# CHARACTERIZATION OF LOCALLY INVERSE *-SEMIGROUPS 

Dedicated to Professor Masami Ito on his 60th birthday

Teruo Imaoka and Koji Fujiwara
Received December 21, 2001


#### Abstract

The purpose of this paper is to give a characterization of a locally inverse *-semigroup by introducing a new concept of a locally inductive *-groupoid. Defining a product $\otimes$ in a locally inductive $*$-groupoid $G, G(\otimes)$ becomes a locally inverse *semigroup. Conversely, for a locally inverse $*$-semigroup $S$, we give a partial product • in $S$, we show that $S(\cdot, *, \leq)$ is a locally inductive $*$-groupoid and that $S(\cdot, *, \leq)(\otimes)=$ $S$.


1 Introduction Ehresmann introduced a concept of an inductive groupoid in [1] and [2], and Schein characterized an inverse semigroup by using the concept (see [8]). One of the authors introduced the concept of the symmetric locally inverse $*$-semigroup $\mathcal{L} \mathcal{I}_{(X ; \sigma)}$ on an $\iota$-set $(X ; \sigma)$ and obtained a generalization of Preston-Vagner Representation Theorem. That is, $\mathcal{L I}_{(X ; \sigma)}$ on an $\iota$-set $(X ; \sigma)$ is a locally inverse $*$-semigroup and every locally inverse *-semigroup can be embedded in the symmetric locally inverse $*$-semigroup on an $\iota$-set (see [6] and [7]). This result leads us a new partial product on a locally inverse $*$-semigroup and another its characterization.

First, we give definitions and basic results. A semigroup $S$ with a unary operation $*: S \rightarrow S$ is called a regular $*$-semigroup if it satisfies (i) $\left(x^{*}\right)^{*}=x ;$ (ii) $(x y)^{*}=y^{*} x^{*}$; (iii) $x x^{*} x=x$.

Let $S$ be a regular $*$-semigroup. An idempotent $e$ in $S$ is called a projection if $e^{*}=e$. For a subset $A$ of $S$, denote the sets of idempotents and projections of $A$ by $E(A)$ and $P(A)$, respectively. A regular $*$-semigroup $S$ is called a locally inverse $*$-semigroup if for any $e \in E(S), e S e$ is an inverse subsemigroup of $S$. The following results are well-known and are used frequently throughout this paper.

Result 1.1. [3] [6] Let $S$ be a regular *-semigroup.
(1) $E(S)=P(S)^{2}$. In fact, for any $e \in E(S)$, there exist $f, g \in P(S)$ such that f $\mathcal{R} e \mathcal{L} g$ and $e=f g$.
(2) For any $a \in S$ and $e \in P(S)$, $a^{*} e a \in P(S)$.
(3) Each $\mathcal{L}$-class and each $\mathcal{R}$-class contain one and only one projection.
(4) $S$ is a locally inverse *-semigroup if and only if it satisfies that $e S e$ is an inverse subsemigroup of $S$ for any $e \in P(S)$.

Define a relation $\leq$ on a regular $*$-semigroup $S$ as follows:

$$
a \leq b \quad \Longleftrightarrow a=e b=b f \text { for some } e, f \in P(S)
$$

[^0]Result 1.2. [4] Let $a$ and $b$ be elements of a regular $*$-semigroup $S$. Then the following conditions are equivalent:
(1) $a \leq b$,
(2) $a a^{*}=b a^{*}$ and $a^{*} a=b^{*} a$,
(3) $a a^{*}=a b^{*}$ and $a^{*} a=a^{*} b$,
(4) $a=a a^{*} b=b a^{*} a$.

Result 1.3. [4] [5] The relation $\leq$ on a regular $*$-semigroup, defined above, is a partial order on $S$ which preserves the unary operation. If $S$ is a locally inverse $*$-semigroup, then $\leq$ is compatible.

