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Abstract. The purpose of this paper is to give a characterization of a locally inverse

�-semigroup by introducing a new concept of a locally inductive �-groupoid. De�ning

a product 
 in a locally inductive �-groupoid G, G(
) becomes a locally inverse �-

semigroup. Conversely, for a locally inverse �-semigroup S, we give a partial product �

in S, we show that S(�; �;�) is a locally inductive �-groupoid and that S(�; �;�)(
) =

S.

1 Introduction Ehresmann introduced a concept of an inductive groupoid in [1] and [2],

and Schein characterized an inverse semigroup by using the concept (see [8]). One of the

authors introduced the concept of the symmetric locally inverse �-semigroup LI(X;�) on

an �-set (X;�) and obtained a generalization of Preston-Vagner Representation Theorem.

That is, LI(X;�) on an �-set (X;�) is a locally inverse �-semigroup and every locally inverse

�-semigroup can be embedded in the symmetric locally inverse �-semigroup on an �-set (see

[6] and [7]). This result leads us a new partial product on a locally inverse �-semigroup and

another its characterization.

First, we give de�nitions and basic results. A semigroup S with a unary operation

� : S ! S is called a regular �-semigroup if it satis�es (i) (x�)� = x; (ii) (xy)� = y
�
x
�;

(iii) xx�
x = x.

Let S be a regular �-semigroup. An idempotent e in S is called a projection if e� = e.

For a subset A of S, denote the sets of idempotents and projections of A by E(A) and

P (A), respectively. A regular �-semigroup S is called a locally inverse �-semigroup if for

any e 2 E(S), eSe is an inverse subsemigroup of S. The following results are well-known

and are used frequently throughout this paper.

Result 1.1. [3] [6] Let S be a regular �-semigroup.

(1) E(S) = P (S)2. In fact, for any e 2 E(S), there exist f; g 2 P (S) such that fReLg

and e = fg.

(2) For any a 2 S and e 2 P (S), a�ea 2 P (S).

(3) Each L-class and each R-class contain one and only one projection.

(4) S is a locally inverse �-semigroup if and only if it satis�es that eSe is an inverse

subsemigroup of S for any e 2 P (S).

De�ne a relation � on a regular �-semigroup S as follows:

a � b () a = eb = bf for some e; f 2 P (S):
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Result 1.2. [4] Let a and b be elements of a regular �-semigroup S. Then the following

conditions are equivalent:

(1) a � b,

(2) aa
� = ba

� and a
�
a = b

�
a,

(3) aa
� = ab

� and a
�
a = a

�
b,

(4) a = aa
�
b = ba

�
a.

Result 1.3. [4] [5] The relation � on a regular �-semigroup, de�ned above, is a partial

order on S which preserves the unary operation. If S is a locally inverse �-semigroup, then

� is compatible.

We call the partial order �, de�ned above, the natural order on S.

Let S be a locally inverse �-semigroup. In [5], we introdued a new partial product � on

S, which is called a restricted product, as follows:

a � b =

�
ab ab 2 Ra \ Lb

unde�ned otherwise

where Ra and La denote the R-class and the L-class containing a, respectively.

Lemma 1.4. ab 2 Ra \ Lb if and only if a�abb�a�a = a
�
a and bb

�
a
�
abb

� = bb
�.

Proof. Let ab 2 Ra \ Lb. Then there exists an idempotent e 2 La \Rb. By the Result 1.1

(1), e = bb
�
a
�
a. Then we have that a�abb�a�a = a

�
a and bb

�
a
�
abb

� = bb
�. The converse is

clear.

Result 1.5. [5] Let S be a regular �-semigroup.

(1) Let x 2 S and e 2 P (S) such that e � x
�
x. Then a = xe is the unique element in S

such that a � x and a
�
a = e.

(2) Let x 2 S and e 2 P (S) such that e � xx
�. Then a = ex is the unique element in S

such that a � x and aa
� = e.

(3) For any elemants x; y 2 S, xy = a � b where a = xe, b = fy, e = x
�
xyy

�
x
�
x and

f = yy
�
x
�
xyy

�.

In Section 2, we de�ne an ordered �-groupoid and give fundamental properties of ordered

�-semigroups.

