THE FREENESS OF MODULES OF MIXED SPLINES

Tomonori Kitamura

Received December 20, 2001

Dedicated to Professor Masami Ito on his 60th birthday

ABSTRACT. For a *d*-dimensional simplicial complex $\Delta \subset \mathbb{R}^d$ such that Δ and all its links are pseudomanifolds, we consider the module $C^{\alpha}(\Delta)$ of mixed splines. In particular, we study the freeness of the module $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^2$ of a topological disk and for a non-negative integer vector α of length $f_1^0(\Delta)$, where $\widehat{\Delta} \subset \mathbb{R}^3$ is the join of Δ with the origin in \mathbb{R}^3 and $f_1^0(\Delta)$ is the number of interior edges in Δ . We completely characterize Δ for which $C^{\alpha}(\widehat{\Delta})$ is free for any non-negative integer vector α . Moreover, we obtain a method for determining whether $C^{\alpha}(\widehat{\Delta})$ is free for a triangulation $\Delta \subset \mathbb{R}^2$ of a topological disk which has a totally interior edge, and for a generic non-negative integer vector α .

Introduction. Let $\Delta \subset \mathbb{R}^d$ be a *d*-dimensional simplicial complex such that Δ and all its links are pseudomanifolds. We define $C^r(\Delta)$ to be the set of piecewise polynomial functions on Δ which are continuously differentiable of order *r*. The elements of $C^r(\Delta)$ are also known as C^r -splines. Such functions are used in the finite element method for solving partial differential equations, and play an important role in computer-aided design and computer graphics.

Fundamental problems in spline theory are to determine the dimension of the vector space $C_k^r(\Delta)$ over \mathbb{R} which consists of C^r -splines of degree at most k, to determine whether the module $C^r(\Delta)$ is free, and to determine whether the module $C^r(\widehat{\Delta})$ is free, where $\widehat{\Delta} \subset \mathbb{R}^{d+1}$ is the join of Δ with the origin in \mathbb{R}^{d+1} . The algebraic structure of $C^r(\Delta)$, including these problems, has been studied by [1], [2], [3], [4], [7], [8], [9], and [10]. In this paper, we consider the set $C^{\alpha}(\Delta)$ of mixed splines, which are obtained by extending C^r -splines.

We denote the set of *i*-faces of Δ by Δ_i , the set of interior *i*-faces of Δ by Δ_i^0 (all *d*-faces are considered interior), and the set of interior faces of Δ by Δ^0 . Moreover, $f_i(\Delta)$ denotes the number of *i*-faces of Δ , and $f_i^0(\Delta)$ denotes the number of interior *i*-faces of Δ . Let $t = f_d(\Delta)$. We fix an ordering $\sigma_1, \ldots, \sigma_t$ of the elements in Δ_d . For this ordering, we can represent F in $C^{\alpha}(\Delta)$ as a t-tuple $F = (f_1, \ldots, f_t)$ of polynomials, where $f_i = F|_{\sigma_i}$ for each $i = 1, \ldots, t$, and we can view $C^{\alpha}(\Delta)$ as a module over the polynomial ring in d variables. Similarly, $C^{\alpha}(\widehat{\Delta})$ is a module over the polynomial ring in (d+1) variables. It is natural to consider the above fundamental problems for mixed splines. One of these problems is the determination of the dimension of $C_k^{\alpha}(\Delta)$ as a vector space over \mathbb{R} , where $C_k^{\alpha}(\Delta)$ is the set of $F = (f_1, \ldots, f_t)$ in $C^{\alpha}(\Delta)$ such that, for each *i*, f_i has degree at most *k*. In [3], Billera and Rose showed how the theory of Gröbner bases can be used to compute the dimension of $C_k^r(\Delta)$ as a vector space over IR as well as the explicit basis for this vector space (see also [5] for the theory of Gröbner bases). In the same way, we can use the theory of Gröbner bases to compute the dimension of $C_k^{\alpha}(\Delta)$ as a vector space over \mathbb{R} as well as the explicit basis for this vector space. Moreover, in [6], Geramita and Schenck derived a formula for the dimension of $C_k^{\alpha}(\Delta)$ in high degree in the case d=2.

²⁰⁰⁰ Mathematics Subject Classification. 65D07,13C10,55N35.

Key words and phrases. mixed spline, free module.

We focus on the problem of the freeness of the module $C^{\alpha}(\widehat{\Delta})$. This problem is useful, since if $C^{\alpha}(\widehat{\Delta})$ is free, then $C^{\alpha}(\Delta)$ has a reduced basis (see [4] for the materials on reduced bases). In this paper, we study the freeness of the module $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^2$ of a topological disk.

We call an edge $\tau \in \Delta$ totally interior, if both vertices of τ are interior vertices. We say that $\alpha = (\alpha_{\tau_1}, \ldots, \alpha_{\tau_e}) \in \mathbb{Z}_{\geq 0}^e$ $(e = f_1^0(\Delta) = f_2^0(\widehat{\Delta}))$ is generic if $\alpha_{\tau_i} \neq \alpha_{\tau_j}$ for any $v \in \Delta_0^0$ and for every pair $\tau_i, \tau_j \in \Delta_1^0$ such that $v \in \tau_i$ and $v \in \tau_j$. For each $\tau_i \in \Delta_1^0$, let $l_{\tau_i} \in R = \mathbb{R}[x, y, z]$ be the homogeneous linear polynomial defining the plane containing $\hat{\tau}_i \subset \mathbb{R}^3$, where $\hat{\tau}_i$ is the convex hull of τ_i and the origin in \mathbb{R}^3 . Moreover, for each $v \in \Delta_0^0$, we set $H_v := \{l_{\tau_j}^{\alpha_{\tau_j}+1} : v \in \tau_j\}$ and construct the set $L_v \subset H_v$ in the following manner. If there are $l_{\tau_p}^{\alpha_{\tau_p}+1}$, $l_{\tau_q}^{\alpha_{\tau_q}+1} \in H_v$ such that $l_{\tau_p} = l_{\tau_q}$ and $\alpha_{\tau_p} \leq \alpha_{\tau_q}$, then we remove $l_{\tau_q}^{\alpha_{\tau_q}+1}$ from H_v . Moreover, for each totally interior edge $\tau \in \Delta_1^0$ and for each vertex $v_\tau \in \Delta_0^0$ of τ , we set $K_{v_{\tau}} := \{ \tau_j \in \Delta_1^0 : l_{\tau_j}^{\alpha_{\tau_j}+1} \in L_{v_{\tau}}, \alpha_{\tau_j} < \alpha_{\tau} \}$ and $m_{v_{\tau}} := |K_{v_{\tau}}|$. The main results in this paper are as follows:

Theorem 3.4. The module $C^{\alpha}(\widehat{\Delta})$ over R is free for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ if and only if Δ possesses no totally interior edge.