We call the partial order $\leq$, defined above, the natural order on $S$.
Let $S$ be a locally inverse *-semigroup. In [5], we introdued a new partial product • on $S$, which is called a restricted product, as follows:

$$
a \cdot b= \begin{cases}a b & a b \in R_{a} \cap L_{b} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

where $R_{a}$ and $L_{a}$ denote the $\mathcal{R}$-class and the $\mathcal{L}$-class containing $a$, respectively.
Lemma 1.4. $a b \in R_{a} \cap L_{b}$ if and only if $a^{*} a b b^{*} a^{*} a=a^{*} a$ and $b b^{*} a^{*} a b b^{*}=b b^{*}$.
Proof. Let $a b \in R_{a} \cap L_{b}$. Then there exists an idempotent $e \in L_{a} \cap R_{b}$. By the Result 1.1 (1), $e=b b^{*} a^{*} a$. Then we have that $a^{*} a b b^{*} a^{*} a=a^{*} a$ and $b b^{*} a^{*} a b b^{*}=b b^{*}$. The converse is clear.

Result 1.5. [5] Let $S$ be a regular *-semigroup.
(1) Let $x \in S$ and $e \in P(S)$ such that $e \leq x^{*} x$. Then $a=x e$ is the unique element in $S$ such that $a \leq x$ and $a^{*} a=e$.
(2) Let $x \in S$ and $e \in P(S)$ such that $e \leq x x^{*}$. Then $a=e x$ is the unique element in $S$ such that $a \leq x$ and $a a^{*}=e$.
(3) For any elemants $x, y \in S, x y=a \cdot b$ where $a=x e, b=f y, e=x^{*} x y y^{*} x^{*} x$ and $f=y y^{*} x^{*} x y y^{*}$.
In Section 2, we define an ordered $*$-groupoid and give fundamental properties of ordered *-semigroups.

In Section 3, we introduce a loally inductive $*$-groupoid and its product $\otimes$, which is called a pseudoproduct, and characterize a locally inverse $*$-semigroup.

2 Ordered *-groupoids Let $G$ be a non-empty set with a partial product •, a unary operation $*$ and a partial order $\leq$. We simply write $a b$ instead of $a \cdot b$. If $a b$ is defined for $a, b \in G$, we sometimes write $\exists a b$. An element $e \in G$ is called an idempotent if $\exists e e$ and $e e=e$. If an idempotent $e$ satisfies $e^{*}=e$, it is called a projection. Denote the sets of idempotents and projections of $G$ by $E(G)$ and $P(G)$, respectively.

If $G$ satisfies the following axioms, it is called an ordered $*$-groupoid.
(A1) $a(b c)$ exists if and only if $(a b) c$ exists, in which case they are equal.
(A2) $a(b c)$ exists if and only if $a b$ and $b c$ exist.
(A3) $\left(a^{*}\right)^{*}=a$.
(A4) If $a b$ exists, then $b^{*} a^{*}$ exists and $(a b)^{*}=b^{*} a^{*}$.
(A5) For any $a \in G, a^{*} a$ exists and $a^{*} a$ is the unique projection of $G$ such that $\exists a\left(a^{*} a\right)$ and $a\left(a^{*} a\right)=a$. We write $a^{*} a=d(a)$ and call it the domain identity.
(A6) $a \leq b$ implies $a^{*} \leq b^{*}$.
(A7) For $a, b, c, d \in G$, if $a \leq b, c \leq d, \exists a c$ and $\exists b d$, then $a c \leq b d$.
(A8) Let $a \in G$ and $e \in P(G)$ such that $e \leq d(a)$. Then there exists a unique element $(a \mid e)$, called the restriction of $a$ to $e$, such that $(a \mid e) \leq a$ and $d(a \mid e)=e$.
(A9) $E(G)$ is an order ideal.
Proposition 2.1. If $S$ is a locally inverse *-semigroup, then $S(\cdot, *, \leq)$ is an ordered *groupoid, where denotes the restricted product of $S$ defined in Section 1.

