CHARACTERIZATION OF LOCALLY INVERSE *-SEMIGROUPS

Dedicated to Professor Masami Ito on his 60th birthday

TERUO IMAOKA AND KOJI FUJIWARA

Received December 21, 2001

ABSTRACT. The purpose of this paper is to give a characterization of a locally inverse *-semigroup by introducing a new concept of a *locally inductive* *-groupoid. Defining a product \otimes in a locally inductive *-groupoid G, $G(\otimes)$ becomes a locally inverse *-semigroup. Conversely, for a locally inverse *-semigroup S, we give a partial product \cdot in S, we show that $S(\cdot, *, \leq)$ is a locally inductive *-groupoid and that $S(\cdot, *, \leq)(\otimes) = S$.

1 Introduction Ehresmann introduced a concept of an *inductive groupoid* in [1] and [2], and Schein characterized an inverse semigroup by using the concept (see [8]). One of the authors introduced the concept of the symmetric locally inverse *-semigroup $\mathcal{LI}_{(X;\sigma)}$ on an ι -set $(X;\sigma)$ and obtained a generalization of Preston-Vagner Representation Theorem. That is, $\mathcal{LI}_{(X;\sigma)}$ on an ι -set $(X;\sigma)$ is a locally inverse *-semigroup and every locally inverse *-semigroup can be embedded in the symmetric locally inverse *-semigroup on an ι -set (see [6] and [7]). This result leads us a new partial product on a locally inverse *-semigroup and another its characterization.

First, we give definitions and basic results. A semigroup S with a unary operation $*: S \to S$ is called a *regular* *-*semigroup* if it satisfies (i) $(x^*)^* = x$; (ii) $(xy)^* = y^*x^*$; (iii) $xx^*x = x$.

Let S be a regular *-semigroup. An idempotent e in S is called a projection if $e^* = e$. For a subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively. A regular *-semigroup S is called a *locally inverse* *-semigroup if for any $e \in E(S)$, eSe is an inverse subsemigroup of S. The following results are well-known and are used frequently throughout this paper.

Result 1.1. [3] [6] Let S be a regular *-semigroup.

- (1) $E(S) = P(S)^2$. In fact, for any $e \in E(S)$, there exist $f, g \in P(S)$ such that $f \mathcal{R}e\mathcal{L}g$ and e = fg.
- (2) For any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$.
- (3) Each \mathcal{L} -class and each \mathcal{R} -class contain one and only one projection.
- (4) S is a locally inverse *-semigroup if and only if it satisfies that eSe is an inverse subsemigroup of S for any $e \in P(S)$.

Define a relation \leq on a regular *-semigroup S as follows:

 $a \leq b \iff a = eb = bf$ for some $e, f \in P(S)$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20M10; Secondary 20M17, 20M18, 20M30.

Key words and phrases. locally inverse *-semigroup, locally inductive *-groupoid, ordered *-groupoid.

Result 1.2. [4] Let a and b be elements of a regular *-semigroup S. Then the following conditions are equivalent:

- (1) $a \leq b$,
- (2) $aa^* = ba^*$ and $a^*a = b^*a$,
- (3) $aa^* = ab^*$ and $a^*a = a^*b$,
- $(4) \quad a = aa^*b = ba^*a.$

Result 1.3. [4] [5] The relation \leq on a regular *-semigroup, defined above, is a partial order on S which preserves the unary operation. If S is a locally inverse *-semigroup, then \leq is compatible.

We call the partial order \leq , defined above, the natural order on S.

Let S be a locally inverse *-semigroup. In [5], we introdued a new partial product \cdot on S, which is called a *restricted product*, as follows:

$$a \cdot b = \begin{cases} ab & ab \in R_a \cap L_b \\ \text{undefined} & \text{otherwise} \end{cases}$$

where R_a and L_a denote the \mathcal{R} -class and the \mathcal{L} -class containing a, respectively.