In Section 3, we introduce a loally inductive �-groupoid and its product 
, which is

called a pseudoproduct, and characterize a locally inverse �-semigroup.

2 Ordered �-groupoids Let G be a non-empty set with a partial product �, a unary

operation � and a partial order �. We simply write ab instead of a � b. If ab is de�ned for

a; b 2 G, we sometimes write 9ab. An element e 2 G is called an idempotent if 9ee and

ee = e. If an idempotent e satis�es e� = e, it is called a projection. Denote the sets of

idempotents and projections of G by E(G) and P (G), respectively.

If G satis�es the following axioms, it is called an ordered �-groupoid.

(A1) a(bc) exists if and only if (ab)c exists, in which case they are equal.
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(A2) a(bc) exists if and only if ab and bc exist.

(A3) (a�)� = a.

(A4) If ab exists, then b
�
a
� exists and (ab)� = b

�
a
�.

(A5) For any a 2 G, a�a exists and a
�

a is the unique projection of G such that 9a(a�a)

and a(a�a) = a. We write a�a = d(a) and call it the domain identity.

(A6) a � b implies a� � b
�.

(A7) For a; b; c; d 2 G, if a � b, c � d, 9ac and 9bd, then ac � bd.

(A8) Let a 2 G and e 2 P (G) such that e � d(a). Then there exists a unique element (aje),

called the restriction of a to e, such that (aje) � a and d(aje) = e.

(A9) E(G) is an order ideal.

Proposition 2.1. If S is a locally inverse �-semigroup, then S(�; �;�) is an ordered �-

groupoid, where � denotes the restricted product of S de�ned in Section 1.

Proof. Assume that a�(b�c) exists. By Lemma 1.4, we have b�bcc�b�b = b
�
b, cc�b�bcc� = cc

�,

a
�

a(bc)(bc)�a�a = a
�

a and (bc)(bc)�a�a(bc)(bc)� = (bc)(bc)�. Then

a
�
a = a

�
a(b(b�bcc�b�b)b�)a�a = a

�
ab(b�b)b�a�a = a

�
abb

�
a
�
a

bb
� = b(b�b)b� = b(b�bcc�b�b)b� = (bc)(bc)� = (bc)(bc)�a�a(bc)(bc)� = bb

�
a
�
abb

�

(ab)�(ab) = b
�
a
�
ab = b

�(a�abcc�b�a�a)b = (ab)�(ab)cc�(ab)�(ab)

cc
� = cc

�
b
�
bcc

� = cc
�
b
�(bb�)bcc� = cc

�
b
�(bb�a�abb�)bcc� = cc

�(ab)�(ab)cc�

Thus a � b and (a � b) � c exist. It is obvious that a � (b � c) = (a � b) � c. Thus we have (A1) and

(A2).

Since S is a locally inverse �-semigroup, (A3), (A4), (A5), (A6) and (A7) holds. Axiom

(A8) follows from Result 1.5 (1).

Let e 2 E(S) and a 2 S such that a � e. By the de�nition �, there exist p; q 2 P (S)

such that a = pe = eq. Then

(a�a)(aa�)(a�a) = (pe)�(pe)(eq)(eq)� (pe)�(pe)

= e
�

peqe
�

ppe

= (pe)�(pe)(pe)�(pe)

= a
�

a

Similarly, (aa�)(a�a)(aa�) = aa
�. Thus a � a exists. Moreover, a � a = aa = (pe)(eq) =

p(eq) = p(pe) = pe = a, and we have (A9). Hence S(�; �;�) is an ordered �-groupoid.

Proposition 2.2. Let G be an ordered �-groupoid. Then we have the following.

(1) For any a 2 G, aa� exists and aa
� is the unique element of P (G) such that 9(aa�)a

and (aa�)a = a. We write aa� = r(a) and call it the range identity.

(2) Let a 2 G and e 2 P (G) such that e � r(a). Then there exists a unique element (eja),

called the corestriction of a to e, such that (eja) � a and r(eja) = e.

(3) 9ab if and only if 9d(a)r(b), 9r(b)d(a) and d(a)r(b)d(a) = d(a) and r(b)d(a)r(b) =

r(b).
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(4) If 9ab, then d(ab) = d(b) and r(ab) = r(a).