Proof. Assume that $a \cdot(b \cdot c)$ exists. By Lemma 1.4, we have $b^{*} b c c^{*} b^{*} b=b^{*} b, c c^{*} b^{*} b c c^{*}=c c^{*}$, $a^{*} a(b c)(b c)^{*} a^{*} a=a^{*} a$ and $(b c)(b c)^{*} a^{*} a(b c)(b c)^{*}=(b c)(b c)^{*}$. Then

$$
\begin{aligned}
& a^{*} a=a^{*} a\left(b\left(b^{*} b c c^{*} b^{*} b\right) b^{*}\right) a^{*} a=a^{*} a b\left(b^{*} b\right) b^{*} a^{*} a=a^{*} a b b^{*} a^{*} a \\
& b b^{*}=b\left(b^{*} b\right) b^{*}=b\left(b^{*} b c c^{*} b^{*} b\right) b^{*}=(b c)(b c)^{*}=(b c)(b c)^{*} a^{*} a(b c)(b c)^{*}=b b^{*} a^{*} a b b^{*} \\
& (a b)^{*}(a b)=b^{*} a^{*} a b=b^{*}\left(a^{*} a b c c^{*} b^{*} a^{*} a\right) b=(a b)^{*}(a b) c c^{*}(a b)^{*}(a b) \\
& c c^{*}=c c^{*} b^{*} b c c^{*}=c c^{*} b^{*}\left(b b^{*}\right) b c c^{*}=c c^{*} b^{*}\left(b b^{*} a^{*} a b b^{*}\right) b c c^{*}=c c^{*}(a b)^{*}(a b) c c^{*}
\end{aligned}
$$

Thus $a \cdot b$ and $(a \cdot b) \cdot c$ exist. It is obvious that $a \cdot(b \cdot c)=(a \cdot b) \cdot c$. Thus we have (A1) and (A2).

Since $S$ is a locally inverse $*$-semigroup, (A3), (A4), (A5), (A6) and (A7) holds. Axiom (A8) follows from Result 1.5 (1).

Let $e \in E(S)$ and $a \in S$ such that $a \leq e$. By the definition $\leq$, there exist $p, q \in P(S)$ such that $a=p e=e q$. Then

$$
\begin{aligned}
\left(a^{*} a\right)\left(a a^{*}\right)\left(a^{*} a\right) & =(p e)^{*}(p e)(e q)(e q)^{*}(p e)^{*}(p e) \\
& =e^{*} p e q e^{*} p p e \\
& =(p e)^{*}(p e)(p e)^{*}(p e) \\
& =a^{*} a
\end{aligned}
$$

Similarly, $\left(a a^{*}\right)\left(a^{*} a\right)\left(a a^{*}\right)=a a^{*}$. Thus $a \cdot a$ exists. Moreover, $a \cdot a=a a=(p e)(e q)=$ $p(e q)=p(p e)=p e=a$, and we have (A9). Hence $S(\cdot, *, \leq)$ is an ordered $*$-groupoid.

Proposition 2.2. Let $G$ be an ordered $*$-groupoid. Then we have the following.
(1) For any $a \in G$, aa* exists and aa* is the unique element of $P(G)$ such that $\exists\left(a a^{*}\right) a$ and $\left(a a^{*}\right) a=a$. We write $a a^{*}=r(a)$ and call it the range identity.
(2) Let $a \in G$ and $e \in P(G)$ such that $e \leq r(a)$. Then there exists a unique element $(e \mid a)$, called the corestriction of a to $e$, such that $(e \mid a) \leq a$ and $r(e \mid a)=e$.
(3) $\exists a b$ if and only if $\exists d(a) r(b), \exists r(b) d(a)$ and $d(a) r(b) d(a)=d(a)$ and $r(b) d(a) r(b)=$ $r(b)$.
(4) If $\exists a b$, then $d(a b)=d(b)$ and $r(a b)=r(a)$.
(5) If $\exists a b$, then $d(a) r(b)$ and $r(b) d(a)$ are idempotents.
(6) For any $e \in E(S)$, there exist $p, q \in P(S)$ such that $e=p q$.
(7) If $a \leq b$, then $d(a) \leq d(b)$ and $r(a) \leq r(b)$.
(8) If $\exists a b$ and $e$ is a projection such that $e \leq d(a b)$, then

