NOTE ON THE NUMBER OF SEMISTAR-OPERATIONS, V

RYÛKI MATSUDA

Received November 22, 2001

Dedicated to Professor Masami Ito on his 60 th birthday

Abstract

Let D be an n-dimensional integral domain with $n>1$ which is not quasi-local, and let $\Sigma^{\prime}(D)$ be the set of semistar-operations on D. We show that $\left|\Sigma^{\prime}(D)\right| \geq n+5$. Also we answer to a problem posed in [MSi], and answer to a conjecture posed in [MSu].

This is a continuation of our [M2]. Let D be an integral domain, and let $\mathrm{F}(D)$ be the set of non-zero fractional ideals of D. A mapping $I \longmapsto I^{*}$ of $\mathrm{F}(D)$ into itself is called a star - operation on D if it satisfies the following conditions:
(1) $(a)^{*}=(a)$ for each non-zero element a of K, where K is the quotient field of D.
(2) $(a I)^{*}=a I^{*}$ for each non-zero element a of K and for each element $I \in \mathrm{~F}(D)$.
(3) $I \subset I^{*}$ for each element $I \in \mathrm{~F}(D)$.
(4) $I \subset J$ implies $I^{*} \subset J^{*}$ for all elements I and J in $\mathrm{F}(D)$.
(5) $\left(I^{*}\right)^{*}=I^{*}$ for each element $I \in \mathrm{~F}(D)$.

Let $\mathrm{F}^{\prime}(D)$ be the set of non-zero D-submodules of K. A mapping $I \longmapsto \rightarrow I^{*}$ of $\mathrm{F}^{\prime}(D)$ into itself is called a semistar - operation on D if it satisfies the following conditions:
(1) $(a I)^{*}=a I^{*}$ for each non-zero element a of K and for each element $I \in \mathrm{~F}^{\prime}(D)$.
(2) $I \subset I^{*}$ for each element $I \in \mathrm{~F}^{\prime}(D)$.
(3) $I \subset J$ implies $I^{*} \subset J^{*}$ for all elements I and J in $\mathrm{F}^{\prime}(D)$.
(4) $\left(I^{*}\right)^{*}=I^{*}$ for each element $I \in \mathrm{~F}^{\prime}(D)$.

The set of star-operations (resp. semistar-operations) on D is denoted by $\Sigma(D)$ (resp. $\Sigma^{\prime}(D)$).

In [M1] we showed the followings,
Theorem 1. Let D be an n-dimensional domain with $n>2$ which is not quasi-local. Then $\left|\Sigma^{\prime}(D)\right| \geq n+4$.

Theorem 2. Let D be an n-dimensional domain with $n>2$ which is not quasi-local. Then $\left|\Sigma^{\prime}(D)\right|=n+4$ if and only if the following conditions hold:
(1) D is a Prüfer domain with exactly two maximal ideals M and N.
(2) There exist prime ideals $P_{1}, P_{2}, \cdots, P_{n-1}$ of D such that $M \cap N \supsetneqq P_{n-1} \supsetneqq \cdots \supsetneqq$ $P_{1} \supsetneqq(0)$.
(3) $P_{i} D_{P_{i}}$ is a principal ideal of $D_{P_{i}}$ for each $i, M D_{M}$ is a principal ideal of D_{M}, and $N D_{N}$ is a principal ideal of D_{N}.
(4) D has exactly two star-operations.

For each positive integer $n>1$, in [M1], we gave an example of domains which satisfies the conditions (1), (2) and (3) in Theorem 2.

[^0]In [MSi], we posed the following problem: Let D be an integrally closed domain with dimension 4. If $5 \leq\left|\Sigma^{\prime}(D)\right| \leq 9$, is D a valuation domain?

In [MSu], we conjectured the following: Let D be an integrally closed domain with dimension n. If $n+1 \leq\left|\Sigma^{\prime}(D)\right| \leq 2 n+1$, then D is a valuation domain.

In this note we show the followings,
Theorem 3. Let D be an n-dimensional domain with $n>1$ which is not quasi-local. Then $\left|\Sigma^{\prime}(D)\right| \geq n+5$.