Theorem 3.11. Let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk which has at least one totally interior edge, and let $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ be generic. Then, $C^{\alpha}(\widehat{\Delta})$ is a free R-module if and only if, for any totally interior $edge \tau \in \Delta_1^0$, there exists a vertex v_{τ} of τ such that either (i) or (ii) below is satisfied:

- (i) $@l_{\tau}^{\alpha_{\tau}+1} \notin L_{v_{\tau}};$
- (ii) $@l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}, m_{v_{\tau}} \ge 2, and$

$$\alpha_{\tau} + 1 > \frac{\sum_{\tau_{j} \in K_{v_{\tau}}} (\alpha_{\tau_{j}} + 1) - m_{v_{\tau}}}{m_{v_{\tau}} - 1}$$

This paper is organized as follows. First, in Section 1, we introduce some preliminary notions on simplicial complexes. Second, in Section 2, we define the set $C^{\alpha}(\Delta)$ of mixed splines and describe some algebraic properties of $C^{\alpha}(\Delta)$ and $C^{\alpha}(\widehat{\Delta})$. Finally, in Section 3, we focus on the freeness of $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^2$ of a topological disk. In particular, we prove our main results above.

1 Preliminaries. A simplicial complex in \mathbb{R}^d is a finite set Δ of simplices in \mathbb{R}^d such that

- (i) if $\sigma \in \Delta$, then each face of σ is in Δ ;
- (ii) if $\sigma, \tau \in \Delta$, then $\sigma \cap \tau$ is a face of σ and of τ .

If Δ is a simplicial complex in \mathbb{R}^d , each simplex of Δ is called a *face* of Δ . Moreover, the dimension of Δ is defined to be

$$\dim \Delta := \max\{\dim \sigma : \sigma \in \Delta\}.$$

Let Δ be a simplicial complex in \mathbb{R}^d and let σ be a face of Δ . Then, the *link* of σ in Δ is defined by

$$link_{\Delta}(\sigma) := \{ \tau \in \Delta : \sigma \cap \tau = \emptyset, \text{ and } CONV(\sigma \cup \tau) \in \Delta \}.$$

Moreover, we set $link_{\Delta}(\emptyset) = \Delta$.

We say that a d-dimensional simplicial complex Δ in \mathbb{R}^d is a *pseudomanifold* if the following conditions are satisfied:

- (i) each face in Δ such that its dimension is less than or equal to d-1 is a face of some d-face in Δ ;
- (ii) for any two d-faces $\sigma, \sigma' \in \Delta$, there is a sequence of d-faces

$$\sigma = \sigma_1, \sigma_2, \dots, \sigma_m = \sigma'$$

such that each $\sigma_i \cap \sigma_{i+1}$ is a (d-1)-face of Δ for each $i, 1 \leq i \leq m-1$.

2 The module $C^{\alpha}(\Delta)$ and its algebraic properties. In this section, let Δ be a *d*-dimensional simplicial complex in \mathbb{R}^d such that Δ and all its links are pseudomanifolds. Let $R = \mathbb{R}[x_1, \ldots, x_d]$. We now define $C^r(\Delta)$ more explicitly.

Definition 2.1. For $r \in \mathbb{Z}_{\geq 0}$ and $\Delta \subset \mathbb{R}^d$, $C^r(\Delta)$ is the set of functions $F : |\Delta| \longrightarrow \mathbb{R}$ such that

- (i) $F|_{\sigma}$ is given by a polynomial in R for all $\sigma \in \Delta_d$;
- (ii) F is continuously differentiable of order r.

Let $t = f_d(\Delta)$. Given an ordering $\sigma_1, \ldots, \sigma_t$ of Δ_d , $G \in C^r(\Delta)$ can be represented as a *t*-tuple of polynomials in R, i.e., $G = (g_1, \ldots, g_t)$, where each g_i is just $G|_{\sigma_i}$. If $\sigma_i, \sigma_j \in \Delta_d$ are adjacent (i.e., $\sigma_i \cap \sigma_j \in \Delta_{d-1}^0$), let $l_{\tau} \in R$ be the linear polynomial defining the affine hyperplane containing $\tau = \sigma_i \cap \sigma_j \in \Delta_{d-1}^0$.

Proposition 2.2 ([3, Corollary 1.3]). Let F be a piecewise polynomial function on $\Delta \subset \mathbb{R}^d$, and for each i, $1 \leq i \leq t$, let $f_i = F|_{\sigma_i} \in \mathbb{R}$. Then $F = (f_1, \ldots, f_t) \in C^r(\Delta)$ if and only if, for every adjacent pair $\sigma_i, \sigma_j \in \Delta_d$, $f_i - f_j \in (l_\tau^{r+1})$, where $\tau = \sigma_i \cap \sigma_j \in \Delta_{d-1}^0$.

By Proposition 2.2, the elements of $C^r(\Delta)$ are piecewise polynomial functions $F = (f_1, \ldots, f_t)$ such that, for every adjacent pair $\sigma_i, \sigma_j \in \Delta_d$, the partial derivatives up to order r of f_i and f_j agree at every point in $\tau = \sigma_i \cap \sigma_j \in \Delta_{d-1}^0$.

Mixed splines are obtained by extending C^r -splines. Let $e = f_{d-1}^0(\Delta)$. We fix an ordering τ_1, \ldots, τ_e of Δ_{d-1}^0 . We now define mixed splines.

Definition 2.3. For $\Delta \subset \mathbb{R}^d$ and $\alpha = (\alpha_{\tau_1}, \ldots, \alpha_{\tau_e}) \in \mathbb{Z}_{\geq 0}^e$, $C^{\alpha}(\Delta)$ is the set of functions $F : |\Delta| \longrightarrow \mathbb{R}$ such that

- (i) $F|_{\sigma_i}$ is given by a polynomial in R for all $\sigma_i \in \Delta_d$;
- (ii) for every adjacent pair $\sigma_i, \sigma_j \in \Delta_d$, the partial derivatives up to order α_{τ_s} of $F|_{\sigma_i}$ and $F|_{\sigma_j}$ agree at every point in $\tau_s = \sigma_i \cap \sigma_j \in \Delta_{d-1}^0$, that is, $F|_{\sigma_i} F|_{\sigma_j} \in (l_{\tau_s}^{\alpha_{\tau_s}+1})$.

We call the elements of $C^{\alpha}(\Delta)$ mixed splines.