$$
(a b \mid e)=(a \mid(r(d(a) r(b) \mid r(b \mid e)))(b \mid e)
$$

(9) If $\exists a b$ and $e$ is a projection such that $e \leq r(a b)$, then

$$
(e \mid a b)=(e \mid a)(d((d(e \mid a) \mid d(a) r(b)) \mid b)
$$

(10) If $c \leq a b$, then there exist $a^{\prime}$ and $b^{\prime}$ such that $\exists a^{\prime} b^{\prime}, a^{\prime} \leq a, b^{\prime} \leq b$ and $c=a^{\prime} b^{\prime}$.
(11) If $e \leq f \leq d(a)$, then $(a \mid e) \leq(a \mid f) \leq a$.
(12) If $e \leq f \leq r(a)$, then $(e \mid a) \leq(f \mid a) \leq a$.
(13) Let $a, b \in G$ and $e, f \in P(G)$ such that $a \leq b, e \leq f, e \leq d(a)$ and $f \leq d(b)$. Then $(a \mid e) \leq(b \mid f)$.
(14) $P(G)$ is an order ideal.

Proof. (1) It immediately follows from Axioms (A1), (A3), (A4) and (A5) that $a a^{*} \in P(S)$ and $\left(a a^{*}\right) a=a$. To show the uniqueness, let $e \in P(S)$ such that $e a=a$. Then $a^{*} e=$ $(e a)^{*}=a^{*}$. On the other hand, by (A5), $a a^{*}=\left(a^{*}\right)^{*} a^{*}$ is the unique projection such that $a^{*}\left(a a^{*}\right)=a^{*}$, and hence $e=a a^{*}$.
(2) Let $a \in G$ and $e \in P(G)$ such that $e \leq r(a)$. Then $e \leq d\left(a^{*}\right)$, and by (A8), there exists $\left(a^{*} \mid e\right)$ such that $\left(a^{*} \mid e\right) \leq a^{*}$ and $d\left(a^{*} \mid e\right)=e$. Let $(e \mid a)=\left(a^{*} \mid e\right)^{*}$. By (A6), $(e \mid a)=$ $\left(a^{*} \mid e\right)^{*} \leq\left(a^{*}\right)^{*}=a$. Moreover, $r(e \mid a)=(e \mid a)(e \mid a)^{*}=\left(a^{*} \mid e\right)^{*}\left(\left(a^{*} \mid e\right)^{*}\right)^{*}=d\left(a^{*} \mid e\right)=e$. To show the uniqueness, assume that $b \leq a$ and $r(b)=e$. Then $b^{*} \leq a^{*}$, by (A6), and $d\left(b^{*}\right)=e$. By the uniqueness of (A8), $b^{*}=\left(a^{*} \mid e\right)$, and hence $b=\left(b^{*}\right)^{*}=\left(a^{*} \mid e\right)^{*}=(e \mid a)$.
(3) Assume that $\exists a b$. By (1) above, $r(a b)=a b b^{*} a^{*}$ is the unique projection such that $r(a b) a b=a b$. On the other hand, $a a^{*}$ is a projection such that $\left(a a^{*}\right) a b=a b$. Then $a b b^{*} a^{*}=a a^{*}$, and we have

$$
d(a)=a^{*} a=a^{*}\left(a a^{*}\right) a=a^{*}\left(a b b^{*} a^{*}\right) a=d(a) r(b) d(a)
$$

Similarly, we have $r(b) d(a) r(b)=r(b)$. The converse is obvious.
(4) Let $\exists a b$. By (3), we have

$$
d(a b)=(a b)^{*} a b=b^{*}\left(b b^{*} a^{*} a b b^{*}\right) b=b^{*}(r(b) d(a) r(b)) b=b^{*} r(b) b=d(b)
$$

Similarly we have $r(a b)=r(a)$.
(5) This immediately follows from (3).
(6) Let $e$ be any idempotent. Then it is obvious that $e e^{*}$ and $e^{*} e$ are projections. Since $e^{*}=(e e)^{*}=e^{*} e^{*}$, we have $e=e e^{*} e=\left(e e^{*}\right)\left(e^{*} e\right)$.
(7) This immediately follows from (A6) and (A7).
(8) Let $\exists a b$ and $e \in P(S)$ such that $e \leq d(a b)$. By (4), we have $e \leq d(a b)=d(b)$, and hence the restriction $(b \mid e)$ is defined. Since $(b \mid e) \leq b$, we have $r(b \mid e) \leq r(b)=r(b) d(a) r(b)=$ $d(d(a) r(b))$, and hence $(d(a) r(b) \mid r(b \mid e))$ exists. Since $(d(a) r(b) \mid r(b \mid e)) \leq d(a) r(b)$, we have $r(d(a) r(b) \mid r(b \mid e)) \leq r(d(a) r(b))=d(a) r(b) d(a)=d(a)$. Thus $(a \mid r(d(a) r(b) \mid r(b \mid e)))$ exists. By (5) and (A9), $(d(a) r(b) \mid r(b \mid e))=f$, say, is an idempotent. Then