Proposition 1. Let D be an integrally closed domain with dimension 4. If $5 \leq 1$ $\Sigma^{\prime}(D) \mid \leq 9$, then D is a valuation domain.

Proposition 2. For each positive integer n with $n \geq 5$, there exists an integrally closed domain D with dimension n such that $n+1 \leq\left|\Sigma^{\prime}(D)\right| \leq 2 n+1$ and which is not a valuation domain.

The identity mapping $\mathrm{d}=\mathrm{d}_{D}$ on $\mathrm{F}(D)$ is a star-operation, and is called the d-operation on D. The mapping $I \longmapsto I^{v}=I^{v_{D}}=\left(I^{-1}\right)^{-1}$ of $\mathrm{F}(D)$ is a star-operation, and is called the v-operation on D. The identity mapping $\mathrm{d}^{\prime}=\mathrm{d}_{D}^{\prime}$ on $\mathrm{F}^{\prime}(D)$ is a semistar-operation on D, and is called the d^{\prime}-operation on D. We set $I^{v^{\prime}}=I^{v}$ for each element $I \in \mathrm{~F}(D)$, and set $I^{v^{\prime}}=K$ for each element $I \in \mathrm{~F}^{\prime}(D)-\mathrm{F}(D)$, where K is the quotient field of D. Then $\mathrm{v}^{\prime}=\mathrm{v}_{D}^{\prime}$ is a semistar-operation on D, and is called the v^{\prime}-operation on D. If we set $I^{e}=K$ for each $I \in \mathrm{~F}^{\prime}(D)$, then $\mathrm{e}=\mathrm{e}_{D}$ is a semistar-operation on D, and is called the e-operation on D. Let * be a star-operation on D, and let $*^{\prime}$ be a semistar-operation on D. If the restriction of $*^{\prime}$ to $\mathrm{F}(D)$ coincides with $*$, then $*^{\prime}$ is called an extension of $*$ to a semistar-operation. Let R be a domain, let D be a subdomain of R, and let $*$ be a semistar-operation on D. If we set $I^{\alpha(*)}=I^{*}$ for each $I \in \mathrm{~F}^{\prime}(R)$, then $\alpha(*)=\alpha_{R / D}(*)$ is a semistar-operation on R, and is called the ascent of $*$ to R. Let $*$ be a semistar-operation on R. If we set $I^{\delta(*)}=(I R)^{*}$ for each $I \in \mathrm{~F}^{\prime}(D)$, then $\delta(*)=\delta_{R / D}(*)$ is a semistar-operation on D, and is called the descent of * to D. In this note, D denotes a domain, K denotes the quotient field of D, n denotes a positive integer, and the descent $\delta_{R / D}\left(d_{R}^{\prime}\right)$ of the d^{\prime}-operation d_{R}^{\prime} on R is also denoted by $*_{R}$, where R is an overring of D.

Lemma 1 ([H, Lemma 5.2] and [AA, Proposition 12]). Let V be a non-trivial valuation domain on a field, and let M be its maximal ideal. If M is principal, then $|\Sigma(V)|=1$, and if M is not principal, then $|\Sigma(V)|=2$.

Lemma 2 ([H, Theorem 5.1]). Let D be an integrally closed domain. Then each nonzero ideal of D is divisorial if and only if D is a Prüfer domain, the maximal ideals of D are finitely generated, each ideal of D has only finitely many minimal primes, and, each non-zero prime ideal P of D is not contained in two different maximal ideals of D.

Lemma 3 ([MSu, Corollary 6$]$). Let D be an integrally closed quasi-local domain with dimension n. Then D is a valuation domain if and only if $n+1 \leq\left|\Sigma^{\prime}(D)\right| \leq 2 n+1$.