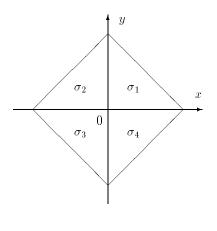


Figure 1:

Note that if $\alpha_{\tau_s} = r$ for every $s, 1 \leq s \leq e$, then $C^{\alpha}(\Delta)$ is the set of C^r -splines, that is, $C^r(\Delta)$.

Example 2.4. Let $\Delta \subset \mathbb{R}^2$ be the simplicial complex shown in Figure 1. Let $\tau_1 = \sigma_1 \cap \sigma_2$, $\tau_2 = \sigma_2 \cap \sigma_3$, $\tau_3 = \sigma_3 \cap \sigma_4$, and $\tau_4 = \sigma_1 \cap \sigma_4$. Then $l_{\tau_1} = l_{\tau_3} = x$, and $l_{\tau_2} = l_{\tau_4} = y$. Let $\alpha = (1, 2, 3, 4)$. Then, for example, $(y^5, x^4 + y^5, x^4, 0) \in C^{\alpha}(\Delta)$, and $(y^5, x^4 + y^5, x^4, x^4) \notin C^{\alpha}(\Delta)$.

We now describe some important properties of $C^{\alpha}(\Delta)$. Let $t = f_d(\Delta)$. Fixing an ordering $\sigma_1, \ldots, \sigma_t$ of Δ_d , we can represent $F \in C^{\alpha}(\Delta)$ as a *t*-tuple of polynomials in R, i.e., $F = (f_1, \ldots, f_t)$, where $f_i = F|_{\sigma_i} \in R$ for each *i*. In this way, we can view $C^{\alpha}(\Delta)$ as a submodule of R^t . Moreover, we can easily see that $C^{\alpha}(\Delta)$ is a finitely generated R-module of rank *t*.

We say that Δ is *central* if there is some vertex $v \in \Delta$ such that every $\sigma_i \in \Delta_d$ contains v. For example, the simplicial complex in Figure 1 is central. If Δ is central, then $C^{\alpha}(\Delta)$ is a graded *R*-module.

Let $\Delta \subset \mathbb{R}^d$ and $R = \mathbb{R}[x_1, \ldots, x_d]$. We define $\widehat{\Delta} \subset \mathbb{R}^{d+1}$ in the following manner. We think of Δ as a subset of the hyperplane $x_{d+1} = 1 \subset \mathbb{R}^{d+1}$. Let $\widehat{\Delta}$ be the join of Δ with the origin in \mathbb{R}^{d+1} , which we define to be the complex $\Delta \cup \{\widehat{\sigma} : \sigma \in \Delta\}$, where $\widehat{\sigma}$ denotes the convex hull of σ and the origin in \mathbb{R}^{d+1} . Then, $\widehat{\Delta}$ is a (d+1)-dimensional simplicial complex in \mathbb{R}^{d+1} such that $\widehat{\Delta}$ and all its links are pseudomanifolds. Therefore, for $\Delta \subset \mathbb{R}^d$, we can consider the set $C^{\alpha}(\widehat{\Delta})$. Since $\widehat{\Delta}$ is central, $C^{\alpha}(\widehat{\Delta})$ is a finitely generated graded \widehat{R} -module of rank $f_{d+1}(\widehat{\Delta}) = f_d(\Delta)$, where $\widehat{R} = \mathbb{R}[x_1, \ldots, x_{d+1}]$.

In the next section, we will focus on the problem of the freeness of the module $C^{\alpha}(\widehat{\Delta})$ in the case d = 2.

3 Conditions for $C^{\alpha}(\widehat{\Delta})$ to be free when d = 2. Let d = 2 and $R = \mathbb{R}[x, y, z]$. The module $C^{\alpha}(\widehat{\Delta})$ over R can be free only if $\Delta \subset \mathbb{R}^2$ has genus zero. So, let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk. We fix an ordering τ_1, \ldots, τ_e of Δ_1^0 , where $e = f_1^0(\Delta) = f_2^0(\widehat{\Delta})$. Let $l_{\tau_j} \in R$ be the homogeneous linear polynomial defining the plane containing $\widehat{\tau}_j \subset \mathbb{R}^3$. We define a complex \mathcal{J} as

$$\mathcal{J}: \ 0 \longrightarrow \bigoplus_{\sigma_k \in \Delta_2} \mathcal{J}(\sigma_k) \xrightarrow{\partial_2} \bigoplus_{\tau_j \in \Delta_1^0} \mathcal{J}(\tau_j) \xrightarrow{\partial_1} \bigoplus_{v_i \in \Delta_0^0} \mathcal{J}(v_i) \longrightarrow 0,$$

where $\mathcal{J}(\sigma_k) := 0$ for $\sigma_k \in \Delta_2$, $\mathcal{J}(\tau_j) := (l_{\tau_j}^{\alpha_{\tau_j}+1})$ for $\tau_j \in \Delta_1^0$, $\mathcal{J}(v_i) := (l_{\tau_j}^{\alpha_{\tau_j}+1}: \tau_j \in \Delta_1^0, v_i \in \tau_j)$ for $v_i \in \Delta_0^0$, and ∂_i is the usual (relative to $\partial \Delta$) simplicial boundary map, and we define $H_*(\mathcal{J})$ to be the homology of this complex. Moreover, we define a complex \mathcal{R} as

$$\mathcal{R}: \ 0 \longrightarrow R^{f_2} \xrightarrow{\partial_2} R^{f_1^0} \xrightarrow{\partial_1} R^{f_0^0} \longrightarrow 0,$$

where $\mathcal{R}(\sigma) := \mathbb{R} = \mathbb{R}[x, y, z]$ for any $\sigma \in \Delta^0$, and we define $H_*(\mathcal{R})$ to be the homology of this complex. Let \mathcal{R}/\mathcal{J} be the quotient of \mathcal{R} by \mathcal{J} , and let $H_*(\mathcal{R}/\mathcal{J})$ be the homology of this complex. From the short exact sequence of complexes $0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{R} \longrightarrow \mathcal{R}/\mathcal{J} \longrightarrow 0$, we get a long exact sequence in homology:

$$0 \to H_2(\mathcal{R}) \to H_2(\mathcal{R}/\mathcal{J}) \to H_1(\mathcal{J}) \to H_1(\mathcal{R}) \to H_1(\mathcal{R}/\mathcal{J}) \to H_0(\mathcal{J}) \to 0.$$

By the same argument as [9, Theorem 4.1], it follows that $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module if and only if $H_1(\mathcal{R}/\mathcal{J}) = 0$. Moreover, since $H_1(\mathcal{R}) = 0$ if $\Delta \subset \mathbb{R}^2$ is a triangulation of a topological disk, $H_1(\mathcal{R}/\mathcal{J}) \cong H_0(\mathcal{J})$. So, it follows that $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module if and only if $H_0(\mathcal{J}) = 0$. In this section, we characterize Δ and α such that $C^{\alpha}(\widehat{\Delta})$ can be free.