$$
\begin{aligned}
& d(a \mid r(d(a) r(b) \mid r(b \mid e)))=r(d(a) r(b) \mid r(b \mid e))=r(f)=f f^{*} \\
& r(b \mid e)=d(d(a) r(b) \mid r(b \mid e))=d(f)=f^{*} f
\end{aligned}
$$

Since $f$ is an idempotent, $\left(f f^{*}\right)\left(f^{*} f\right)\left(f f^{*}\right)=f f^{*}$ and $\left(f^{*} f\right)\left(f f^{*}\right)\left(f^{*} f\right)=f^{*} f$, and hence $(a \mid r(d(a) r(b) \mid r(b \mid e)))(b \mid e)$ exists. Since $(a \mid r(d(a) r(b) \mid r(b \mid e))) \leq a$ and $(b \mid e) \leq b$, we have $(a \mid r(d(a) r(b) \mid r(b \mid e)))(b \mid e) \leq a b$ by (A7). On the other hand, $d((a \mid r(d(a) r(b) \mid r(b \mid d(c))))=$ $d(b \mid e)=e$ by (4). Thus it follows from (A8) that $(a b \mid e)=(a \mid r(d(a) r(b) \mid r(b \mid e)))(b \mid e)$.
(9) Similar to the proof of (8).
(10) Let $c \leq a b$. By (7), we have $d(c) \leq d(a b)$, and hence $(a b \mid d(c))$ exists. Since $d(a b \mid d(c))=d(c)$ and $(a b \mid d(c)) \leq a b$, we have $c=(a b \mid d(c))$. It follows from (8) that

$$
(a b \mid d(c))=(a \mid r(d(a) r(b) \mid r(b \mid d(c)))(b \mid d(c))
$$

Put $a^{\prime}=\left(a \mid(r(d(a) r(b) \mid r(b \mid e)))(b \mid e)\right.$ and $b^{\prime}=(b \mid d(c))$. Then it is obvious that $a^{\prime} \leq a, b^{\prime} \leq b$ and $c=(a b \mid d(c))=a^{\prime} b^{\prime}$.
(11) Let $e \leq f \leq d(a)$. Obviously, $(a \mid e)$ and $(a \mid f)$ exist. Since $e \leq d(a \mid f),((a \mid f) \mid e)$ exists. On the other hand, $d(a \mid e)=e$ and $(a \mid e) \leq a$. Then $((a \mid f) \mid e)=(a \mid e)$, and hence $(a \mid e) \leq(a \mid f)$.
(12) Similar to the proof of (11).
(13) It follows from (11) that $(b \mid e) \leq(b \mid f)$. On the other hand, $(a \mid e),(b \mid e) \leq b$ and $d(a \mid e)=d(b \mid e)$. By Axiom (A8), we have $(a \mid e)=(b \mid e)$, and hence $(a \mid e) \leq(b \mid f)$.
(14) Let $a \in G$ and $e \in P(G)$ such that $a \leq e$. By Axioms (A6) and (A7), we have $a^{*} a \leq e^{*} e=e$. Since $d(a)=a^{*} a=d\left(a^{*} a\right)$, it follows from Axiom (A8) that $a=a^{*} a \in$ $P(G)$.

3 Locally inductive *-groupoids An ordered $*$-groupoid $G$ is called a locally inductive *-groupoid if it satisfies
(LG) For any $e, f \in P(G)$, there exists the maximum element in $<e, f>=\{(g, h) \in$ $P(G) \times P(G): g \leq e, h \leq f$ and $\exists g h\}$.

