on X by $x \sigma_S y$ iff $x \omega_S y$ and $y \omega_S x$. Then σ_S is an equivalence relation on X. The σ_S -class containing x is denoted by $x\sigma_S$. By defining a relation \leq_S on X/σ_S by $x\sigma_S \leq_S y\sigma_S$ iff $x \omega_S y$, $(X/\sigma_S, \leq_S)$ forms an ordered set, which is called the *characteristic ordered set of* S.

We investigate the relationship between S and its characeristic ordered set $(X/\sigma_S, \leq_S)$. For an example, S is a permutation group on X if and only if each $x\sigma_S$ is isolated in $(X/\sigma_S, \leq_S)$. In this case, σ_S is an orbit in X relative to S.

A band is a semigroup in which all elements are idempotent. A commutative band is called a *semilattice*. The class of semilattices is denoted by SL. Let \mathcal{V} be a class of semigroups. Then a semigroup S is called a $\mathcal{SL}(\mathcal{V})$ -type if there exists $Y \in \mathcal{SL}$ and for each $\alpha \in Y$, there exists $S_{\alpha} \in V$ such that $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}, S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta$ and $S = \bigcup \{S_{\alpha} : \alpha \in Y\}$. A semigroup S is called a *left group* if for any $\alpha, \beta \in S$ there exists a unique $\gamma \in S$ such that $\gamma \alpha = \beta$. The class of left groups is denoted by \mathcal{LG} . Then a $\mathcal{SL}(\mathcal{LG})$ -type semigroup is called a semilattice of left groups.

The purpose of this paper is to determine all $\mathcal{SL}(\mathcal{LG})$ -type subsemigroups of \mathcal{T}_X , especially all maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroups of \mathcal{T}_X from the point of view of the structure of their characteristic ordered sets.

For $\alpha \in \mathcal{T}_X$ and a subset Y of X, let $Y\alpha = \{y\alpha : y \in Y\}$. The *image* of α is defined as $X\alpha$ which is denoted by im α . If $Y\alpha \subseteq Y$, then the restriction $\alpha|_Y$ of α to Y can be defined. For $S \in S(\mathcal{T}_X)$, let $Im(S) = \{im\alpha : \alpha \in S\}$. Them Im(S) is a set of subsets of X.

The following facts are useful in this paper (see [4]):

Facts Let $S \in S(\mathcal{T}_X)$. Then (1) S is a left group if and only if $\operatorname{im} \alpha = \operatorname{im} \beta$ for every $\alpha, \beta \in S$.

²⁰⁰⁰ Mathematics Subject Classification. 20M20.

Key words and phrases. characteristic ordered sets, $\mathcal{L}G(SL)$ -type semigroups, o-ieals.

TATSUHIKO SAITO

(2) $S \in \mathcal{SL}(\mathcal{LG})$ if and only if $\operatorname{im} \alpha \beta = \operatorname{im} \alpha \cap \operatorname{im} \beta$ for every $\alpha, \beta \in S$.

Let (X, \leq) be an ordered set. The set of minimal elements in (X, \leq) is denoted by $Min(X, \leq)$. A subset I of X is called an o-ideal in (X, \leq) if I contains $Min(X, \leq)$ and I is convex, i.e., $x \in I$ and $y \leq x$ imply $y \in I$. The set of all o-ideals is denoted by $Id(X, \leq)$. Then $Id(X, \leq)$ forms a lattice ordered set under \cap and \cup . For $x \in X$, the set of lower bounds is denoted by lb(x), i.e., $lb(x) = \{y \in X : y \leq x\}$. Then $lb(x) \cup Min(X, \leq) \in Id(X, \leq)$ for every $x \in X$ which is called the principal o-ideal generated by x and is denoted by $\langle x \rangle$. If (X, \leq) has the least element, then $lb(x) = \langle x \rangle$.

Let σ be an equivalence relation on X and let $(X/\sigma, \leq)$ be an ordered set. In what follows, S denotes $\mathcal{SL}(\mathcal{LG})$ -type subsemigroups of \mathcal{T}_X whose characteristic ordered sets are $(X/\sigma, \leq)$, i.e., $\sigma_S = \sigma$ and $\leq_S = \leq$.