Lemma 4. Let D be an n-dimensional Prüfer domain with $n>2$ and with exactly two maximal ideals M and N. Assume that there exist prime ideals $P_{1}, P_{2}, \cdots, P_{n-1}$ of D such that $M \cap N \supsetneqq P_{n-1} \supsetneqq \cdots \supsetneqq P_{2} \supsetneqq P_{1} \supsetneqq(0)$, and that there exist elements $\pi_{1}, \pi_{2}, \cdots, \pi_{n-1}, p$ and q of D such that $P_{i} D_{P_{i}}=\pi_{i} D_{P_{i}}$ for each $i, M=(p)$ and $N=(q)$. Then
(1) Each non-zero element x of K can be expressed as $\pi_{1}^{a_{1}} \pi_{2}^{a_{2}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c}$ up to a unit of D with integers a_{i}, b, c. This expression is unique for the element x.
(2) Each finitely generated ideal of D is principal.
(3) Define the fractional ideals $A_{n-1}=\cup_{1}^{\infty}\left(1 / \pi_{n-1}^{m}\right), \cdots, A_{2}=\cup_{1}^{\infty}\left(1 / \pi_{2}^{m}\right), A=\cup_{1}^{\infty}\left(1 / p^{m}\right)$, $B=\cup_{1}^{\infty}\left(1 / q^{m}\right)$ and $C=\cup_{1}^{\infty}\left(1 /(p q)^{m}\right)$ of D. Then each non-finitely generated fractional ideal I of D is of the form $x A_{n-1}$ or \cdots or $x A_{2}$ or $x A$ or $x B$ or $x C$ with $x \in K$.
(4) We have $P_{1}=P_{1}^{v}=\pi_{1} A_{2}, P_{2}=P_{2}^{v}=\pi_{2} A_{3}, \cdots, P_{n-1}=P_{n-1}^{v}=\pi_{n-1} C=$ $\pi_{n-1} A^{v}=\pi_{n-1} B^{v}, C=C^{v}, A_{2}=A_{2}^{v}, \cdots \cdots, A_{n-1}=A_{n-1}^{v}$, and $A \neq A^{v}, B \neq B^{v}$.
(5) A is not of the form $x B$, and B is not of the form $x A$, where $x \in K$.
(6) For a non-zero fractionl ideal I of D, set $I^{*_{1}}=I$ if I is of the form $x A$, and set $I^{*_{1}}=I^{v}$ otherwise, where $x \in K$. Then $*_{1}$ is a star-operation on D. Set $I^{*_{2}}=I$ if I is of the form $x B$, and set $I^{*_{2}}=I^{v}$ otherwise. Then $*_{2}$ is a star-operation on D.
(7) In (6), $*_{1}$ differs from $*_{2}$, and each of $*_{1}, *_{2}$ differs from each of d and v.