Proposition 3.1. If $S$ be a locally inverse $*-$ semigroup. then $S(\cdot, *, \leq)$ is a locally inductive *-groupoid.

Proof. Let $S$ be a locally inverse $*$-semigroup. Let $e, f \in P(S)$. Then we can easily see that $(e f e, f e f)$ is the maximum element in $\langle e, f\rangle$.

The locally inductive $*$-groupoid associated with $S$, above, is denoted by $\mathbf{G}(S)$.
Let $G(\cdot, *, \leq)$ be a locally inductive $*$-groupoid. For any $a, b \in G$, there exists the maximun element $(e, f)$ in $<d(a), r(b)>=\{(g, h) \in P(S) \times P(S): g \leq d(a), h \leq$ $r(b), \exists g h\}$. We define a new product $\otimes$ on $G$ as follows:

$$
a \otimes b=(a \mid e)(f \mid b)
$$

and we call it a pseudoproduct of $a$ and $b$.

Proposition 3.2. For a locally inductive $*$-groupoid $G, G(\otimes, *)$, defined above, is a locally inverse *-semigroup, which is denoted by $\mathbf{S}(G)$.

Proof. First, we show that $(a \otimes b) \otimes c=a \otimes(b \otimes c)$ for any $a, b, c \in G$. By Axiom (LG), there exists the maximum element $(e, f)$ in $<d(a \otimes b), r(c)>$ and $(a \otimes b) \otimes c=(a \otimes b \mid e)(f \mid c)$. Moreover, there exist $g, h \in P(S)$ such that $(g, h)$ is the maximum element of $<d(a), r(b)>$, and $a \otimes b=(a \mid g)(h \mid b)$. Since $(a \otimes b) \mid e) \leq a \otimes b=(a \mid g)(h \mid b)$, there exist $a^{\prime} \leq(a \mid g)$ and $b^{\prime} \leq(h \mid b)$ such that $(a \otimes b \mid e)=a^{\prime} b^{\prime}$, by Proposition 2.2(10). Thus

$$
(a \otimes b) \otimes c=\left(a^{\prime} b^{\prime}\right)(f \mid c)=a^{\prime}\left(b^{\prime}(f \mid c)\right)
$$

It follows from $\exists b^{\prime}(f \mid c)$ that $\exists d\left(b^{\prime}\right) r(f \mid c)$. Since $b^{\prime} \leq(h \mid b) \leq b$ and $(f \mid c) \leq c$, we have $\left(d\left(b^{\prime}\right), r(f \mid c)\right) \in<d(b), r(c)>$. Thus $b^{\prime}(f \mid c) \leq b \otimes c$. Similarly, $\exists d\left(a^{\prime}\right) r\left(b^{\prime}(f \mid c)\right), a^{\prime} \leq a$ and $b^{\prime}(f \mid c) \leq b \otimes c$ imply that $(a \otimes b) \otimes c=a^{\prime}\left(b^{\prime}(f \mid c)\right) \leq a \otimes(b \otimes c)$. Similarly, we have $a \otimes(b \otimes c) \leq(a \otimes b) \otimes c$, and hence $G(\otimes)$ is a semigroup.

It is clear that $G(\otimes, *)$ is a regular $*$-semigroup. To show that $G(\otimes, *)$ is a locally inverse *-semigroup, it is sufficient to prove that, for any $e \in P(G), P(e \otimes G \otimes e)$ ia a semilattice. Let $f, g \in P(e \otimes G \otimes e)$. Then it is clear that $f \leq e$ and $g \leq e$. There exists the maximum element $(i, j)$ in $<g, h>$ such that $f \otimes g=(f \mid i)(j \mid g)=i j$. Since $i \leq f \leq e$ and $j \leq g \leq e$, we have $i j \leq e$. By Proposition $2.2(14), i j \in P(G)$, and so $i j=(\overline{i j})^{*}=j^{*} i^{*}=j i$. Thus $f \otimes g=i j=j i=g \otimes f$, and hence $P(e \otimes G \otimes e)$ ia a semilattice.
Theorem 3.3. (1) For a locally inverse *-semigroup $S$, we have $\mathbf{S}(\mathbf{G}(S))=S$.
(2) For a locally inductive $*$-groupoid $G(\cdot, *, \leq)$, we have $\mathbf{G}(\mathbf{S}(G(\cdot, *, \leq)))=G(\cdot, *, \leq)$.