We call an edge $\tau \in \Delta$ totally interior, if both vertices of τ are interior vertices in Δ . For example, none of the edges in the simplicial complex in Figure 1 is totally interior. We define $K^{\alpha} \subset \bigoplus_{\tau \in \Delta^{\mathbb{N}}} R\mathbf{e}_{\tau}$ to be the submodule generated by

$$\{\mathbf{e}_{\tau}: \tau \in \Delta_1^0 \text{ is not totally interior}\}\$$

and

$$\left\{\sum_{v\in\tau}a_{\tau}\mathbf{e}_{\tau}:\sum_{v\in\tau}a_{\tau}l_{\tau}^{\alpha_{\tau}+1}=0,\ a_{\tau}\in R\right\}$$

for each $v \in \Delta_0^0$, where $\mathbf{e}_{\tau} \in \mathbb{R}^e$ is the vector such that the component corresponding to τ is 1 and all the other components are 0. Then, there exists an exact sequence

$$0 \longrightarrow K^{\alpha} \longrightarrow \bigoplus_{\tau \in \Delta_1^0} R\mathbf{e}_{\tau} \longrightarrow H_0(\mathcal{J}) \longrightarrow 0.$$

Putting the above argument together, we get the following result.

Proposition 3.1. The module $C^{\alpha}(\widehat{\Delta})$ over R is free if and only if $\mathbf{e}_{\tau} \in K^{\alpha}$ for any $\tau \in \Delta_{1}^{0}$.

Proof. By the above argument, $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module if and only if $H_0(\mathcal{J}) = 0$. Moreover, by the above exact sequence, it follows that $H_0(\mathcal{J}) = 0$ if and only if $K^{\alpha} = \bigoplus_{\tau \in \Delta^0_+} R\mathbf{e}_{\tau}$.

Let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk which has at least one totally interior edge. For each $v \in \Delta_0^0$, we set $H_v := \{l_{\tau_j}^{\alpha_{\tau_j}+1} : v \in \tau_j\}$ and construct the set $L_v \subset H_v$ in the following manner. If there are $l_{\tau_p}^{\alpha_{\tau_p}+1}$, $l_{\tau_q}^{\alpha_{\tau_q}+1} \in H_v$ such that $l_{\tau_p} = l_{\tau_q}$ and $\alpha_{\tau_p} < \alpha_{\tau_q}$, then we remove $l_{\tau_q}^{\alpha_{\tau_q}+1}$ from H_v . If there are $l_{\tau_p}^{\alpha_{\tau_p}+1}$, $l_{\tau_q}^{\alpha_{\tau_q}+1} \in H_v$ such that $l_{\tau_p} = l_{\tau_q}$ and $\alpha_{\tau_p} = \alpha_{\tau_q}$, then we may remove either of $l_{\tau_p}^{\alpha_{\tau_p}+1}$ and $l_{\tau_q}^{\alpha_{\tau_q}+1}$ from H_v since $l_{\tau_p}^{\alpha_{\tau_p}+1} = l_{\tau_q}^{\alpha_{\tau_q}+1}$, but we consider $l_{\tau_p}^{\alpha_{\tau_p}+1}$, $l_{\tau_q}^{\alpha_{\tau_q}+1}$ as distinct polynomials from a viewpoint that $l_{\tau_p}^{\alpha_{\tau_p}+1}$ is the polynomial corresponding to τ_p and $l_{\tau_q}^{\alpha_{\tau_q}+1}$ or removing $l_{\tau_q}^{\alpha_{\tau_q}+1}$.

Proposition 3.2. Let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk which has at least one totally interior edge. If the following condition holds, then $C^{\alpha}(\widehat{\Delta})$ is not a free *R*-module: Whatever $L_{\alpha}(\alpha \in \Delta^0)$ we construct we have a totally interior edge $\pi \in \Delta^0$ such that

Whatever L_v $(v \in \Delta_0^0)$ we construct, we have a totally interior edge $\tau \in \Delta_1^0$ such that

(1)
$$\begin{cases} l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \tau_{j} \neq \tau, \alpha_{\tau_{j}} \leq \alpha_{\tau} \right), \\ l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{w_{\tau}} : \tau_{j} \neq \tau, \alpha_{\tau_{j}} \leq \alpha_{\tau} \right), \end{cases}$$

where v_{τ} , w_{τ} are the vertices of τ .

Proof. By assumption, there are totally interior edges τ_1, \ldots, τ_s which satisfy the following condition:

 $\alpha_{\tau_1} = \cdots = \alpha_{\tau_s}, l_{\tau_1} = \cdots = l_{\tau_s}$ and for each $i = 1, \ldots, s - 1, \tau_i$ and τ_{i+1} share a common vertex, and furthermore

$$l_{\tau_{1}}^{\alpha_{\tau_{1}}+1} \notin \left(l_{\tau}^{\alpha_{\tau}+1} : \tau \in \Delta_{1}^{0}, v_{0} \in \tau, \tau \neq \tau_{1}, \alpha_{\tau} \leq \alpha_{\tau_{1}} \right), \\ l_{\tau_{1}}^{\alpha_{\tau_{1}}+1} = l_{\tau_{2}}^{\alpha_{\tau_{2}}+1} \notin \left(l_{\tau}^{\alpha_{\tau}+1} : \tau \in \Delta_{1}^{0}, v_{1} \in \tau, \tau \neq \tau_{1}, \tau_{2}, \alpha_{\tau} \leq \alpha_{\tau_{1}} \right), \\ l_{\tau_{2}}^{\alpha_{\tau_{2}}+1} = l_{\tau_{3}}^{\alpha_{\tau_{3}}+1} \notin \left(l_{\tau}^{\alpha_{\tau}+1} : \tau \in \Delta_{1}^{0}, v_{2} \in \tau, \tau \neq \tau_{2}, \tau_{3}, \alpha_{\tau} \leq \alpha_{\tau_{2}} \right),$$

(2)

$$\begin{array}{c} \vdots \\ l_{\tau_{s-1}}^{\alpha_{\tau_{s-1}}+1} = l_{\tau_{s}}^{\alpha_{\tau_{s}}+1} & \notin \quad \left(l_{\tau}^{\alpha_{\tau}+1} : \tau \in \Delta_{1}^{0}, \, v_{s-1} \in \tau, \tau \neq \tau_{s-1}, \tau_{s}, \, \alpha_{\tau} \leq \alpha_{\tau_{s-1}} \right), \\ l_{\tau_{s}}^{\alpha_{\tau_{s}}+1} & \notin \quad \left(l_{\tau}^{\alpha_{\tau}+1} : \tau \in \Delta_{1}^{0}, \, v_{s} \in \tau, \tau \neq \tau_{s}, \, \alpha_{\tau} \leq \alpha_{\tau_{s}} \right), \end{array}$$

where, for i = 1, ..., s - 1, v_i is the vertex which τ_i and τ_{i+1} share, v_0 is the vertex of τ_1 which is different from v_1 , and v_s is the vertex of τ_s which is different from v_{s-1} .