Proof. (1) and (2) are straightforward.
(3) We may assume that there exist principal fractional ideals $I_{n}=\left(x_{n}\right)$ of D such that $I_{1} \varsubsetneqq I_{2} \varsubsetneqq I_{3} \varsubsetneqq \cdots$ and $I=\cup_{1}^{\infty} I_{n}$. We may assume that each x_{i} is of the form $\pi_{1}^{a_{i, 1}} \pi_{2}^{a_{i, 2}} \cdots \pi_{n-1}^{a_{i, 2} \neq 1} p^{b_{i}} q^{c_{i}}$ with integers $a_{i, j}, b_{i}, c_{i}$. Next, we may assume that $x_{i}=$ $\pi_{2}^{a_{i, 2}} \cdots \pi_{n-1}^{a_{i, n-1}} p^{b_{i}} q^{c_{i}}$ with integers $a_{i, j}, b_{i}, c_{i}$. If inf $\left(a_{i, 2}\right)=-\infty$, then $I=A_{2}$. If inf $\left(a_{i, 2}\right)>-\infty$, then we may assume that $x_{i}=\pi_{3}^{a_{i, 3}} \cdots \pi_{n-1}^{a_{i, n-1}} p^{b_{i}} q^{c_{i}}$. If inf $\left(a_{i, 3}\right)=-\infty$, then $I=A_{3}$. If $\inf \left(a_{i, 3}\right)>-\infty$, we may assume that $x_{i}=\pi_{4}^{a_{i, 4}} \cdots \pi_{n-1}^{a_{i, n-1}} p^{b_{i}} q^{c_{i}}$. \cdots. If inf $\left(a_{i, n-1}\right)=-\infty$, then $I=A_{n-1}$. If $\inf \left(a_{i, n-1}\right)>-\infty$, then we may assume that $x_{i}=p^{b_{i}} q^{c_{i}}$. If $\inf \left(b_{i}\right)>-\infty$, we may assume that $x_{i}=q^{c_{i}}$. Then $I=B$. If $\inf \left(c_{i}\right)>-\infty$, we may assume that $x_{i}=p^{b_{i}}$. Then $I=A$. If $\inf \left(b_{i}\right)=\inf \left(c_{i}\right)=-\infty$, then $I=C$.
(4) We have $P_{1}=\cap_{1}^{\infty}\left(\pi_{2}^{m}\right)$, and hence $P_{1}=P_{1}^{v} . P_{2}=\cap_{1}^{\infty}\left(\pi_{3}^{m}\right)$, and hence $P_{2}=P_{2}^{v} . \cdots$. $P_{n-2}=\cap_{1}^{\infty}\left(\pi_{n-1}^{m}\right)$, and hence $P_{n-2}=P_{n-2}^{v}$. Next, $P_{n-1}=\cap_{1}^{\infty}(p q)^{m}$, and hence $P_{n-1}=$ P_{n-1}^{v}. Next, $\pi_{n-1} C=\cup_{1}^{\infty}\left(\pi_{n-1} /(p q)^{m}\right)=P_{n-1}$, and hence $C=C^{v}$. Next, $\pi_{n-2} A_{n-1}=$ $\cup_{1}^{\infty}\left(\pi_{n-2} / \pi_{n-1}^{m}\right)=P_{n-2}$, and hence $A_{n-1}=A_{n-1}^{v} . \cdots . \pi_{1} A_{2}=\cup_{1}^{\infty}\left(\pi_{1} / \pi_{2}^{m}\right)=P_{1}$, and hence $A_{2}=A_{2}^{v}$. Assume that $\pi_{n-1} A \subset(\alpha)$ for an element $\alpha \in K$. It follows that $P_{n-1} \subset(\alpha)$. Hence $\pi_{n-1} A^{v}=P_{n-1}$. Similarly, $\pi_{n-1} B^{v}=P_{n-1}$. Clearly, $A \neq A^{v}$ and $B \neq B^{v}$.
(5) This is straightforward.
(6) Let I and J be non-zero fractional ideals of D such that $I \subset J$. We must show that $I^{*_{1}} \subset J^{*_{1}}$. We may assume that I is not of the form $x A$, and that J is of the form $x A$. Next, we may assume that $I=B$ and $J=x A$ for an element $x \in K . x$ is expressed as $\pi_{1}^{a_{1}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c}$ up to a unit of D with integers a_{i}, b, c. Then we see that either $a_{1}<0$ or $a_{1}=0>a_{2}$ or $a_{1}=a_{2}=0<a_{3}$ or \cdots or $a_{1}=a_{2}=\cdots=a_{n-2}=0>a_{n-1}$. Hence $I^{*_{1}}=P_{n-1} / \pi_{n-1} \subset \pi_{1}^{a_{1}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c} A=J$. Similarly, $*_{2}$ is a star-operation on D.
(7) This follows from (4) and (5).

Remark 1. Let D be a 1-dimensional Prüfer domain with exactly two maximal ideals M and N, and assume that M and N are principal ideals of D. Then we have $\left|\Sigma^{\prime}(D)\right|=5$, and $\Sigma^{\prime}(D)=\left\{\mathrm{e}, *_{V}, *_{W}, \mathrm{~d}^{\prime}, \mathrm{v}^{\prime}\right\}$.