Proof. (1) Let $a$ and $b$ be any elements of $S$. Then

$$
a \otimes b=(a \mid e) \cdot(f \mid b)
$$

where $(e, f)$ is the maximum element of $<a^{*} \cdot a, b \cdot b^{*}>$. Then $e \leq a^{*} a, f \leq b b^{*}, e f e=e$ and $f e f=f$, since $x \cdot y=x y$ if $x \cdot y$ exists. By Result 1.5, $(a \mid e)=a e,(f \mid b)=f b$, $e=a^{*} a b b^{*} a^{*} a, f=b b^{*} a^{*} a b b^{*}$ and $a \otimes b=a e \cdot f b=a\left(a^{*} a b b^{*} a^{*} a\right)\left(b b^{*} a^{*} a b b^{*}\right) b=a b$. Hence we have $\mathbf{S}(\mathbf{G}(S))=S$.
(2) First, we show that the partial order $\preceq$, say, on $\mathbf{G}(\mathbf{S}(G(\cdot, *, \leq)))$ is equal to $\leq$. We remark that $a \otimes a^{*}=a \cdot a^{*}$ and $a^{*} \otimes a=a^{*} \cdot a$ for any $a \in G$. Assume that $a \preceq b$. It follows from Result 1.3 that $a^{*} \cdot a=a^{*} \otimes a \preceq b^{*} \otimes b=b^{*} \cdot b$. By Result 1.2,

$$
a^{*} \cdot a=\left(a^{*} \cdot a\right) \otimes\left(a^{*} \cdot a\right)^{*} \otimes\left(b^{*} \cdot b\right)=\left(b^{*} \cdot b\right) \otimes\left(a^{*} \cdot a\right)^{*} \otimes\left(a^{*} \cdot a\right)
$$

Then $a^{*} \cdot a=\left(a^{*} \cdot a\right) \otimes\left(b^{*} \cdot b\right)=\left(b^{*} \cdot b\right) \otimes\left(a^{*} \cdot a\right)$. Let $(e, f)$ be the maximum element of $<a^{*} \cdot a, b^{*} \cdot b>$. It is clear that $(f, e)$ is the maximum element of $<b^{*} \cdot b, a^{*} \cdot a>$. Then $e \leq a^{*} \cdot a, f \leq b^{*} \cdot b, e \cdot f \cdot e=e$ and $f \cdot e \cdot f=f$. Moreovere,

$$
\begin{aligned}
a^{*} \cdot a & =\left(a^{*} \cdot a \mid e\right) \cdot\left(f \mid b^{*} \cdot b\right)=e \cdot f \\
& =\left(b^{*} \cdot b \mid f\right) \cdot\left(e \mid a^{*} \cdot a\right)=f \cdot e
\end{aligned}
$$

Then $e \cdot f=f \cdot e$ and so $a^{*} \cdot a=e \cdot f=e \cdot f \cdot e=e \leq a^{*} \cdot a$. Thus we have $a^{*} \cdot a=e=f$. By using Result 1.2 again, $a=b \otimes a^{*} \otimes a=b \otimes a^{*} \cdot a=(b \mid f) \cdot\left(e \mid a^{*} \cdot a\right)=(b \mid e) \cdot e=(b \mid e)$. Hence we have $a \leq b$.

Conversely, let $a \leq b$ in $G(\cdot, *, \leq)$. Then $d(a) \leq d(b), r(a) \leq r(b)$ and $a=(b \mid d(a))=$ $(r(a) \mid b)$. Since $(d(a), d(a))$ is the maximum element of $<d(b), r(d(a))>$ and $(r(a), r(a))$ is the maximum element of $\langle d(r(a)), r(b)\rangle$, we have

$$
\begin{aligned}
& b \otimes a^{*} \otimes a=b \otimes a^{*} \cdot a=(b \mid d(a)) \cdot d(a)=(b \mid d(a))=a \\
& a \otimes a^{*} \otimes b=a \cdot a^{*} \otimes b=r(a) \cdot(r(a) \mid b)=(r(a) \mid b)=a
\end{aligned}
$$

