THE FREENESS OF MODULES OF MIXED SPLINES

Tomonori Kitamura

Received December 20, 2001
Dedicated to Professor Masami Ito on his 60th birthday

Abstract

For a d-dimensional simplicial complex $\Delta \subset \mathbb{R}^{d}$ such that Δ and all its links are pseudomanifolds, we consider the module $C^{\alpha}(\Delta)$ of mixed splines. In particular, we study the freeness of the module $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^{2}$ of a topological disk and for a non-negative integer vector α of length $f_{1}^{0}(\Delta)$, where $\widehat{\Delta} \subset \mathbb{R}^{3}$ is the join of Δ with the origin in \mathbb{R}^{3} and $f_{1}^{0}(\Delta)$ is the number of interior edges in Δ. We completely characterize Δ for which $C^{\alpha}(\widehat{\Delta})$ is free for any non-negative integer vector α. Moreover, we obtain a method for determining whether $C^{\alpha}(\widehat{\Delta})$ is free for a triangulation $\Delta \subset \mathbb{R}^{2}$ of a topological disk which has a totally interior edge, and for a generic non-negative integer vector α.

Introduction. Let $\Delta \subset \mathbb{R}^{d}$ be a d-dimensional simplicial complex such that Δ and all its links are pseudomanifolds. We define $C^{r}(\Delta)$ to be the set of piecewise polynomial functions on Δ which are continuously differentiable of order r. The elements of $C^{r}(\Delta)$ are also known as C^{r}-splines. Such functions are used in the finite element method for solving partial differential equations, and play an important role in computer-aided design and computer graphics.

Fundamental problems in spline theory are to determine the dimension of the vector space $C_{k}^{r}(\Delta)$ over \mathbb{R} which consists of C^{r}-splines of degree at most k, to determine whether the module $C^{r}(\Delta)$ is free, and to determine whether the module $C^{r}(\widehat{\Delta})$ is free, where $\widehat{\Delta} \subset \mathbb{R}^{d+1}$ is the join of Δ with the origin in \mathbb{R}^{d+1}. The algebraic structure of $C^{r}(\Delta)$, including these problems, has been studied by [1], [2], [3], [4], [7], [8], [9], and [10]. In this paper, we consider the set $C^{\alpha}(\Delta)$ of mixed splines, which are obtained by extending C^{r}-splines.

We denote the set of i-faces of Δ by Δ_{i}, the set of interior i-faces of Δ by Δ_{i}^{0} (all d-faces are considered interior), and the set of interior faces of Δ by Δ^{0}. Moreover, $f_{i}(\Delta)$ denotes the number of i-faces of Δ, and $f_{i}^{0}(\Delta)$ denotes the number of interior i-faces of Δ. Let $t=f_{d}(\Delta)$. We fix an ordering $\sigma_{1}, \ldots, \sigma_{t}$ of the elements in Δ_{d}. For this ordering, we can represent F in $C^{\alpha}(\Delta)$ as a t-tuple $F=\left(f_{1}, \ldots, f_{t}\right)$ of polynomials, where $f_{i}=\left.F\right|_{\sigma_{i}}$ for each $i=1, \ldots, t$, and we can view $C^{\alpha}(\Delta)$ as a module over the polynomial ring in d variables. Similarly, $C^{\alpha}(\widehat{\Delta})$ is a module over the polynomial ring in $(d+1)$ variables. It is natural to consider the above fundamental problems for mixed splines. One of these problems is the determination of the dimension of $C_{k}^{\alpha}(\Delta)$ as a vector space over \mathbb{R}, where $C_{k}^{\alpha}(\Delta)$ is the set of $F=\left(f_{1}, \ldots, f_{t}\right)$ in $C^{\alpha}(\Delta)$ such that, for each i, f_{i} has degree at most k. In [3], Billera and Rose showed how the theory of Gröbner bases can be used to compute the dimension of $C_{k}^{r}(\Delta)$ as a vector space over \mathbb{R} as well as the explicit basis for this vector space (see also [5] for the theory of Gröbner bases). In the same way, we can use the theory of Gröbner bases to compute the dimension of $C_{k}^{\alpha}(\Delta)$ as a vector space over \mathbb{R} as well as the explicit basis for this vector space. Moreover, in [6], Geramita and Schenck derived a formula for the dimension of $C_{k}^{\alpha}(\Delta)$ in high degree in the case $d=2$.

[^0]We focus on the problem of the freeness of the module $C^{\alpha}(\widehat{\Delta})$. This problem is useful, since if $C^{\alpha}(\widehat{\Delta})$ is free, then $C^{\alpha}(\Delta)$ has a reduced basis (see [4] for the materials on reduced bases). In this paper, we study the freeness of the module $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^{2}$ of a topological disk.