Proof. There exist elements p, q of D such that $M=(p)$ and $N=(q)$. Define $A=\cup_{1}^{\infty}\left(1 / p^{m}\right)$ and $B=\cup_{1}^{\infty}\left(1 / q^{m}\right)$. Each non-finitely generated D-submodule of K is K or $p^{a} B$ or $q^{b} A$. Let $*$ be a semistar-operation on D such that $D^{*}=D, * \neq \mathrm{d}^{\prime}$, and $* \neq \mathrm{v}^{\prime}$. If $A^{*}=A$ and $B^{*}=B$, then $*=\mathrm{d}^{\prime}$. If $A^{*}=B^{*}=K$, then $*=\mathrm{v}^{\prime}$. Thus we may assume that $A \varsubsetneqq A^{*} \varsubsetneqq K$. Since $K=\cup_{1}^{\infty}\left(1 /(p q)^{m}\right)$, there exists m such that $A^{*} \ni 1 /(p q)^{m}$ and
$A^{*} \not \supset 1 /(p q)^{m+1}$. Then $A^{*}=\left(1 / q^{m}\right) A$. It follows that $\left(A^{*}\right)^{*} \neq A^{*}$; a contradiction.
Proposition 3. Let D be an n-dimensional domain with $n>1$ which satisfies the following conditions:
(1) D is a Prüfer domain with exactly two maximal ideals M and N.
(2) There exist prime ideals P_{1}, \cdots, P_{n-1} of D such that $M \cap N \supsetneqq P_{n-1} \supsetneqq \cdots \supsetneqq P_{1} \supsetneqq$ (0).
(3) $M=(p)$ and $N=(q)$ are principal ideals of D.
(4) Define the fractrional ideals $A=\cup_{1}^{\infty}\left(1 / p^{m}\right)$ and $B=\cup_{1}^{\infty}\left(1 / q^{m}\right)$. Set, for each non-zero fractional ideal I of $D, I^{*_{1}}=I$ if I is of the form $x A$, and $I^{*_{1}}=I^{v}$ otherwise, where $x \in K$. Set $I^{*_{2}}=I$ if I is of the form $x B$, and $I^{*_{2}}=I^{v}$ otherwise.

Then we have that $*_{1}$ and $*_{2}$ are star-operations on D, that each of $*_{1}$ and $*_{2}$ differs from each of d and v , and that $*_{1} \neq *_{2}$. It follows that $\left|\Sigma^{\prime}(D)\right| \geq n+6$.

Proof. At first, each non-zero element x of K can be expressed as $\pi_{1}^{a_{1}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c}$ up to a unit of D, where $\pi_{i} \in P_{i}-P_{i-1}$ and $a_{i}, b, c \in \mathbf{Z}$ for each i.

Next, each finitely generated ideal of D is principal.
Let $*=*_{1}$, and let I, J be non-zero fractional ideals of D such that $I \subset J$. We must show that $I^{*} \subset J^{*}$. We may assume that I is not finitely generated, that I is not of the form $x A$, and that $J=A$. It suffices to show that $I \subset D$. Thus suoppose that $I \not \subset D$, and take $x \in I-D$. We may assume that x is of the form $\pi_{1}^{a_{1}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c}$. Suppose that all of the a_{i} are not 0 , and let $a_{1}=\cdots=a_{k-1}=0 \neq a_{k}$. If $a_{k}<0$, then $x \notin A$; a contradiction. If $a_{k}>0$, then $x \in D$; a contradiction. Thus we may assume that x is of the form $p^{b} q^{c}$. If $y \in I$, then $(y, x)=\left(y^{\prime}\right)$ with $y^{\prime} \notin D$. Hence y^{\prime} is of the form $p^{b^{\prime}} q^{c^{\prime}}$. It follows that $I=\cup_{1}^{\infty}\left(x_{i}\right),\left(x_{1}\right) \varsubsetneqq\left(x_{2}\right) \varsubsetneqq \cdots, x_{i} \notin D$ for each i, and x_{i} is of the form $p^{b_{i}} q^{c_{i}}$ for each i. Since $x_{i} \in A$, we have $c_{i} \geq 0$ for each i. Thus we may assume that $c=c_{i}$ is a constant, and $I=q^{c}\left(\cup_{1}^{\infty}\left(p^{b_{i}}\right)\right.$. Then we have $I=q^{c} A$; a contradiction.