(5) If 9ab, then d(a)r(b) and r(b)d(a) are idempotents.

(6) For any e 2 E(S), there exist p; q 2 P (S) such that e = pq.

(7) If a � b, then d(a) � d(b) and r(a) � r(b).

(8) If 9ab and e is a projection such that e � d(ab), then

(abje) = (aj(r(d(a)r(b)jr(bje)))(bje):

(9) If 9ab and e is a projection such that e � r(ab), then

(ejab) = (eja)(d((d(eja)jd(a)r(b))jb):

(10) If c � ab, then there exist a0 and b
0 such that 9a0b0, a0 � a, b0 � b and c = a

0
b
0.

(11) If e � f � d(a), then (aje) � (ajf) � a.

(12) If e � f � r(a), then (eja) � (f ja) � a.

(13) Let a; b 2 G and e; f 2 P (G) such that a � b; e � f; e � d(a) and f � d(b). Then

(aje) � (bjf).

(14) P (G) is an order ideal.

Proof. (1) It immediately follows from Axioms (A1), (A3), (A4) and (A5) that aa� 2 P (S)

and (aa�)a = a. To show the uniqueness, let e 2 P (S) such that ea = a. Then a
�
e =

(ea)� = a
�. On the other hand, by (A5), aa� = (a�)�a� is the unique projection such that

a
�(aa�) = a

�, and hence e = aa
�.

(2) Let a 2 G and e 2 P (G) such that e � r(a). Then e � d(a�), and by (A8), there

exists (a�je) such that (a�je) � a
� and d(a�je) = e. Let (eja) = (a�je)�. By (A6), (eja) =

(a�je)� � (a�)� = a. Moreover, r(eja) = (eja)(eja)� = (a�je)�((a�je)�)� = d(a�je) = e.

To show the uniqueness, assume that b � a and r(b) = e. Then b
�
� a

�, by (A6), and

d(b�) = e. By the uniqueness of (A8), b� = (a�je), and hence b = (b�)� = (a�je)� = (eja).

(3) Assume that 9ab. By (1) above, r(ab) = abb
�
a
� is the unique projection such that

r(ab)ab = ab. On the other hand, aa� is a projection such that (aa�)ab = ab. Then

abb
�
a
� = aa

�, and we have

d(a) = a
�

a = a
�(aa�)a = a

�(abb�a�)a = d(a)r(b)d(a):

Similarly, we have r(b)d(a)r(b) = r(b). The converse is obvious.

(4) Let 9ab. By (3), we have

d(ab) = (ab)�ab = b
�(bb�a�abb�)b = b

�(r(b)d(a)r(b))b = b
�

r(b)b = d(b):

Similarly we have r(ab) = r(a).

(5) This immediately follows from (3).

(6) Let e be any idempotent. Then it is obvious that ee� and e
�
e are projections. Since

e
� = (ee)� = e

�
e
�, we have e = ee

�
e = (ee�)(e�e).

(7) This immediately follows from (A6) and (A7).
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(8) Let 9ab and e 2 P (S) such that e � d(ab). By (4), we have e � d(ab) = d(b), and

hence the restriction (bje) is de�ned. Since (bje) � b, we have r(bje) � r(b) = r(b)d(a)r(b) =

d(d(a)r(b)), and hence (d(a)r(b)jr(bje)) exists. Since (d(a)r(b)jr(bje)) � d(a)r(b), we have

r(d(a)r(b)jr(bje)) � r(d(a)r(b)) = d(a)r(b)d(a) = d(a). Thus (ajr(d(a)r(b)jr(bje))) exists.

By (5) and (A9), (d(a)r(b)jr(bje)) = f , say, is an idempotent. Then

d(ajr(d(a)r(b)jr(bje))) = r(d(a)r(b)jr(bje)) = r(f) = ff
�

r(bje) = d(d(a)r(b)jr(bje)) = d(f) = f
�
f

Since f is an idempotent, (ff�)(f�
f)(ff� ) = ff

� and (f�
f)(ff� )(f�

f) = f
�
f , and hence

(ajr(d(a)r(b)jr(bje)))(bje) exists. Since (ajr(d(a)r(b)jr(bje))) � a and (bje) � b, we have

(ajr(d(a)r(b)jr(bje)))(bje) � ab by (A7). On the other hand, d((ajr(d(a)r(b)jr(bjd(c)))) =

d(bje) = e by (4). Thus it follows from (A8) that (abje) = (ajr(d(a)r(b)jr(bje)))(bje).