For each $Y \in Im(S)$, let $S_Y = \{\alpha \in S : im\alpha = Y\}$. Since $im\alpha\beta = im\alpha \cap im\beta = Y$ for every $\alpha, \beta \in S_Y, S_Y$ is a subsemigroup of S. From Fact (1), S_Y is a left group. For $Y, Z \in Im(S)$, let $\alpha \in S_Y$ and $\beta \in S_Z$. Since $im\alpha\beta = im\alpha \cap im\beta = Y \cap Z$, we have $Y \cap Z \in Im(S)$. Thus Im(S) is a \cap -semilattice, and $S_Y S_Z \subseteq S_{Y \cap Z}$.

Lemma 1. Let $x, y \in X$ with $y\sigma \leq x\sigma$ and let $Y \in Im(S)$. If $x \in Y$, then $y\sigma \subseteq Y$.

Proof. Let $\alpha \in S_Y$. Since $x \in Y = \operatorname{im} \alpha$, we have $z\alpha = x$ for some $z \in X$. Let $u \in y\sigma$. Since $u\sigma = y\sigma \leq x\sigma$, we have $x\beta = u$ for some $\beta \in S$, so that $u = x\beta = z\alpha\beta \in \operatorname{im} \alpha\beta \subseteq \operatorname{im} \alpha = Y$. Thus $y\sigma \subseteq Y$.

Lemma 2. For every $Y \in Im(S)$, $x \in Y$ if and only if $x\sigma \subseteq Y$. Therefore $Y = \bigcup \{x\sigma : x \in Y\}$.

The proof is straightforward from Lemma 1.

Lemma 3. For every $Y \in Im(S)$, let $I_Y = \{x\sigma : x \in Y\}$. Then I_Y is an o-ideal in $(X/\sigma, \leq)$.

Proof. If $x\sigma \in I_Y$ and $y\sigma \leq x\sigma$, then by Lemma 1 $y\sigma \in I_Y$, so that I_Y is convex. Let $x\sigma \in Min(X/\sigma, \leq)$ and let $\alpha \in S_Y$. Since $x\alpha \ \omega_S x$, we have $(x\alpha)\sigma \leq x\sigma$. From the minimality of $x\sigma$, we have $(x\alpha)\sigma = x\sigma$. Since $x\alpha \in Y$, by Lemma 2 we have $x\sigma = (x\alpha)\sigma \subseteq Y$, so that $x\sigma \in I_Y$. Thus $Min(X/\sigma, \leq) \subseteq I_Y$.

Theorem 1 Let σ be an equivalence relation on X and let $(X/\sigma, \leq)$ be an ordered set. Suppose that S is a subsemigroup of \mathcal{T}_X whose characteristic ordered set is $(X/\sigma, \leq)$. For each $Y \in Im(S)$, let $S_Y = \{\alpha \in S : im\alpha = Y\}$. Then S is of $S\mathcal{L}(\mathcal{LG})$ -type if and only if S sayisfies the following conditions:

- (1) $Y = \bigcup \{ x\sigma : x \in Y \},$
- (2) $I = \{x\sigma : x \in Y\}$ is an o-ideal in $(X/\sigma, \leq)$,
- (3) $(x\sigma)\alpha = x\sigma$ if $x\sigma \in I$, otherwise $(x\sigma)\alpha \subseteq lb(x\sigma) \cap I$ for every $\alpha \in S_Y$.

Proof. Suppose that S is an $\mathcal{SL}(\mathcal{LG})$ -type. From lemmata 2 and 3, (1) and (2) follow.