In fact, we assume that the condition (2) does not hold for some vertex v_i . If we construct

$$L_{v_0} = \{ l_{\tau_1}^{\alpha_{\tau_1}+1}, \dots \}, \quad \dots \quad , L_{v_{i-1}} = \{ l_{\tau_i}^{\alpha_{\tau_i}+1}, \dots \},$$
$$L_{v_{i+1}} = \{ l_{\tau_{i+1}}^{\alpha_{\tau_{i+1}}+1}, \dots \}, \quad \dots \quad , L_{v_s} = \{ l_{\tau_s}^{\alpha_{\tau_s}+1}, \dots \},$$

then none of the edges τ_1, \ldots, τ_s satisfies the condition (1) in Proposition 3.2 whatever L_{v_i} we construct. Hence, if there are not τ_1, \ldots, τ_s as above, then we can construct the sets L_v ($v \in \Delta_0^0$) such that the condition (1) in Proposition 3.2 does not hold for any totally interior edge. This contradicts the assumption.

For each $v_i \in \Delta_0^0$, we set

$$K_{v_i}^{\alpha} := \left\{ \sum_{v_i \in \tau} a_{\tau} \mathbf{e}_{\tau} : \sum_{v_i \in \tau} a_{\tau} l_{\tau}^{\alpha_{\tau}+1} = 0, \ a_{\tau} \in R \right\}.$$

For any element $\sum_{v_0 \in \tau} a_\tau \mathbf{e}_\tau$ in $K_{v_0}^{\alpha}$, the constant term a'_{τ_1} of $a_{\tau_1} \in R$ is 0. In fact, we assume that $a'_{\tau_1} \neq 0$. Since $\sum_{v_0 \in \tau} a_\tau \mathbf{e}_\tau \in K_{v_0}^{\alpha}$,

$$a_{\tau_1} l_{\tau_1}^{\alpha_{\tau_1}+1} + \sum_{v_0 \in \tau, \ \tau \neq \tau_1} a_{\tau} l_{\tau}^{\alpha_{\tau}+1} = 0.$$

Comparing the homogeneous parts of degree $\alpha_{\tau_1} + 1$ on both sides, we get

$$a_{\tau_1}' l_{\tau_1}^{\alpha_{\tau_1}+1} + \sum_{v_0 \in \tau, \ \tau \neq \tau_1} a_{\tau}' l_{\tau}^{\alpha_{\tau}+1} = 0,$$

where $a'_{\tau} \in R$. This contradicts the condition (2). Hence, it follows that $a'_{\tau_1} = 0$. Similarly,

for any element $\sum_{v_i \in \tau} a_\tau \mathbf{e}_\tau$ in $K_{v_s}^{\alpha}$, the constant term a'_{τ_s} of $a_{\tau_s} \in R$ is 0. Moreover, for any element $\sum_{v_i \in \tau} a_\tau \mathbf{e}_\tau$ in $K_{v_i}^{\alpha}$ $(i = 1, \ldots, s - 1)$, let a'_{τ_i} (resp. $a'_{\tau_{i+1}}$) be the constant term in $a_{\tau_i} \in R$ (resp. $a_{\tau_{i+1}} \in R$). Then, it holds that $a'_{\tau_i} + a'_{\tau_{i+1}} = 0$. In fact, we assume that $a'_{\tau_i} + a'_{\tau_{i+1}} \neq 0$. Since $\sum_{v_i \in \tau} a_\tau \mathbf{e}_\tau \in K_{v_i}^{\alpha}$, it follows that

$$a_{\tau_i} l_{\tau_i}^{\alpha_{\tau_i}+1} + a_{\tau_{i+1}} l_{\tau_{i+1}}^{\alpha_{\tau_{i+1}}+1} + \sum_{\substack{v_i \in \tau \\ \tau \neq \tau_i, \tau_{i+1}}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1} = 0.$$

Since $l_{\tau_i}^{\alpha_{\tau_i}+1} = l_{\tau_{i+1}}^{\alpha_{\tau_{i+1}}+1}$, we get

$$\left(a_{\tau_{i}} + a_{\tau_{i+1}}\right) l_{\tau_{i}}^{\alpha_{\tau_{i}}+1} + \sum_{\substack{v_{i} \in \tau \\ \tau \neq \tau_{i}, \tau_{i+1}}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1} = 0.$$

Comparing the homogeneous parts of degree $\alpha_{\tau_i} + 1$ on both sides,

$$(a'_{\tau_i} + a'_{\tau_{i+1}}) \, l_{\tau_i}^{\alpha_{\tau_i}+1} + \sum_{v_i \in \tau \\ \tau \neq \tau_i, \tau_{i+1}} a'_{\tau} l_{\tau}^{\alpha_{\tau}+1} = 0$$

where $a'_{\tau} \in R$. This contradicts the condition (2). Hence, it follows that $a'_{\tau_i} + a'_{\tau_{i+1}} = 0$.

In this way, if, for any element in the submodule generated by $\bigcup_{i=0}^{s} K_{v_i}^{\alpha}$, we denote the constant term in the coefficient of \mathbf{e}_{τ_i} by a_{τ_i} , then it follows that $\sum_{i=1}^{s} a_{\tau_i} = 0$. Hence, for any element in K^{α} , the sum of the constant terms in the coefficients of $\mathbf{e}_{\tau_1}, \ldots, \mathbf{e}_{\tau_s}$ is also 0. Therefore, it follows that $\mathbf{e}_{\tau_1} \notin K^{\alpha}$. This implies that $K^{\alpha} \neq \bigoplus_{\tau \in \Delta^0_+} R\mathbf{e}_{\tau}$. Hence, by Proposition 3.1, $C^{\alpha}(\widehat{\Delta})$ is not a free *R*-module.