Lemma 1.4. $ab \in R_a \cap L_b$ if and only if $a^*abb^*a^*a = a^*a$ and $bb^*a^*abb^* = bb^*$.

Proof. Let $ab \in R_a \cap L_b$. Then there exists an idempotent $e \in L_a \cap R_b$. By the Result 1.1 (1), $e = bb^*a^*a$. Then we have that $a^*abb^*a^*a = a^*a$ and $bb^*a^*abb^* = bb^*$. The converse is clear.

Result 1.5. [5] Let S be a regular *-semigroup.

- (1) Let $x \in S$ and $e \in P(S)$ such that $e \leq x^*x$. Then a = xe is the unique element in S such that $a \leq x$ and $a^*a = e$.
- (2) Let $x \in S$ and $e \in P(S)$ such that $e \leq xx^*$. Then a = ex is the unique element in S such that $a \leq x$ and $aa^* = e$.
- (3) For any elemants $x, y \in S$, $xy = a \cdot b$ where a = xe, b = fy, $e = x^*xyy^*x^*x$ and $f = yy^*x^*xyy^*$.

In Section 2, we define an *ordered* *-groupoid and give fundamental properties of ordered *-semigroups.

In Section 3, we introduce a *loally inductive* *-groupoid and its product \otimes , which is called a *pseudoproduct*, and characterize a locally inverse *-semigroup.

2 Ordered *-groupoids Let G be a non-empty set with a partial product \cdot , a unary operation * and a partial order \leq . We simply write ab instead of $a \cdot b$. If ab is defined for $a, b \in G$, we sometimes write $\exists ab$. An element $e \in G$ is called an *idempotent* if $\exists ee$ and ee = e. If an idempotent e satisfies $e^* = e$, it is called a *projection*. Denote the sets of idempotents and projections of G by E(G) and P(G), respectively.

If G satisfies the following axioms, it is called an *ordered* *-groupoid.

(A1) a(bc) exists if and only if (ab)c exists, in which case they are equal.

- (A2) a(bc) exists if and only if ab and bc exist.
- (A3) $(a^*)^* = a$.
- (A4) If ab exists, then b^*a^* exists and $(ab)^* = b^*a^*$.
- (A5) For any $a \in G$, a^*a exists and a^*a is the unique projection of G such that $\exists a(a^*a)$ and $a(a^*a) = a$. We write $a^*a = d(a)$ and call it the *domain identity*.
- (A6) $a \leq b$ implies $a^* \leq b^*$.
- (A7) For $a, b, c, d \in G$, if $a \leq b, c \leq d$, $\exists ac \text{ and } \exists bd$, then $ac \leq bd$.
- (A8) Let $a \in G$ and $e \in P(G)$ such that $e \leq d(a)$. Then there exists a unique element (a|e), called the *restriction* of a to e, such that $(a|e) \leq a$ and d(a|e) = e.
- (A9) E(G) is an order ideal.

Proposition 2.1. If S is a locally inverse *-semigroup, then $S(\cdot, *, \leq)$ is an ordered *groupoid, where \cdot denotes the restricted product of S defined in Section 1.

Proof. Assume that $a \cdot (b \cdot c)$ exists. By Lemma 1.4, we have $b^*bcc^*b^*b = b^*b$, $cc^*b^*bcc^* = cc^*$, $a^*a(bc)(bc)^*a^*a = a^*a$ and $(bc)(bc)^*a^*a(bc)(bc)^* = (bc)(bc)^*$. Then

$$\begin{aligned} a^*a &= a^*a(b(b^*bcc^*b^*b)b^*)a^*a = a^*ab(b^*b)b^*a^*a = a^*abb^*a^*a \\ bb^* &= b(b^*b)b^* = b(b^*bcc^*b^*b)b^* = (bc)(bc)^* = (bc)(bc)^*a^*a(bc)(bc)^* = bb^*a^*abb^*(ab)^*(ab) \\ &= b^*a^*ab = b^*(a^*abcc^*b^*a^*a)b = (ab)^*(ab)cc^*(ab)^*(ab) \\ &= cc^*b^*bcc^* = cc^*b^*(bb^*)bcc^* = cc^*b^*(bb^*a^*abb^*)bcc^* = cc^*(ab)^*(ab)cc^* \end{aligned}$$

Thus $a \cdot b$ and $(a \cdot b) \cdot c$ exist. It is obvious that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. Thus we have (A1) and (A2).