(3) Let $\alpha \in S_Y$. Since $\operatorname{im} \alpha = \operatorname{im} \alpha^2 = Y$, we have $Y = X\alpha^2 = Y\alpha$, so that the restriction $\alpha_{|Y}$ of α to Y is a bijection for every $\alpha \in S_Y$. Thus $(S_Y)_{|Y} = \{\alpha_{|Y} : \alpha \in S\}$ is a permutation group, so that there exists $\beta \in S_Y$ such that $\beta_{|Y} = (\alpha_{|Y})^{-1}$. For $x \in Y$, let $y \in x\sigma$. Since $y \in Y$, we have $y\alpha\beta = y$, so that $y \omega_S y\alpha$. Clearly $y\alpha \omega_S y$. Thus $y\alpha \sigma y \sigma x$, so that $y\alpha \in x\sigma$, which shows $(x\sigma)\alpha \subseteq x\sigma$. Since $\alpha_{|Y}$ is a bijection, we have $(x\sigma)\alpha = x\sigma$.

Suppose that $x\sigma \notin I$. Let $y \in x\sigma$ and let $\alpha \in S_Y$ Since $y\alpha \in im\alpha = Y$, by Lemma 2 $(y\alpha)\sigma \in I$. Since $y\alpha \omega_S y$, we have $(y\alpha)\sigma \leq y\sigma = x\sigma$, so that $(y\alpha)\sigma \in lb(x\sigma)$. Thus $(y\alpha)\sigma \in lb(x\sigma) \cap I$. Therefore $y\alpha \in lb(x\sigma) \cap I$ for every $y \in x\sigma$. Consequently $(x\sigma)\alpha \subseteq lb(x\sigma) \cap I$.

Suppose that S satisfies the conditions (1), (2) and (3). Let $\alpha, \beta \in S$. Then $\alpha \in S_Y$ and $\beta \in S_Z$ for some $Y, Z \in Im(S)$. Let $x \in Y \cap Z$. By (2), $x\sigma \in I \cap J$, where $I = \{y\sigma : y \in Y\}$ and $J = \{z\sigma : z \in Z\}$. By (3) we have $x \in x\sigma = (x\sigma)\beta = (x\sigma)\alpha\beta$, so that $x \in im\alpha\beta$. Thus $im\alpha \cap im\beta \subseteq im\alpha\beta$. On the other hand, let $x \in im\alpha\beta$. Then $x = z\alpha\beta$ for some $z \in X$, so that $x \omega_S z\alpha$. Thus $x\sigma \leq (z\alpha)\sigma \in I$. Since I is an o-ideal in $(X/\sigma, \leq)$, we have $x\sigma \in I$, so that $x \in x\sigma \subseteq Y = im\alpha$. Clearly $x \in im\beta$. Thus $im\alpha\beta \subseteq im\alpha \cap im\beta$. Consequently $im\alpha\beta = im\alpha \cap im\beta$. By Fact (2) S is a $S\mathcal{L}(\mathcal{LG})$ -type.

By Theorem 1, if $S \in \mathcal{SL}(\mathcal{LG}) \cap S(\mathcal{T}_X)$, then, for every $Y \in Im(S)$, there exists $I \in Id(X/\sigma, \leq)$ such that $Y = \bigcup \{x\sigma : x\sigma \in I\}$, but the converse is not true. In fact, if S is a left group in $S(\mathcal{T}_X)$ which is not a group, then it is of $\mathcal{SL}(\mathcal{LG})$ -type. In this case, $X/\sigma \in Id(X/\sigma, \leq)$ but $X/\sigma \notin Im(S)$. However, for every maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X , the converse is also true.

Proposition 2. Let S be an $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X . Assume that, for every $I \in Id(X/\sigma_S, \leq_S)$, there exists $Y \in Im(S)$ such that $Y = \bigcup \{x\sigma_S : x\sigma_S \in I\}$. Then $(X/\sigma_S, \leq_S)$ has the least element if and only if $(X/\sigma_S, \leq_S) = (X/\sigma_T, \leq_T)$ for every $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X with $S \subseteq T$.