(9) Similar to the proof of (8).

(10) Let c � ab. By (7), we have d(c) � d(ab), and hence (abjd(c)) exists. Since

d(abjd(c)) = d(c) and (abjd(c)) � ab, we have c = (abjd(c)). It follows from (8) that

(abjd(c)) = (ajr(d(a)r(b)jr(bjd(c)))(bjd(c)):

Put a0 = (aj(r(d(a)r(b)jr(bje)))(bje) and b
0 = (bjd(c)). Then it is obvious that a0 � a, b0 � b

and c = (abjd(c)) = a
0
b
0.

(11) Let e � f � d(a). Obviously, (aje) and (ajf) exist. Since e � d(ajf), ((ajf)je)

exists. On the other hand, d(aje) = e and (aje) � a. Then ((ajf)je) = (aje), and hence

(aje) � (ajf).

(12) Similar to the proof of (11).

(13) It follows from (11) that (bje) � (bjf). On the other hand, (aje); (bje) � b and

d(aje) = d(bje). By Axiom (A8), we have (aje) = (bje), and hence (aje) � (bjf).

(14) Let a 2 G and e 2 P (G) such that a � e. By Axioms (A6) and (A7), we have

a
�
a � e

�
e = e. Since d(a) = a

�
a = d(a�a), it follows from Axiom (A8) that a = a

�
a 2

P (G).

3 Locally inductive �-groupoids An ordered �-groupoid G is called a locally inductive

�-groupoid if it satis�es

(LG) For any e; f 2 P (G), there exists the maximum element in < e; f >= f(g; h) 2

P (G) � P (G) : g � e; h � f and 9ghg.

Proposition 3.1. If S be a locally inverse �-semigroup. then S(�; �;�) is a locally inductive

�-groupoid.

Proof. Let S be a locally inverse �-semigroup. Let e; f 2 P (S). Then we can easily see that

(efe; fef ) is the maximum element in < e; f >.

The locally inductive �-groupoid associated with S, above, is denoted by G(S).

Let G(�; �;�) be a locally inductive �-groupoid. For any a; b 2 G, there exists the

maximun element (e; f) in < d(a); r(b) > = f(g; h) 2 P (S) � P (S) : g � d(a); h �

r(b); 9ghg. We de�ne a new product 
 on G as follows:

a 
 b = (aje)(f jb);

and we call it a pseudoproduct of a and b.
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Proposition 3.2. For a locally inductive �-groupoid G, G(
; �), de�ned above, is a locally

inverse �-semigroup, which is denoted by S(G).

Proof. First, we show that (a
b)
c = a
(b
c) for any a; b; c 2 G. By Axiom (LG), there

exists the maximum element (e; f) in < d(a 
 b); r(c) > and (a 
 b) 
 c = (a 
 bje)(f jc).

Moreover, there exist g; h 2 P (S) such that (g; h) is the maximum element of < d(a); r(b) >,

and a 
 b = (ajg)(hjb). Since (a 
 b)je) � a 
 b = (ajg)(hjb), there exist a0 � (ajg) and

b
0
� (hjb) such that (a
 bje) = a

0
b
0, by Proposition 2.2(10). Thus

(a 
 b) 
 c = (a0b0)(f jc) = a
0(b0(f jc)):

It follows from 9b
0(f jc) that 9d(b0)r(f jc). Since b

0
� (hjb) � b and (f jc) � c, we have

(d(b0); r(f jc)) 2< d(b); r(c) >. Thus b0(f jc) � b 
 c. Similarly, 9d(a0)r(b0(f jc)), a0 � a

and b
0(f jc) � b 
 c imply that (a 
 b) 
 c = a

0(b0(f jc)) � a 
 (b 
 c). Similarly, we have

a 
 (b
 c) � (a
 b) 
 c, and hence G(
) is a semigroup.

It is clear that G(
; �) is a regular �-semigroup. To show that G(
; �) is a locally inverse

�-semigroup, it is suÆcient to prove that, for any e 2 P (G), P (e 
G
 e) ia a semilattice.