Thus we have $a \preceq b$.
Next, we prove that, for $a, b \in G, a \odot b$ exists if and only if $a \cdot b$, where $\odot$ denotes the restricted product of $\mathbf{G}(\mathbf{S}(G(\cdot, *, \leq)))$. Assume that $a \odot b$ exists. Then $\left(a^{*} \cdot a\right) \otimes\left(b \cdot b^{*}\right) \otimes$ $\left(a^{*} \cdot a\right)=a^{*} \cdot a$ and $\left(b \cdot b^{*}\right) \otimes\left(a^{*} \cdot a\right) \otimes\left(b \cdot b^{*}\right)=b \cdot b^{*}$, since $a^{*} \otimes a=a^{*} \cdot a$ and $b \otimes b^{*}=b \cdot b^{*}$. Let $(e, f)$ be the maximum element of $\left\langle a^{*} a, b b^{*}>\right.$. Then $e \leq a^{*} a, f \leq b b^{*}, e \cdot f \cdot e=e$ and $f \cdot e \cdot f=f$. Thus

$$
a^{*} \cdot a=\left(a^{*} \cdot a\right) \otimes\left(b \cdot b^{*}\right) \otimes\left(a^{*} \cdot a\right)=\left(a^{*} \cdot a \mid e\right) \cdot\left(f \mid b \cdot b^{*}\right) \cdot\left(e \mid a^{*} \cdot a\right)=e \cdot f \cdot e=e \leq a^{*} \cdot a
$$

Hence $a^{*} \cdot a=e$. Similarly, we have $b \cdot b^{*}=f$. So $\left(a^{*} \cdot a\right) \cdot\left(b \cdot b^{*}\right) \cdot\left(a^{*} \cdot a\right)=a^{*} \cdot a$ and $\left(b \cdot b^{*}\right) \cdot\left(a^{*} \cdot a\right) \cdot\left(b \cdot b^{*}\right)=b \cdot b^{*}$, and hence $a \cdot b$ exists. The converse is clear. Now, we have $G(\odot, *, \preceq)=G(\cdot, *, \leq)$.

## References

[1] Ehresmann, C., Gattungen von lokalen Strukuren, Jahresbericht der Deutschen MathematikerVereinigung 60 (1957), 49-77.
[2] Ehresmann, C., Catégories inductives et pseudogroupes, Annales de l'Institut Fourier, Grenoble 10 (1960), 307-336.
[3] Imaoka, T., On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14 (1980), 19-23.
[4] Imaoka, T., Prehomomorphisms on regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 15 (1981), 23-27.
[5] Imaoka, T., Prehomomorphisms on locally inverse *-semigroups, in: Words, Semigroups, and transductions, edited by M. Ito, G. Paun and S. Yu, World Scientific, Singapore, 2001, 203 210.
[6] T. Imaoka, I. Inata and H. Yokoyama, Representations of locally inverse *-semi-groups, Internat. J. Algebra Comput. 6 (1996), 541-551.
[7] Imaoka, T and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55 (1997), 247-255.
[8] Lawson, M. V., Inverse semigroups - The theory of partial symmetries -, World Scientific, Singapore, 1998.
[9] Nordahl, T. E. and H. E. Scheiblich, Regular * semigroups, Semigroup Forum 16 (1978), 369-377.
[10] Petrich, M., Inverse semigroups, John Wiley and Sons, New York, 1984.
[11] Schein, B. M., On the theory of generalized groups and generalized heaps, in The theory of Semigroups and its applications I, University of Saratov, Saratov, 1965, 286-324 (Russian).

Department of Mathematics and Computer Science, Shimane University
Matsue, Shimane 690-8504, Japan
imaoka@math.shimane-u.ac.jp and s96484@math.shimane-u.ac.jp


[^0]:    2000 Mathematics Subject Classification. Primary 20M10; Secondary 20M17, 20M18, 20 M 30.
    Key words and phrases. locally inverse *-semigroup, locally inductive *-groupoid, ordered *-groupoid.