Proof. Suppose that $(X/\sigma_S. \leq_S)$ has the least element, and let T be an $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X with $S \subseteq T$. Then clearly $\sigma_S \subseteq \sigma_T$ and $\leq_S \subseteq \leq_T$, and $lb_S(x\sigma_S) = \{z\sigma_S \in X/\sigma_S : z\sigma_S \leq_S x\sigma_S\}$ is an o-ideal in $(X/\sigma_S, \leq_S)$ for every $x \in X$. If $\sigma_S \neq \sigma_T$, then there exist $x, y \in X$ such that $x\sigma_T = y\sigma_T$ and $x\sigma_S \neq y\sigma_S$. Then $y\sigma_S \not\leq_S x\sigma_S$ or $x\sigma_S \not\leq_S y\sigma_S$. Without loss of generality, we may suppose $y\sigma_S \not\leq_S x\sigma_S$. Let $lb_S(x\sigma_S) = I$ and let $Y = \bigcup \{z\sigma \in X/\sigma_S : z\sigma_S \in I\}$. Then by the assumption $Y \in Im(S)$. In this case, $y\sigma_S \notin I$, so that $y \notin Y$. Let $\alpha \in S_Y$. Since $x \in Y = im\alpha$, we have $x = u\alpha$ for some $u \in X$. Since $x\sigma_T = y\sigma_T$, we have $x\beta = y$ for some $\beta \in T$. Therefore we have $y = u\alpha\beta \in im\alpha\beta \subseteq im\alpha = Y$, a contradiction. Thus $\sigma_S = \sigma_T$.

Let $\sigma = \sigma_S$. Suppose that $\leq_S \neq \leq_T$. Then there exist $x\sigma, y\sigma \in X/\sigma$ such that $x\sigma \leq_T y\sigma$ and $x\sigma \not\leq_S y\sigma$. If $y\sigma \leq_S x\sigma$, then $y\sigma \leq_T x\sigma$, so that $x\sigma = y\sigma$, a contradiction. In case that $x\sigma$ and $y\sigma$ are incomparable in $(X/\sigma, \leq_S)$, let I and Y be as above. Then $y \notin Y$. The same argument as above leads to a contradiction. Thus $\leq_S = \leq_T$.

Suppose that $(X/\sigma_S, \leq_S)$ has at least two minimal elements. Let $x\sigma_S$ be a minimal element, and let $U = \{\alpha \in \mathcal{T}_X : (x\sigma_S)\alpha = x\sigma_S \text{ and } (y\sigma_S)\alpha \subseteq x\sigma_S \text{ if } y\sigma_S \neq x\sigma_S\}$. Let $T = S \cup U$. Then T is a subsemigroup of \mathcal{T}_X , since $SU \subseteq U$ and $US \subseteq U$. Clearly $\sigma_T = \sigma_S$ and $x\sigma_T$ is the least element in $(X/\sigma_T, \leq_T)$. It is easy to verify that T satisfies the conditions (1)-(3) in Theorem 1. Thus T is an $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X with $S \subseteq T$. Let $z\sigma_S \in Min(X/\sigma_S, \leq_S)$ with $z\sigma_S \neq x\sigma_S$. Then $x\sigma_S$ and $z\sigma_S$ are incomparable in $(X/\sigma_S, \leq_S)$ but $x\sigma_S \leq_T y\sigma_S$. Thus $\leq_S \neq \leq_T$.

For an equivalence relation σ on X, let π_{σ} be the partition of X determined by σ , i.e., $\pi_{\sigma} = X/\sigma$.

Theorem 3. Let σ be an equivalence relation on X and let $\pi_{\sigma} = \{Z_i : i \in \Lambda\}$. Suppose that (π_{σ}, \leq) is an ordered set with the least element. For each $I \in Id(\pi_{\sigma}, \leq)$, let $S_I = \{\alpha \in \mathcal{T}_X : Z_i \alpha = Z_i \text{ if } Z_i \in I, \text{ otherwise } Z_i \alpha \subseteq lb(Z_i) \cap I\}$. Then $S = \bigcup \{S_I : I \in Id(\pi_{\sigma}, \leq)\}$ is a maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X . Conversely, every maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X can be constructed in this way.

Proof. Recall that $lb(Z_i) = \langle Z_i \rangle \in Id(\pi_{\sigma}, \leq)$.