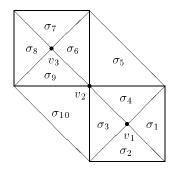


Figure 2:

Example 3.3. Let $\Delta \subset \mathbb{R}^2$ be the simplicial complex shown in Figure 2. We order the elements in Δ_1^0 as

$$\begin{aligned} \tau_1 &= \sigma_1 \cap \sigma_2, \quad \tau_2 = \sigma_2 \cap \sigma_3, \quad \tau_3 = \sigma_3 \cap \sigma_4, \\ \tau_4 &= \sigma_1 \cap \sigma_4, \quad \tau_5 = \sigma_4 \cap \sigma_5, \quad \tau_6 = \sigma_5 \cap \sigma_6, \\ \tau_7 &= \sigma_6 \cap \sigma_7, \quad \tau_8 = \sigma_7 \cap \sigma_8, \quad \tau_9 = \sigma_8 \cap \sigma_9, \\ \tau_{10} &= \sigma_6 \cap \sigma_9, \quad \tau_{11} = \sigma_9 \cap \sigma_{10}, \quad \tau_{12} = \sigma_3 \cap \sigma_{10}. \end{aligned}$$

If $\alpha = (2, 3, 1, 3, 2, 2, 3, 1, 2, 0, 3, 3)$, then

$$\begin{split} L_{v_1} &= \{ l_{\tau_3}^2, \, l_{\tau_2}^4 \} \text{ or } \{ l_{\tau_3}^2, \, l_{\tau_4}^4 \} \\ L_{v_2} &= \{ l_{\tau_{10}}, \, l_{\tau_5}^3, \, l_{\tau_6}^3 \}, \\ L_{v_3} &= \{ l_{\tau_{10}}, \, l_{\tau_9}^3 \}. \end{split}$$

Hence, whatever L_{v_i} (i = 1, 2, 3) we construct, the condition in Proposition 3.2 holds for τ_{10} . Therefore, by Proposition 3.2, $C^{\alpha}(\widehat{\Delta})$ is not a free *R*-module.

If $\alpha = (2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 3, 3)$, then

$$\begin{split} L_{v_1} &= \{l_{\tau_2}^2, l_{\tau_3}^2\} \text{ or } \{l_{\tau_3}^2, l_{\tau_4}^2\}, \\ L_{v_2} &= \{l_{\tau_3}^2, l_{\tau_5}^3, l_{\tau_6}^3\} \text{ or } \{l_{\tau_{10}}^2, l_{\tau_5}^3, l_{\tau_6}^3\}, \\ L_{v_3} &= \{l_{\tau_7}^2, l_{\tau_{10}}^2\} \text{ or } \{l_{\tau_5}^2, l_{\tau_{10}}^2\}. \end{split}$$

Hence, whatever L_{v_i} (i = 1, 3) we construct, the condition in Proposition 3.2 holds for τ_3 if L_{v_2} is the former, and the condition in Proposition 3.2 holds for τ_{10} if L_{v_2} is the latter. Therefore, by Proposition 3.2, $C^{\alpha}(\widehat{\Delta})$ is not a free *R*-module.

We now come to the first main result in this paper.

Theorem 3.4. The module $C^{\alpha}(\widehat{\Delta})$ over R is free for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ if and only if Δ possesses no totally interior edge.

Proof. If Δ does not have a totally interior edge, none of the edges in Δ is totally interior. Hence, for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$, it follows that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any $\tau \in \Delta_{1}^{0}$. Therefore, by Proposition 3.1, $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$.

On the other hand, by Proposition 3.2, it follows that if Δ has a totally interior edge, there exists $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ such that $C^{\alpha}(\widehat{\Delta})$ is not a free *R*-module.

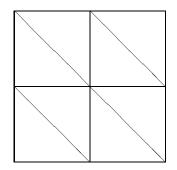


Figure 3:

Example 3.5. Let $\Delta \subset \mathbb{R}^2$ be the simplicial complex in Figure 3. By Theorem 3.4, $C^{\alpha}(\widehat{\Delta})$ is free for all $\alpha \in \mathbb{Z}^8_{>0}$, since Δ does not have a totally interior edge.

We next consider the freeness of $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^2$ of a topological disk which has at least one totally interior edge.

Proposition 3.6. Let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk which has at least one totally interior edge. If the following condition holds, then $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module:

We can construct the sets L_v ($v \in \Delta_0^0$) such that, for any totally interior edge $\tau \in \Delta_1^0$, there is a vertex $v_\tau \in \Delta_0^0$ of τ such that

$$l_{\tau}^{\alpha_{\tau}+1} \in \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau} \right).$$

Proof. By Proposition 3.1, in order to prove that $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module, it suffices to show that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any $\tau \in \Delta_1^0$. Since $\mathbf{e}_{\tau} \in K^{\alpha}$ for any edge $\tau \in \Delta_1^0$ which is not totally interior, we have only to show that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any totally interior edge $\tau \in \Delta_1^0$.

First, we set

 $r_1 := \min\{\alpha_\tau : \ \tau \in \Delta_1^0 \text{ is totally interior }\},$

and take any totally interior edge $\tau_1 \in \Delta_1^0$ such that $\alpha_{\tau_1} = r_1$. By assumption, there is a vertex $v_1 \in \Delta_0^0$ of τ_1 such that

$$l_{\tau_{1}}^{\alpha_{\tau_{1}}+1} \in \left(l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{1}} : \alpha_{\tau} < \alpha_{\tau_{1}} \right).$$

By the choice of r_1 , the edge $\tau \in \Delta_1^0$ satisfying $\alpha_{\tau} < \alpha_{\tau_1}$ is not totally interior. Hence, if

$$l_{\tau_1}^{\alpha_{\tau_1}+1} = \sum_{v_1 \in \tau, \ \alpha_{\tau} < \alpha_{\tau_1}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}.$$

where $a_{\tau} \in R$, then it follows that

$$\mathbf{e}_{\tau_1} - \sum_{v_1 \in \tau, \, \alpha_\tau < \alpha_{\tau_1}} a_\tau \, \mathbf{e}_\tau \in K^{\alpha}.$$

Since τ is not totally interior, $\mathbf{e}_{\tau} \in K^{\alpha}$. Therefore, it follows that $\mathbf{e}_{\tau_1} \in K^{\alpha}$. We next set

 $r_2 := \min\{\alpha_\tau : \tau \in \Delta_1^0 \text{ is a totally interior edge such that } \alpha_\tau \neq r_1\},\$

and take any totally interior edge $\tau_2 \in \Delta_1^0$ such that $\alpha_{\tau_2} = r_2$. By assumption, there is a vertex $v_2 \in \Delta_0^0$ of τ_2 such that

$$l_{\tau_2}^{\alpha_{\tau_2}+1} \in \left(l_{\tau}^{\alpha_{\tau}+1} \in L_{v_2} : \alpha_{\tau} < \alpha_{\tau_2} \right).$$