Next, assume that $A \subset(x)$ with $x \in K$. Express $x=\pi_{1}^{a_{1}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c}$. Then $a_{1}=\cdots=a_{k-1}=0>a_{k}$ for some $k<n$. It follows that $A \neq A^{v}$. Similarly, $B \neq B^{v}$. Clearly, B (resp. A) is not of the form $x A$ (resp. $x B$). The proof is complete.

Proposition 4. Let D be an n-dimensional domain with $n>1$ which satisfies the following conditions:
(1) D is a Prüfer domain with exactly two maximal ideals M and N.
(2) There exist prime ideals P_{1}, \cdots, P_{n-1} of D such that $M \cap N \supsetneqq P_{n-1} \supsetneqq \cdots \supsetneqq P_{1} \supsetneqq$ (0).
(3) $M D_{M}$ is a principal ideal of $D_{M}, P_{i} D_{P_{i}}$ is a principal ideal of $D_{P_{i}}$ for each i, and $N D_{N}$ is not a principal ideal of D_{N}.

For a non-zero fractional ideal I of D, set $I^{*}=I$ if I is of the form $x N$, and set $I^{*}=I^{v}$ otherwise, where $x \in K$. Then $*$ is a star-operation on $D . *$ differs from each of d and v .

Proof. At first, $M=(p)$ is a principal ideal of D, and each non-zero element x of K can be expressed as $\pi_{1}^{a_{1}} \cdots \pi_{n-1}^{a_{n-1}} p^{b} q^{c}$ up to a unit of D with $q \in N-M$ and with integers a_{i}, b, c.

Next, each finitely generated ideal of D is principal. Define the fractional ideals $A_{n-1}=$ $\cup_{1}^{\infty}\left(1 / \pi_{n-1}^{m}\right), \cdots, A_{2}=\cup_{1}^{\infty}\left(1 / \pi_{2}^{m}\right), A=\cup_{1}^{\infty}\left(1 / p^{m}\right)$. Then we have $P_{1}=P_{1}^{v}=\pi_{1} A_{2}, \cdots$, $P_{n-2}=P_{n-2}^{v}=\pi_{n-2} A_{n-1}, P_{n-1}=P_{n-1}^{v}=\pi_{n-1} A^{v}, A_{2}=A_{2}^{v}, \cdots, A_{n-1}=A_{n-1}^{v}$, and $A \neq A^{v}$.

Next, $N^{v}=D$, and A is not of the form $x N$. Let I and J be non-zero fractional ideals of D such that $I \subset J$. We must show that $I^{*} \subset J^{*}$. We may assume that I is not of
the form $x N$, and that $J=N$. We may assume that there exist elements x_{1}, x_{2}, \cdots of D such that $\left(x_{1}\right) \varsubsetneqq\left(x_{2}\right) \varsubsetneqq \cdots$ and that $I=\cup_{1}^{\infty}\left(x_{i}\right)$. We may assume that x_{i} is of the form $\pi_{1}^{a_{i, 1}} \cdots \pi_{n-1}^{a_{i, n-1}} p^{b_{i}} q^{c_{i}}$ with integers $a_{i, j}, b_{i}, c_{i}$. We may assume that $a_{i, 1} \geq 0$ is a constant. If $a_{i, 1}>0$, then $I \subset P_{1}$, and hence $I^{v} \subset N$. Thus we may assume that each x_{i} is of the form $\pi_{2}^{a_{i, 2}} \cdots \pi_{n-1}^{a_{i, n-1}} p^{b_{i}} q^{c_{i}}$. We may assume that $a_{i, 2} \geq 0$ is a constant. If $a_{i, 2}>0$, then $I \subset P_{2}$, and hence $I^{v} \subset N . \cdots$. Thus we may assume that each x_{i} is of the form $\pi_{n-1}^{a_{i, n-1}} p^{b_{i}} q^{c_{i}}$. We may assume that $a_{i, n-1} \geq 0$ is a constant. If $a_{i, n-1}>0$, then $I \subset P_{n-1}$, and hence $I^{v} \subset N$. Thus we may assume that each x_{i} is of the form $p^{b_{i}} q^{c_{i}}$. We may assume that $b=b_{i} \geq 0$ is a constant. Then we have $I=p^{b} I_{0}$ and $I_{0}=\cup_{1}^{\infty}\left(q_{i}\right)$. If inf ${ }_{i} w\left(q_{i}\right)=0$, then $I_{0}=N$, and hence $I=p^{b} N$; a contradiction. If $\inf { }_{i} w\left(q_{i}\right)>0$, there exists $q \in N-M$ such that $w(q)<\inf { }_{i} w\left(q_{i}\right)$. Then $I_{0} \subset(q)$, and hence $I \subset\left(p^{b} q\right)$. Then $I^{v} \subset\left(p^{b} q\right) \subset N$. The proof is complete.