We first show that S_I is a left group for every $I \in Id(\pi_{\sigma}, \leq)$. Let $\alpha, \beta \in S_I$. If $Z_i \in I$, then $Z_i \alpha \beta = Z_i$. Suppose that $Z_i \notin I$. If $x \in Z_i$, then $x \alpha \in Z_j$ for some $Z_j \in \langle Z_i \rangle \cap I$, so that $(x\alpha)\beta \in Z_j$, since $Z_j \in I$. Thus $Z_i \alpha \beta \subseteq \langle Z_i \rangle \cap I$. Consequently $\alpha \beta \in S_I$, so that S_I is a subsemigroup of \mathcal{T}_X . Let $Y_I = \bigcup \{Z_i : Z_i \in I\}$. Then it is easy to see that $S_I = \{\alpha \in \mathcal{T}_X : im\alpha = Y_I\}$. By Fact (1), S_I is a left group.

We next show that S is an $\mathcal{SL}(\mathcal{LG})$ -type. Let $\alpha, \beta \in S$. Then $\alpha \in S_I$ and $\beta \in S_J$ for some $I, J \in Id(\pi_{\sigma}, \leq)$. If $Z_i \in I \cap J$, then $Z_i \alpha \beta = Z_i$. Suppose that $Z_i \notin I \cap J$. Then there are the following three cases:

Case 1. $Z_i \notin I$ and $Z_i \notin J$, Case 2. $Z_i \notin I$ and $Z_i \in J$ and

Case 3. $Z \in I$ and $Z_i \notin J$.

We show that $Z_i \alpha \beta \subseteq \langle Z_i \rangle \cap I \cap J$ in each case.

In Cases 1 and 2, let $x \in Z_i$ and let $x \alpha \in Z_j$ for some $Z_j \in \langle Z_i \rangle \cap I$.

Cace 1. If $Z_j \in J$, then $x \alpha \beta \in Z_j$, since $Z_j \beta = Z_j$, and clearly $Z_j \in \langle Z_i \rangle \cap I \cap J$. Thus $Z_i \alpha \beta \in \langle Z_i \rangle \cap I \cap J$. If $Z_j \notin J$, then $x \alpha \beta \in Z_k$ for some $Z_k \in \langle Z_j \rangle \cap J$. Since $Z_k \leq Z_j \in I$ and $Z_j \leq Z_i$, we have $\langle Z_k \rangle \in I$ and $\langle Z_j \rangle \subseteq \langle Z_i \rangle$, so that $Z_k \in \langle Z_j \rangle \cap I \cap J \subseteq \langle Z_i \rangle \cap I \cap J$. Thus $Z_i \alpha \beta \subseteq \langle Z_i \rangle \cap I \cap J$.

Case 2. Since $Z_j \leq Z_i \in J$, so that $Z_j \in J$. The proof is the same as the first part of Case 1.

Case 3. We have $Z_i \alpha \beta = Z_i \beta \in \langle Z_i \rangle \cap J = \langle Z_i \rangle \cap I \cap J$, since $\langle Z_i \rangle \in I$.

Since $I \cap J \in Id(\pi, \leq)$, we have $\alpha\beta \in S_{I\cap J}$, which shows that $S_IS_J \subseteq S_{I\cap J}$. Clearly $S_I \cap S_J = \emptyset$ if $I \neq J$, and $Id(\pi_{\sigma}, \leq)$ is a \cap -semilattice. Thus S is an $\mathcal{L}G(SL)$ -type.

We last show that $\sigma_S = \sigma$ and $\leq_S = \leq$.

For every $I \in Id(\pi_{\sigma}, \leq)$, S_I consists of all elements α in \mathcal{T}_X satisfying : if $Z_i \in I$, then $Z_i \alpha = Z_i$, otherwise $Z_j \alpha \subseteq \langle Z_j \rangle \cap I$.