Since S is a locally inverse \ast -semigroup, (A3), (A4), (A5), (A6) and (A7) holds. Axiom (A8) follows from Result 1.5 (1).

Let $e \in E(S)$ and $a \in S$ such that $a \leq e$. By the definition \leq , there exist $p, q \in P(S)$ such that a = pe = eq. Then

$$(a^*a)(aa^*)(a^*a) = (pe)^*(pe)(eq)(eq)^*(pe)^*(pe)$$

= e^*peqe^*ppe
= $(pe)^*(pe)(pe)^*(pe)$
= a^*a

Similarly, $(aa^*)(a^*a)(aa^*) = aa^*$. Thus $a \cdot a$ exists. Moreover, $a \cdot a = aa = (pe)(eq) = p(eq) = p(pe) = pe = a$, and we have (A9). Hence $S(\cdot, *, \leq)$ is an ordered *-groupoid. \Box

Proposition 2.2. Let G be an ordered *-groupoid. Then we have the following.

- (1) For any $a \in G$, aa^* exists and aa^* is the unique element of P(G) such that $\exists (aa^*)a$ and $(aa^*)a = a$. We write $aa^* = r(a)$ and call it the range identity.
- (2) Let $a \in G$ and $e \in P(G)$ such that $e \leq r(a)$. Then there exists a unique element (e|a), called the corestriction of a to e, such that $(e|a) \leq a$ and r(e|a) = e.
- (3) $\exists ab \ if \ and \ only \ if \ \exists d(a)r(b), \ \exists r(b)d(a) \ and \ d(a)r(b)d(a) = d(a) \ and \ r(b)d(a)r(b) = r(b).$

- (4) If $\exists ab$, then d(ab) = d(b) and r(ab) = r(a).
- (5) If $\exists ab$, then d(a)r(b) and r(b)d(a) are idempotents.
- (6) For any $e \in E(S)$, there exist $p, q \in P(S)$ such that e = pq.
- (7) If $a \leq b$, then $d(a) \leq d(b)$ and $r(a) \leq r(b)$.
- (8) If $\exists ab and e is a projection such that <math>e \leq d(ab)$, then

$$(ab|e) = (a|(r(d(a)r(b)|r(b|e)))(b|e).$$

(9) If $\exists ab \ and \ e \ is \ a \ projection \ such \ that \ e \leq r(ab), \ then$

$$(e|ab) = (e|a)(d((d(e|a)|d(a)r(b))|b).$$

- (10) If $c \leq ab$, then there exist a' and b' such that $\exists a'b', a' \leq a, b' \leq b$ and c = a'b'.
- (11) If $e \le f \le d(a)$, then $(a|e) \le (a|f) \le a$.
- (12) If $e \le f \le r(a)$, then $(e|a) \le (f|a) \le a$.
- (13) Let $a, b \in G$ and $e, f \in P(G)$ such that $a \leq b, e \leq f, e \leq d(a)$ and $f \leq d(b)$. Then $(a|e) \leq (b|f)$.
- (14) P(G) is an order ideal.

Proof. (1) It immediately follows from Axioms (A1), (A3), (A4) and (A5) that $aa^* \in P(S)$ and $(aa^*)a = a$. To show the uniqueness, let $e \in P(S)$ such that ea = a. Then $a^*e = (ea)^* = a^*$. On the other hand, by (A5), $aa^* = (a^*)^*a^*$ is the unique projection such that $a^*(aa^*) = a^*$, and hence $e = aa^*$.