Remark 2. If $n=1$ in Proposition 4, the star-operation $*$ coincides with d .
Proof. Let I be a non-zero ideal of D. We must show that $I^{*}=I$. We may assume that I is not finitely generated, and that I is not of the form $x N$. There exist elements x_{i} of D such that $I=\cup_{1}^{\infty}\left(x_{i}\right)$ and $\left(x_{1}\right) \varsubsetneqq\left(x_{2}\right) \varsubsetneqq \cdots$. Express $x_{i}=p^{a_{i}} q^{b_{i}}$ with $a_{i}, b_{i} \geq 0$. We may assume that $a=a_{i}$ is a constant, and that $q_{i}=q^{b_{i}} \in N-M$. If $\inf _{i} w\left(q_{i}\right)=0$, then $I=p^{a} N$; a contradiction. Thus $\inf _{i} w\left(q_{i}\right)>0$. Let $\left\{q \in N-M \mid w(q) \leq \inf _{i} w\left(q_{i}\right)\right\}=\left\{q_{\lambda} \mid \Lambda\right\}$. Then $I=\cap_{\lambda}\left(p^{a} q_{\lambda}\right)$ or $I=p^{a} q N$.

Proof of Proposition 1: Suppose the contrary. Then, by Lemma 3, we may assume that D is not quasi-local. Easily we may assume that D is a Prüfer domain with exactly two maximal ideals M and N, that there exist prime ideals P_{1}, P_{2}, P_{3} such that $M \cap N \supsetneqq P_{3} \supsetneqq P_{2} \supsetneqq P_{1} \supsetneqq(0)$. If $M D_{M}$ is a principal ideal of D_{M} and $N D_{N}$ is a principal ideal of D_{N}, then there arise star-operations $*_{1}$ and $*_{2}$ in Proposition 3. If $M D_{M}$ is principal and $N D_{N}$ is not principal, then we may assume that $P_{i} D_{P_{i}}$ is principal for each i. Then we have the semistar-operation $\delta\left(\mathrm{v}_{W}^{\prime}\right)$ and a star-operation $*$ in Proposition 4. If neither $M D_{M}$ nor $N D_{N}$ is principal, then we have $\delta\left(\mathrm{v}_{V}^{\prime}\right)$ and $\delta\left(\mathrm{v}_{W}^{\prime}\right)$; a contradiction.

Proof of Theorem 3: Suppose the contrary. First, assume that $n \geq 3$. Then $\left|\Sigma^{\prime}(D)\right|=$ $n+4$ by Theorem 1. Then D satisfies the conditions (1),(2),(3) and (4) in Theorem 2 by Theorem 2.

Since $M D_{M}$ is a principal ideal of D_{M}, we may take an element p of D such that $M=(p)$. Also we may take q such that $N=(q)$. Then the above condition (4) contradicts to the Lemma 4 (7).

Next, assume that $n=2$. We may assume that D is a Prüfer domain with exactly two maximal ideals M and N, and that there exists a prime ideal P of D such that $M \supsetneqq P \supsetneqq(0)$. Set $V=D_{M}, W=D_{N}$ and $U=D_{P}$.