Thus we obtain :

(a) for any bijective mapping $\phi: Z_i \to Z_i, x \mapsto x\phi$, there exists $\alpha \in S_I$ such that $x\alpha = x\phi$ if $Z_i \in I$, and

(b) for any mapping $\psi : Z_j \to \langle Z_j \rangle \cap I, x \mapsto x\psi$, there exists $\alpha \in S_I$ such that $x\alpha = x\psi$ if $Z_j \notin I$.

Therefore, if $Z_i \in I$, then the restriction $(S_I)_{|Z_i|}$ of S_I to Z_i is a symmetric group on Z_i and the restriction of $(S_I)_{|Y_I|}$ to $Y_I = \bigcup \{Z_i : Z_i \in I\}$ is isomorphic to the direct product of symmetric groups $\{(S_I)_{|Z_i|} : Z_i \in I\}$.

From (a), we have that, for any $x, y \in Z_i$, there exists α, β such that $x\alpha = y$ and $y\beta = x$, so that $\sigma \subseteq \sigma_S$. On the other hand, let $x \in Z_i$ and let $y \in x\sigma_S$. Then $x\alpha = y$ and $y\alpha = x$ for some $\alpha, \beta \in S$. Let $\alpha \in S_I$ and $\beta \in S_J$ for some $I, J \in (\pi, \leq)$. Since $x\alpha\beta = x$, we have $Z_i\alpha\beta = Z_i$, and since $\alpha\beta, \alpha\beta\alpha \in S_{I\cap J}$, we have $Z_i\alpha = Z_i\alpha\beta\alpha = Z_i$, so that $y = x\alpha \in Z_i$. Thus $x\sigma_S \subseteq x\sigma$.

From (b), we have that, if $Z_j \leq Z_i$, then for any $x \in Z_i$ and $y \in Z_j$, there exists $\alpha \in S$ such that $x\alpha = y$, so that $\leq \subseteq \leq_S$. If $y\sigma \leq_S x\sigma$, then $x\alpha = y$ for some $\alpha \in S$, Let $x\sigma = Z_i$ and $y\sigma = Z_j$. Since $y \in Z_i\alpha \subseteq \langle Z_i \rangle$, we have $y\sigma = Z_j \in \langle Z_i \rangle$, so that $Z_j \leq Z_i$. Thus $\leq_S = \leq$.

Let T be an $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of T_X with $S \subseteq T$. By Proposition 2, we have $\sigma_T = \sigma$ and $\leq_T = \leq$. Clearly $Im(S) \subseteq Im(T)$ and we have $|Im(T)| \leq |Id(X/\sigma_T, \leq_T)| = |Id(\pi, \leq)| = |Im(S)|$, where |X| denotes the cardinality of the set X. Thus Im(S) = Im(T), so that $T = \bigcup \{T_Y : Y \in Im(S)\}$. Since each S_I consists of all elements in \mathcal{T}_X satisfying the condition (3) of Theorem 1, we have $T_Y \subseteq S_I$ if $Y = \bigcup \{Z_i : Z_i \in I\}$, so that $T \subseteq S$. Thus S = T which shows that S is a maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X .

Let T be a maximal $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X and let π be the partition of Xdetermined by σ_T . i.e., $\pi = X/\sigma_T$. Then by Proposition 2 (π, \leq_T) has the least element. Let S be the $\mathcal{SL}(\mathcal{LG})$ -type subsemigroup of \mathcal{T}_X constructed from $Id(X/\sigma_T, \leq_T)$ as in the former half of this theorem. Then clearly $T \subseteq S$. Thus T = S.

References

- [1] Howie, J. M., "Fundamentals of semigroup theory", Clarendom Press, Oxford, 1995.
- [2] Kunze, M. and S. Crevenković, Maximal subsemilattices of the full transformation semigroup, Semigroup Forum 35 (1987), 245-250.
- [3] Saito, T., Some kinds of bands in finite transformation semigroups, (to appear).
- [4] Saito, T., Characterization of finite automata by the images and the kernels of their transition functions, (to appear).

Mukunoura 374, Innoshima Hiroshima, 722-2321, Japan e-mail; tatsusaito@mx4.tiki.ne.jp