(2) Let $a \in G$ and $e \in P(G)$ such that $e \leq r(a)$. Then $e \leq d(a^*)$, and by (A8), there exists $(a^*|e)$ such that $(a^*|e) \leq a^*$ and $d(a^*|e) = e$. Let $(e|a) = (a^*|e)^*$. By (A6), $(e|a) = (a^*|e)^* \leq (a^*)^* = a$. Moreover, $r(e|a) = (e|a)(e|a)^* = (a^*|e)^*((a^*|e)^*)^* = d(a^*|e) = e$. To show the uniqueness, assume that $b \leq a$ and r(b) = e. Then $b^* \leq a^*$, by (A6), and $d(b^*) = e$. By the uniqueness of (A8), $b^* = (a^*|e)$, and hence $b = (b^*)^* = (a^*|e)^* = (e|a)$.

(3) Assume that $\exists ab$. By (1) above, $r(ab) = abb^*a^*$ is the unique projection such that r(ab)ab = ab. On the other hand, aa^* is a projection such that $(aa^*)ab = ab$. Then $abb^*a^* = aa^*$, and we have

$$d(a) = a^*a = a^*(aa^*)a = a^*(abb^*a^*)a = d(a)r(b)d(a)$$

Similarly, we have r(b)d(a)r(b) = r(b). The converse is obvious.

(4) Let $\exists ab$. By (3), we have

$$d(ab) = (ab)^*ab = b^*(bb^*a^*abb^*)b = b^*(r(b)d(a)r(b))b = b^*r(b)b = d(b).$$

Similarly we have r(ab) = r(a).

(5) This immediately follows from (3).

(6) Let e be any idempotent. Then it is obvious that ee^* and e^*e are projections. Since $e^* = (ee)^* = e^*e^*$, we have $e = ee^*e = (ee^*)(e^*e)$.

(7) This immediately follows from (A6) and (A7).

(8) Let $\exists ab \text{ and } e \in P(S)$ such that $e \leq d(ab)$. By (4), we have $e \leq d(ab) = d(b)$, and hence the restriction (b|e) is defined. Since $(b|e) \leq b$, we have $r(b|e) \leq r(b) = r(b)d(a)r(b) = d(d(a)r(b))$, and hence (d(a)r(b)|r(b|e)) exists. Since $(d(a)r(b)|r(b|e)) \leq d(a)r(b)$, we have $r(d(a)r(b)|r(b|e)) \leq r(d(a)r(b)) = d(a)r(b)d(a) = d(a)$. Thus (a|r(d(a)r(b)|r(b|e))) exists. By (5) and (A9), (d(a)r(b)|r(b|e)) = f, say, is an idempotent. Then

$$\begin{aligned} &d(a|r(d(a)r(b)|r(b|e))) = r(d(a)r(b)|r(b|e)) = r(f) = ff^* \\ &r(b|e) = d(d(a)r(b)|r(b|e)) = d(f) = f^*f \end{aligned}$$

Since f is an idempotent, $(ff^*)(ff^*) = ff^*$ and $(f^*f)(ff^*)(f^*f) = f^*f$, and hence (a|r(d(a)r(b)|r(b|e)))(b|e) exists. Since $(a|r(d(a)r(b)|r(b|e))) \leq a$ and $(b|e) \leq b$, we have $(a|r(d(a)r(b)|r(b|e)))(b|e) \leq ab$ by (A7). On the other hand, d((a|r(d(a)r(b)|r(b|d(c)))) = d(b|e) = e by (4). Thus it follows from (A8) that (ab|e) = (a|r(d(a)r(b)|r(b|e)))(b|e).

(9) Similar to the proof of (8).

(10) Let $c \leq ab$. By (7), we have $d(c) \leq d(ab)$, and hence (ab|d(c)) exists. Since d(ab|d(c)) = d(c) and $(ab|d(c)) \leq ab$, we have c = (ab|d(c)). It follows from (8) that

$$(ab|d(c)) = (a|r(d(a)r(b)|r(b|d(c)))(b|d(c)))$$

Put a' = (a|(r(d(a)r(b)|r(b|e)))(b|e) and b' = (b|d(c)). Then it is obvious that $a' \le a, b' \le b$ and c = (ab|d(c)) = a'b'.