Let f; g 2 P (e
G
 e). Then it is clear that f � e and g � e. There exists the maximum

element (i; j) in < g; h > such that f 
 g = (f ji)(jjg) = ij. Since i � f � e and j � g � e,

we have ij � e. By Proposition 2.2 (14), ij 2 P (G), and so ij = (ij)� = j
�
i
� = ji. Thus

f 
 g = ij = ji = g 
 f , and hence P (e
G
 e) ia a semilattice.

Theorem 3.3. (1) For a locally inverse �-semigroup S, we have S(G(S)) = S.

(2) For a locally inductive �-groupoid G(�; �;�), we have G(S(G(�; �;�))) = G(�; �;�).

Proof. (1) Let a and b be any elements of S. Then

a 
 b = (aje) � (f jb);

where (e; f) is the maximum element of < a
�
� a; b � b

�
>. Then e � a

�
a, f � bb

�, efe = e

and fef = f , since x � y = xy if x � y exists. By Result 1.5, (aje) = ae, (f jb) = fb,

e = a
�
abb

�
a
�
a, f = bb

�
a
�
abb

� and a 
 b = ae � fb = a(a�abb�a�a)(bb�a�abb�)b = ab. Hence

we have S(G(S)) = S.

(2) First, we show that the partial order �, say, on G(S(G(�; �;�))) is equal to �. We

remark that a
 a
� = a � a

� and a
�

 a = a

�
� a for any a 2 G. Assume that a � b. It follows

from Result 1.3 that a� � a = a
�

 a � b

�

 b = b

�
� b. By Result 1.2,

a
�

� a = (a� � a) 
 (a� � a)� 
 (b� � b) = (b� � b)
 (a� � a)� 
 (a� � a):

Then a
�

� a = (a� � a) 
 (b� � b) = (b� � b) 
 (a� � a). Let (e; f) be the maximum element of

< a
�
� a; b

�
� b >. It is clear that (f; e) is the maximum element of < b

�
� b; a

�
� a >. Then

e � a
�
� a, f � b

�
� b, e � f � e = e and f � e � f = f . Moreovere,

a
�

� a = (a� � aje) � (f jb� � b) = e � f

= (b� � bjf) � (eja� � a) = f � e

Then e � f = f � e and so a� � a = e � f = e � f � e = e � a
�
� a. Thus we have a� � a = e = f .

By using Result 1.2 again, a = b 
 a
�

 a = b 
 a

�
� a = (bjf) � (eja� � a) = (bje) � e = (bje).

Hence we have a � b.

Conversely, let a � b in G(�; �;�). Then d(a) � d(b), r(a) � r(b) and a = (bjd(a)) =

(r(a)jb). Since (d(a); d(a)) is the maximum element of < d(b); r(d(a)) > and (r(a); r(a)) is

the maximum element of < d(r(a)); r(b) >, we have

b
 a
�


 a = b
 a
�

� a = (bjd(a)) � d(a) = (bjd(a)) = a

a
 a
�


 b = a � a
�


 b = r(a) � (r(a)jb) = (r(a)jb) = a
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Thus we have a � b.

Next, we prove that, for a; b 2 G, a � b exists if and only if a � b, where � denotes the

restricted product of G(S(G(�; �;�))). Assume that a � b exists. Then (a� � a) 
 (b � b�) 


(a� � a) = a
�
� a and (b � b�)
 (a� � a)
 (b � b�) = b � b

�, since a�
 a = a
�
� a and b
 b

� = b � b
�.

Let (e; f) be the maximum element of < a
�
a; bb

�
>. Then e � a

�
a, f � bb

�, e � f � e = e

and f � e � f = f . Thus

a
�

� a = (a� � a) 
 (b � b�)
 (a� � a) = (a� � aje) � (f jb � b�) � (eja� � a) = e � f � e = e � a
�

� a

Hence a
�
� a = e. Similarly, we have b � b� = f . So (a� � a) � (b � b�) � (a� � a) = a

�
� a and

(b � b�) � (a� � a) � (b � b�) = b � b
�, and hence a � b exists. The converse is clear. Now, we have

G(�; �;�) = G(�; �;�).
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