The case that $P \varsubsetneqq M \cap N$: If $M D_{M}$ is a principal ideal of D_{M}, and $N D_{N}$ is a principal ideal of D_{N}, we have $\left|\Sigma^{\prime}(D)\right| \geq 8$ by Proposition 3. If $N D_{N}$ is not principal, then there arizes a semistar-operation $\delta\left(V_{W}^{\prime}\right)$.

The case that $P \not \subset M \cap N$ and height $(N)=2$: There exists a prime ideal Q of D such that $N \supsetneqq Q \supsetneqq(0)$. Set $U \cap D_{Q}=R$. Then there arizes a semistar-operation $*_{R}$ on D.

The case height $(N)=1$: Set $R=U \cap W$. If $P D_{P}$ is principal, and $N D_{N}$ is principal, then $\left|\Sigma^{\prime}(D)\right|=5$ by Remark 1. Hence $\left|\Sigma^{\prime}(D)\right| \geq 7$. If $P U$ is not principal, then we have a semistar-operation $\delta\left(\mathrm{v}_{U}^{\prime}\right)$. If $N W$ is not principal, then we have $\delta\left(\mathrm{v}_{V}^{\prime}\right)$. The proof is complete.

Theorem 4. Let D be an n-dimensional domain with $n>1$ which satisfies the conditions (1), (2) and (3) in Theorem 2. Then we have $\left|\Sigma^{\prime}(D)\right|=n+6$, and $\Sigma^{\prime}(D)=$ $\left\{\mathrm{e}, *_{U_{1}}, \cdots, *_{U_{n-1}}, *_{V}, *_{W}, \mathrm{~d}^{\prime}, \mathrm{v}^{\prime}, *_{1}^{\prime}, *_{2}^{\prime}\right\}$, where $*_{1}^{\prime}$ (resp. $*_{2}^{\prime}$) is the canonical extension of $*_{1}$ (resp. $*_{2}$) in Lemma 4 to a semistar-operation on D.

Proof. Suppose the contrary. We confer the proof of Theorem 3. Then there exists a star-operation $*$ on D which differs from each of $\mathrm{d}, \mathrm{v}, *_{1}, *_{2}$. If $A^{*}=A$ and $B^{*}=B$, then $*=\mathrm{d}$. If $A^{*}=A^{v}$ and $B^{*}=B^{v}$, then $*=\mathrm{v}$. Thus we may assume that $A \varsubsetneqq A^{*} \varsubsetneqq A^{v}$. Since $A^{v}=\cup_{1}^{\infty}\left(1 /(p q)^{m}\right)$, there exists m such that $A^{*} \ni 1 /(p q)^{m}$ and $A^{*} \not \supset 1 /(p q)^{m+1}$. Then $A^{*}=\left(1 / q^{m}\right) A$. It follows that $\left(A^{*}\right)^{*} \neq A^{*}$; a contradiction.

Proof of Proposition 2. Let D be an integral domain with dimension n which satisfies conditions (1), (2) and (3) in Theorem 2. Then, by Theorem 4, we have $\left|\Sigma^{\prime}(D)\right|=n+6$.

REFERENCES

[AA] D. D. Anderson and D. F. Anderson, Examples of star operations on integral domains, Comm. Algebra 18(1990),1621-1643.
[H] W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15(1968),164-170.
[M1] R. Matsuda, Note on the number of semistar-operations,III, Internal. J. of Commutative Rings, 55(2002), 289-291.
[M2] R. Matsuda, Note on the number of semistar-operatoions,IV, Scientiae Math. Japon.,to appear.
[MSi] R. Matsuda and I. Sato, Note on star-operations, Bull. Fac. Sci., Ibaraki Univ. 28(1996),5-22.
[MSu] R. Matsuda and T. Sugatani, Semistar-operations on integral domains,II, Math. J. Toyama Univ. 18(1995),155-161.

Department of Mathematical Sciences, Ibaraki University, Mito 310, @Japan
@Tel: 029-228-8336
@matsuda@mito.ipc.ibaraki.ac.jp

[^0]: 2000 Mathematics Subject Classification. 13A15.
 Key words and phrases, star-operation, semistar-operation, Prüfer domain.