(11) Let $e \leq f \leq d(a)$. Obviously, (a|e) and (a|f) exist. Since $e \leq d(a|f)$, ((a|f)|e) exists. On the other hand, d(a|e) = e and $(a|e) \leq a$. Then ((a|f)|e) = (a|e), and hence $(a|e) \leq (a|f)$.

(12) Similar to the proof of (11).

(13) It follows from (11) that $(b|e) \leq (b|f)$. On the other hand, $(a|e), (b|e) \leq b$ and d(a|e) = d(b|e). By Axiom (A8), we have (a|e) = (b|e), and hence $(a|e) \leq (b|f)$.

(14) Let $a \in G$ and $e \in P(G)$ such that $a \leq e$. By Axioms (A6) and (A7), we have $a^*a \leq e^*e = e$. Since $d(a) = a^*a = d(a^*a)$, it follows from Axiom (A8) that $a = a^*a \in P(G)$.

3 Locally inductive *-groupoids An ordered *-groupoid G is called a *locally inductive* *-groupoid if it satisfies

(LG) For any $e, f \in P(G)$, there exists the maximum element in $\langle e, f \rangle = \{(g, h) \in P(G) \times P(G) : g \leq e, h \leq f \text{ and } \exists gh \}.$

Proposition 3.1. If S be a locally inverse *-semigroup. then $S(\cdot, *, \leq)$ is a locally inductive *-groupoid.

Proof. Let S be a locally inverse *-semigroup. Let $e, f \in P(S)$. Then we can easily see that (efe, fef) is the maximum element in $\langle e, f \rangle$.

The locally inductive *-groupoid associated with S, above, is denoted by $\mathbf{G}(S)$.

Let $G(\cdot, *, \leq)$ be a locally inductive *-groupoid. For any $a, b \in G$, there exists the maximum element (e, f) in $\langle d(a), r(b) \rangle = \{(g, h) \in P(S) \times P(S) : g \leq d(a), h \leq r(b), \exists gh \}$. We define a new product \otimes on G as follows:

$$a \otimes b = (a|e)(f|b),$$

and we call it a pseudoproduct of a and b.

Proposition 3.2. For a locally inductive *-groupoid G, $G(\otimes, *)$, defined above, is a locally inverse *-semigroup, which is denoted by S(G).

Proof. First, we show that $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ for any $a, b, c \in G$. By Axiom (LG), there exists the maximum element (e, f) in $\langle d(a \otimes b), r(c) \rangle$ and $(a \otimes b) \otimes c = (a \otimes b|e)(f|c)$. Moreover, there exist $g, h \in P(S)$ such that (g, h) is the maximum element of $\langle d(a), r(b) \rangle$, and $a \otimes b = (a|g)(h|b)$. Since $(a \otimes b)|e \rangle \leq a \otimes b = (a|g)(h|b)$, there exist $a' \leq (a|g)$ and $b' \leq (h|b)$ such that $(a \otimes b|e) = a'b'$, by Proposition 2.2(10). Thus

$$(a \otimes b) \otimes c = (a'b')(f|c) = a'(b'(f|c)).$$

It follows from $\exists b'(f|c)$ that $\exists d(b')r(f|c)$. Since $b' \leq (h|b) \leq b$ and $(f|c) \leq c$, we have $(d(b'), r(f|c)) \in \langle d(b), r(c) \rangle$. Thus $b'(f|c) \leq b \otimes c$. Similarly, $\exists d(a')r(b'(f|c)), a' \leq a$ and $b'(f|c) \leq b \otimes c$ imply that $(a \otimes b) \otimes c = a'(b'(f|c)) \leq a \otimes (b \otimes c)$. Similarly, we have $a \otimes (b \otimes c) \leq (a \otimes b) \otimes c$, and hence $G(\otimes)$ is a semigroup.