By the choice of r_2 , the edge $\tau \in \Delta_1^0$ satisfying $\alpha_{\tau} < \alpha_{\tau_2}$ is not a totally interior edge or is a totally interior edge such that $\alpha_{\tau} = r_1$. In either case, it follows that $\mathbf{e}_{\tau} \in K^{\alpha}$. Hence, if

$$l_{\tau_2}^{\alpha_{\tau_2}+1} = \sum_{v_2 \in \tau, \, \alpha_\tau < \alpha_{\tau_2}} a_\tau l_\tau^{\alpha_\tau+1},$$

where $a_{\tau} \in R$, then it follows that

$$\mathbf{e}_{\tau_2} - \sum_{v_2 \in \tau, \, \alpha_\tau < \alpha_{\tau_2}} a_\tau \, \mathbf{e}_\tau \in K^{\alpha}.$$

Since $\mathbf{e}_{\tau} \in K^{\alpha}$, it follows that $\mathbf{e}_{\tau_2} \in K^{\alpha}$.

Since the number of totally interior edges in Δ_1^0 is finite, by the repeat of this process, it follows that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any totally interior edge $\tau \in \Delta_1^0$. This implies that $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module.

Example 3.7. Let $\Delta \subset \mathbb{R}^2$ be the same simplicial complex as in Example 3.3. If $\alpha = (1, 3, 2, 3, 2, 2, 2, 4, 2, 3, 3, 3)$, then

$$\begin{split} L_{v_1} &= \{l_{\tau_1}^2, l_{\tau_2}^4\} \text{ or } \{l_{\tau_1}^2, l_{\tau_4}^4\}, \\ L_{v_2} &= \{l_{\tau_3}^3, l_{\tau_5}^3, l_{\tau_6}^3\}, \\ L_{v_3} &= \{l_{\tau_7}^3, l_{\tau_{10}}^4\} \text{ or } \{l_{\tau_9}^3, l_{\tau_{10}}^4\}. \end{split}$$

Since

$$l^{3}_{\tau_{3}} \in (l^{2}_{\tau_{1}}), \quad l^{4}_{\tau_{10}} \in (l^{3}_{\tau_{3}}) \subset (l^{3}_{\tau_{3}}, l^{3}_{\tau_{5}}, l^{3}_{\tau_{6}}),$$

the condition in Proposition 3.6 holds. Hence, by Proposition 3.6, $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module.

We say that $\alpha = (\alpha_{\tau_1}, \ldots, \alpha_{\tau_e}) \in \mathbb{Z}_{\geq 0}^e$ is generic if $\alpha_{\tau_i} \neq \alpha_{\tau_j}$ for any $v \in \Delta_0^0$ and for every pair $\tau_i, \tau_j \in \Delta_1^0$ such that $v \in \tau_i$ and $v \in \tau_j$. By Proposition 3.2 and Proposition 3.6, we get the following result.

Proposition 3.8. Let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk which has at least one totally interior edge, and let $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ be generic. Then, the following conditions are equivalent:

- (i) $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module;
- (ii) for any totally interior edge $\tau \in \Delta_1^0$, there is a vertex $v_{\tau} \in \Delta_0^0$ of τ such that

$$l_{\tau}^{\alpha_{\tau}+1} \in \left(l_{\tau_j}^{\alpha_{\tau_j}+1} \in L_{v_{\tau}} : \alpha_{\tau_j} < \alpha_{\tau} \right).$$

Proof. First, by Proposition 3.6, it follows immediately that (ii) \Rightarrow (i). Thus, we must prove that (i) \Rightarrow (ii). We now assume that there is a totally interior edge $\tau \in \Delta_1^0$ such that

$$l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau} \right), \\ l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{w_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau} \right),$$

where v_{τ} , w_{τ} are the vertices of τ . Then, since α is generic, it follows that

$$l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \tau_{j} \neq \tau, \, \alpha_{\tau_{j}} \leq \alpha_{\tau} \right), \\ l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{w_{\tau}} : \tau_{j} \neq \tau, \, \alpha_{\tau_{j}} \leq \alpha_{\tau} \right).$$

Hence, by Proposition 3.2, $C^{\alpha}(\widehat{\Delta})$ is not a free *R*-module, which contradicts (i).

By the following lemma, we can determine whether $l_{\tau}^{\alpha_{\tau}+1} \in (l_{\tau_j}^{\alpha_{\tau_j}+1} \in L_{v_{\tau}} : \alpha_{\tau_j} < \alpha_{\tau})$ or not for each totally interior edge $\tau \in \Delta_1^0$ and for each vertex $v_{\tau} \in \Delta_0^0$ of τ .

Lemma 3.9 ([6, Corollary 2.5]). Let $f_1, \ldots, f_s \in S = \mathbb{R}[x, y]$ be homogeneous linear polynomials which are pairwise linearly independent, and let $0 < c_1 \leq c_2 \leq \cdots \leq c_s$ be integers. Then, for $m \geq 2$,

$$f_{m+1}^{c_{m+1}} \notin (f_1^{c_1}, \dots, f_m^{c_m}) \iff c_{m+1} \le \frac{\sum_{i=1}^m c_i - m}{m-1}.$$

Remark 3.10. Let $S = \mathbb{R}[x, y]$ and $R = \mathbb{R}[x, y, z]$. For each $\tau_i \in \Delta_1^0$, $i = 1, \ldots, s$, containing the vertex $v \in \Delta_0^0$, let $l_{\tau_j} \in R$ be the homogeneous linear polynomial defining the plane containing $\hat{\tau}_j \subset \mathbb{R}^3$. Suppose that the set $\{l_{\tau_1}, \ldots, l_{\tau_s}\}$ is pairwise linearly independent. Let $0 < c_1 \le c_2 \le \cdots \le c_s$ be integers. Moreover, let $f_{\tau_i} = a_i x + b_i y + d_i \in S$ be the linear polynomial defining the line containing $\tau_i \subset \mathbb{R}^2$ and let $f'_{\tau_i} = a_i x + b_i y \in S$. Then, for $m \ge 2$,

$$f_{\tau_{m+1}}'^{c_{m+1}} \in (f_{\tau_1}'^{c_1}, \dots, f_{\tau_m}'^{c_m}) \iff l_{\tau_{m+1}}^{c_{m+1}} \in (l_{\tau_1}^{c_1}, \dots, l_{\tau_m}^{c_m}).$$

Hence, we can determine whether $l_{\tau_{m+1}}^{c_{m+1}} \in (l_{\tau_1}^{c_1}, \ldots, l_{\tau_m}^{c_m})$ or not by using the inequality in Lemma 3.9.