It is clear that $G(\otimes, *)$ is a regular *-semigroup. To show that $G(\otimes, *)$ is a locally inverse *-semigroup, it is sufficient to prove that, for any $e \in P(G)$, $P(e \otimes G \otimes e)$ ia a semilattice. Let $f, g \in P(e \otimes G \otimes e)$. Then it is clear that $f \leq e$ and $g \leq e$. There exists the maximum element (i, j) in $\langle g, h \rangle$ such that $f \otimes g = (f|i)(j|g) = ij$. Since $i \leq f \leq e$ and $j \leq g \leq e$, we have $ij \leq e$. By Proposition 2.2 (14), $ij \in P(G)$, and so $ij = (ij)^* = j^*i^* = ji$. Thus $f \otimes g = ij = ji = g \otimes f$, and hence $P(e \otimes G \otimes e)$ is a semilattice.

Theorem 3.3. (1) For a locally inverse *-semigroup S, we have $\mathbf{S}(\mathbf{G}(S)) = S$.

(2) For a locally inductive *-groupoid $G(\cdot, *, \leq)$, we have $\mathbf{G}(\mathbf{S}(G(\cdot, *, \leq))) = G(\cdot, *, \leq)$.

Proof. (1) Let a and b be any elements of S. Then

$$a \otimes b = (a|e) \cdot (f|b),$$

where (e, f) is the maximum element of $\langle a^* \cdot a, b \cdot b^* \rangle$. Then $e \leq a^*a, f \leq bb^*, efe = e$ and fef = f, since $x \cdot y = xy$ if $x \cdot y$ exists. By Result 1.5, (a|e) = ae, (f|b) = fb, $e = a^*abb^*a^*a, f = bb^*a^*abb^*$ and $a \otimes b = ae \cdot fb = a(a^*abb^*a^*a)(bb^*a^*abb^*)b = ab$. Hence we have $\mathbf{S}(\mathbf{G}(S)) = S$.

(2) First, we show that the partial order \leq , say, on $\mathbf{G}(\mathbf{S}(G(\cdot, *, \leq)))$ is equal to \leq . We remark that $a \otimes a^* = a \cdot a^*$ and $a^* \otimes a = a^* \cdot a$ for any $a \in G$. Assume that $a \leq b$. It follows from Result 1.3 that $a^* \cdot a = a^* \otimes a \leq b^* \otimes b = b^* \cdot b$. By Result 1.2,

$$a^* \cdot a = (a^* \cdot a) \otimes (a^* \cdot a)^* \otimes (b^* \cdot b) = (b^* \cdot b) \otimes (a^* \cdot a)^* \otimes (a^* \cdot a).$$

Then $a^* \cdot a = (a^* \cdot a) \otimes (b^* \cdot b) = (b^* \cdot b) \otimes (a^* \cdot a)$. Let (e, f) be the maximum element of $\langle a^* \cdot a, b^* \cdot b \rangle$. It is clear that (f, e) is the maximum element of $\langle b^* \cdot b, a^* \cdot a \rangle$. Then $e \leq a^* \cdot a, f \leq b^* \cdot b, e \cdot f \cdot e = e$ and $f \cdot e \cdot f = f$. Moreovere,

$$a^* \cdot a = (a^* \cdot a|e) \cdot (f|b^* \cdot b) = e \cdot f$$
$$= (b^* \cdot b|f) \cdot (e|a^* \cdot a) = f \cdot e$$

Then $e \cdot f = f \cdot e$ and so $a^* \cdot a = e \cdot f = e \cdot f \cdot e = e \leq a^* \cdot a$. Thus we have $a^* \cdot a = e = f$. By using Result 1.2 again, $a = b \otimes a^* \otimes a = b \otimes a^* \cdot a = (b|f) \cdot (e|a^* \cdot a) = (b|e) \cdot e = (b|e)$. Hence we have $a \leq b$.