For each totally interior edge $\tau \in \Delta_1^0$, and for each vertex v_{τ} of τ , we set

$$\begin{aligned} K_{v_{\tau}} &:= \{ \tau_j \in \Delta_1^0 : l_{\tau_j}^{\alpha_{\tau_j} - \tau} \in L_{v_{\tau}}, \ \alpha_{\tau_j} < \alpha_{\tau} \}, \\ m_{v_{\tau}} &:= |K_{v_{\tau}}|. \end{aligned}$$

By Proposition 3.8 and Lemma 3.9, we obtain a method for determining whether $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module if $\Delta \subset \mathbb{R}^2$ is a triangulation of a topological disk which has at least one totally interior edge and $\alpha \in \mathbb{Z}_{\geq 0}^{\epsilon}$ is generic.

Theorem 3.11. Let $\Delta \subset \mathbb{R}^2$ be a triangulation of a topological disk which has at least one totally interior edge, and let $\alpha \in \mathbb{Z}_{\geq 0}^e$ be generic. Then, $C^{\alpha}(\widehat{\Delta})$ is a free *R*-module if and only if, for any totally interior edge $\tau \in \Delta_1^0$, there exists a vertex v_{τ} of τ such that either (i) or (ii) below is satisfied:

- (i) $@l_{\tau}^{\alpha_{\tau}+1} \notin L_{v_{\tau}};$
- (ii) $@l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}, m_{v_{\tau}} \geq 2, and$

$$\alpha_{\tau} + 1 > \frac{\sum_{\tau_{j} \in K_{v_{\tau}}} (\alpha_{\tau_{j}} + 1) - m_{v_{\tau}}}{m_{v_{\tau}} - 1}$$

Proof. Let $\tau \in \Delta_1^0$ be any totally interior edge, and let $v_{\tau} \in \Delta_0^0$ be a vertex of τ . If $l_{\tau}^{\alpha_{\tau}+1} \notin L_{v_{\tau}}$, then there is $l_{\tau'}^{\alpha_{\tau'}+1} \in L_{v_{\tau}}$ such that $l_{\tau} = l_{\tau'}$, $\alpha_{\tau} > \alpha_{\tau'}$. Hence,

$$l_{\tau}^{\alpha_{\tau}+1} \in \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau} \right).$$

If $l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}$ and $m_{v_{\tau}} \geq 2$, then it follows from Lemma 3.9 and Remark 3.10 that

$$l_{\tau}^{\alpha_{\tau}+1} \in \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau}\right) \iff \alpha_{\tau}+1 > \frac{\sum_{\tau_{j} \in K_{v_{\tau}}} (\alpha_{\tau_{j}}+1) - m_{v_{\tau}}}{m_{v_{\tau}}-1}$$

If $l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}$ and $m_{v_{\tau}} \leq 1$, then

$$l_{\tau}^{\alpha_{\tau}+1} \notin \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau} \right).$$

In this way, for the totally interior edge $\tau \in \Delta_1^0$ and for the vertex $v_\tau \in \Delta_0^0$ of τ , the condition (i) or (ii) holds if and only if

$$l_{\tau}^{\alpha_{\tau}+1} \in \left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}} : \alpha_{\tau_{j}} < \alpha_{\tau} \right).$$

Hence, we obtain the desired result by Proposition 3.8.



Figure 4:

Example 3.12. Let $\Delta \subset \mathbb{R}^2$ be the simplicial complex shown in Figure 4. Then, τ_5 is the only totally interior edge of Δ . For example, let $\alpha = (0, 4, 2, 1, 3, 4) \in \mathbb{Z}_{\geq 0}^6$. Then α is generic. In this case,

$$H_{v} = \{l_{\tau_{1}}, l_{\tau_{4}}^{2}, l_{\tau_{5}}^{4}, l_{\tau_{6}}^{5}\},\$$

$$L_{v} = \{l_{\tau_{1}}, l_{\tau_{4}}^{2}, l_{\tau_{5}}^{4}\},\$$

$$K_{v} = \{\tau_{1}, \tau_{4}\},\$$

and

$$3 + 1 = 4 > \frac{(0+1) + (1+1) - 2}{2 - 1} = 1$$

Therefore, by Theorem 3.11, $C^{\alpha}(\widehat{\Delta})$ is free. Moreover, let $\alpha = (0, 2, 3, 2, 1, 4) \in \mathbb{Z}_{\geq 0}^{6}$, which is also generic. In this case, for the vertex v,

$$\begin{aligned} H_v &= \{ l_{\tau_1}, l_{\tau_4}^3, l_{\tau_5}^2, l_{\tau_6}^5 \}, \\ L_v &= \{ l_{\tau_1}, l_{\tau_4}^3, l_{\tau_5}^2 \}, \\ K_v &= \{ \tau_1 \}, \end{aligned}$$

and for the vertex w,

$$H_w = L_w = \{l_{\tau_2}^3, l_{\tau_3}^4, l_{\tau_5}^2\}, K_w = \emptyset.$$

Therefore, by Theorem 3.11, $C^{\alpha}(\widehat{\Delta})$ is not free.

References

- [1] L. Billera, Homology of smooth splines : Generic triangulations and a conjecture of Strang, Trans. Amer. Math. Soc. 310 (1988), 325 - 340.
- [2] L. Billera, The algebra of continuous piecewise polynomials, Adv. in Math. 76 (1989), 170 -183.

- [3] L. Billera and L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom. 6 (1991), 107 - 128.
- [4] L. Billera and L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), 485 - 497.
- [5] D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry. Springer-Verlag, New York-Berlin-Heidelberg, 1998.
- [6] A. Geramita and H. Schenck, Fat points, inverse systems, and piecewise polynomial functions, J. Algebra 204 (1998), 116 - 128.
- [7] L. Rose, Combinatorial and topological invariants of modules of piecewise polynomials, Adv. in Math. 116 (1995), 34 - 45.
- [8] H. Schenck, A spectral sequence for splines, Adv. in Appl. Math. 19 (1997), 183 199.
- [9] H. Schenck and M. Stillman, Local cohomology of bivariate splines, J. Pure Appl. Algebra 117 118 (1997), 535 548.
- [10] H. Schenck and M. Stillman, A family of ideals of minimal regularity and the Hilbert series of $C^r(\widehat{\Delta})$, Adv. in Appl. Math. 19 (1997), 169 182.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560–0043, Japan Tel: (+81)6-6850-5326 Fax: (+81)6-6850-5327 E-mail: sm5013kt@ecs.cmc.osaka-u.ac.jp