Conversely, let $a \leq b$ in $G(\cdot, *, \leq)$. Then $d(a) \leq d(b)$, $r(a) \leq r(b)$ and a = (b|d(a)) = (r(a)|b). Since (d(a), d(a)) is the maximum element of $\langle d(b), r(d(a)) \rangle$ and (r(a), r(a)) is the maximum element of $\langle d(r(a)), r(b) \rangle$, we have

$$b \otimes a^* \otimes a = b \otimes a^* \cdot a = (b|d(a)) \cdot d(a) = (b|d(a)) = a$$
$$a \otimes a^* \otimes b = a \cdot a^* \otimes b = r(a) \cdot (r(a)|b) = (r(a)|b) = a$$

Thus we have $a \leq b$.

Next, we prove that, for $a, b \in G$, $a \odot b$ exists if and only if $a \cdot b$, where \odot denotes the restricted product of $\mathbf{G}(\mathbf{S}(G(\cdot, *, \leq)))$. Assume that $a \odot b$ exists. Then $(a^* \cdot a) \otimes (b \cdot b^*) \otimes (a^* \cdot a) = a^* \cdot a$ and $(b \cdot b^*) \otimes (a^* \cdot a) \otimes (b \cdot b^*) = b \cdot b^*$, since $a^* \otimes a = a^* \cdot a$ and $b \otimes b^* = b \cdot b^*$. Let (e, f) be the maximum element of $\langle a^*a, bb^* \rangle$. Then $e \leq a^*a, f \leq bb^*, e \cdot f \cdot e = e$ and $f \cdot e \cdot f = f$. Thus

$$a^* \cdot a = (a^* \cdot a) \otimes (b \cdot b^*) \otimes (a^* \cdot a) = (a^* \cdot a|e) \cdot (f|b \cdot b^*) \cdot (e|a^* \cdot a) = e \cdot f \cdot e = e \leq a^* \cdot a \leq$$

Hence $a^* \cdot a = e$. Similarly, we have $b \cdot b^* = f$. So $(a^* \cdot a) \cdot (b \cdot b^*) \cdot (a^* \cdot a) = a^* \cdot a$ and $(b \cdot b^*) \cdot (a^* \cdot a) \cdot (b \cdot b^*) = b \cdot b^*$, and hence $a \cdot b$ exists. The converse is clear. Now, we have $G(\odot, *, \preceq) = G(\cdot, *, \leq)$.

References

- Ehresmann, C., Gattungen von lokalen Strukuren, Jahresbericht der Deutschen Mathematiker-Vereinigung 60 (1957), 49-77.
- [2] Ehresmann, C., Catégories inductives et pseudogroupes, Annales de l'Institut Fourier, Grenoble 10 (1960), 307-336.
- [3] Imaoka, T., On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14 (1980), 19-23.
- [4] Imaoka, T., Prehomomorphisms on regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 15 (1981), 23-27.
- [5] Imaoka, T., Prehomomorphisms on locally inverse *-semigroups, in: Words, Semigroups, and transductions, edited by M. Ito, G. Paun and S. Yu, World Scientific, Singapore, 2001, 203 – 210.
- [6] T. Imaoka, I. Inata and H. Yokoyama, Representations of locally inverse *-semi-groups, Internat. J. Algebra Comput. 6 (1996), 541-551.
- [7] Imaoka, T and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55 (1997), 247-255.
- [8] Lawson, M. V., Inverse semigroups The theory of partial symmetries –, World Scientific, Singapore, 1998.
- [9] Nordahl, T. E. and H. E. Scheiblich, *Regular * semigroups*, Semigroup Forum 16 (1978), 369-377.
- [10] Petrich, M., Inverse semigroups, John Wiley and Sons, New York, 1984.
- [11] Schein, B. M., On the theory of generalized groups and generalized heaps, in The theory of Semigroups and its applications I, University of Saratov, Saratov, 1965, 286-324 (Russian).

Department of Mathematics and Computer Science, Shimane University Matsue, Shimane 690-8504, Japan imaoka@math.shimane-u.ac.jp and s96484@math.shimane-u.ac.jp