We call an edge $\tau \in \Delta$ totally interior, if both vertices of τ are interior vertices. We say that $\alpha=\left(\alpha_{\tau_{1}}, \ldots, \alpha_{\tau_{e}}\right) \in \mathbb{Z}_{\geq 0}^{e}\left(e=f_{1}^{0}(\Delta)=f_{2}^{0}(\widehat{\Delta})\right)$ is generic if $\alpha_{\tau_{i}} \neq \alpha_{\tau_{j}}$ for any $v \in \Delta_{0}^{0}$ and for every pair $\tau_{i}, \tau_{j} \in \Delta_{1}^{0}$ such that $v \in \tau_{i}$ and $v \in \tau_{j}$. For each $\tau_{i} \in \Delta_{1}^{0}$, let $l_{\tau_{i}} \in R=\mathbb{R}[x, y, z]$ be the homogeneous linear polynomial defining the plane containing $\widehat{\tau}_{i} \subset \mathbb{R}^{3}$, where $\widehat{\tau}_{i}$ is the convex hull of τ_{i} and the origin in \mathbb{R}^{3}. Moreover, for each $v \in \Delta_{0}^{0}$, we set $H_{v}:=\left\{l_{\tau_{j}}^{\alpha_{\tau_{j}}+1}: v \in \tau_{j}\right\}$ and construct the set $L_{v} \subset H_{v}$ in the following manner. If there are $l_{\tau_{p}}^{\alpha \tau_{p}+1}, l_{\tau_{q}}^{\alpha_{\tau_{q}}+1} \in H_{v}$ such that $l_{\tau_{p}}=l_{\tau_{q}}$ and $\alpha_{\tau_{p}} \leq \alpha_{\tau_{q}}$, then we remove $l_{\tau_{q}}^{\alpha_{\tau_{q}}+1}$ from H_{v}. Moreover, for each totally interior edge $\tau \in \Delta_{1}^{0}$ and for each vertex $v_{\tau} \in \Delta_{0}^{0}$ of τ, we set $K_{v_{\tau}}:=\left\{\tau_{j} \in \Delta_{1}^{0}: l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}, \alpha_{\tau_{j}}<\alpha_{\tau}\right\}$ and $m_{v_{\tau}}:=\left|K_{v_{\tau}}\right|$.

The main results in this paper are as follows:
Theorem 3.4. The module $C^{\alpha}(\widehat{\Delta})$ over R is free for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ if and only if Δ possesses no totally interior edge.

Theorem 3.11. Let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk which has at least one totally interior edge, and let $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ be generic. Then, $C^{\alpha}(\widehat{\Delta})$ is a free R-module if and only if, for any totally interior edge $\tau \in \Delta_{1}^{0}$, there exists a vertex v_{τ} of τ such that either (i) or (ii) below is satisfied:
(i) $@ l_{\tau}^{\alpha_{\tau}+1} \notin L_{v_{\tau}}$;
(ii) $@ l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}, m_{v_{\tau}} \geq 2$, and

$$
\alpha_{\tau}+1>\frac{\sum_{\tau_{j} \in K_{v_{\tau}}}\left(\alpha_{\tau_{j}}+1\right)-m_{v_{\tau}}}{m_{v_{\tau}}-1}
$$

This paper is organized as follows. First, in Section 1, we introduce some preliminary notions on simplicial complexes. Second, in Section 2, we define the set $C^{\alpha}(\Delta)$ of mixed splines and describe some algebraic properties of $C^{\alpha}(\Delta)$ and $C^{\alpha}(\widehat{\Delta})$. Finally, in Section 3 , we focus on the freeness of $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^{2}$ of a topological disk. In particular, we prove our main results above.

1 Preliminaries. A simplicial complex in \mathbb{R}^{d} is a finite set Δ of simplices in \mathbb{R}^{d} such that
(i) if $\sigma \in \Delta$, then each face of σ is in Δ;
(ii) if $\sigma, \tau \in \Delta$, then $\sigma \cap \tau$ is a face of σ and of τ.

If Δ is a simplicial complex in \mathbb{R}^{d}, each simplex of Δ is called a face of Δ. Moreover, the dimension of Δ is defined to be

$$
\operatorname{dim} \Delta:=\max \{\operatorname{dim} \sigma: \sigma \in \Delta\}
$$

Let Δ be a simplicial complex in \mathbb{R}^{d} and let σ be a face of Δ. Then, the link of σ in Δ is defined by

$$
\operatorname{link}_{\Delta}(\sigma):=\{\tau \in \Delta: \sigma \cap \tau=\emptyset, \text { and } \operatorname{CONV}(\sigma \cup \tau) \in \Delta\}
$$

Moreover, we set $\operatorname{link}_{\Delta}(\emptyset)=\Delta$.
We say that a d-dimensional simplicial complex Δ in \mathbb{R}^{d} is a pseudomanifold if the following conditions are satisfied:
(i) each face in Δ such that its dimension is less than or equal to $d-1$ is a face of some d-face in Δ;
(ii) for any two d-faces $\sigma, \sigma^{\prime} \in \Delta$, there is a sequence of d-faces

$$
\sigma=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}=\sigma^{\prime}
$$

such that each $\sigma_{i} \cap \sigma_{i+1}$ is a $(d-1)$-face of Δ for each $i, 1 \leq i \leq m-1$.

2 The module $C^{\alpha}(\Delta)$ and its algebraic properties. In this section, let Δ be a d dimensional simplicial complex in \mathbb{R}^{d} such that Δ and all its links are pseudomanifolds. Let $R=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$. We now define $C^{r}(\Delta)$ more explicitly.
Definition 2.1. For $r \in \mathbb{Z}_{\geq 0}$ and $\Delta \subset \mathbb{R}^{d}, C^{r}(\Delta)$ is the set of functions $F:|\Delta| \longrightarrow \mathbb{R}$ such that
(i) $\left.F\right|_{\sigma}$ is given by a polynomial in R for all $\sigma \in \Delta_{d}$;
(ii) F is continuously differentiable of order r.

Let $t=f_{d}(\Delta)$. Given an ordering $\sigma_{1}, \ldots, \sigma_{t}$ of $\Delta_{d}, G \in C^{r}(\Delta)$ can be represented as a t-tuple of polynomials in R, i.e., $G=\left(g_{1}, \ldots, g_{t}\right)$, where each g_{i} is just $\left.G\right|_{\sigma_{i}}$. If $\sigma_{i}, \sigma_{j} \in \Delta_{d}$ are adjacent (i.e., $\sigma_{i} \cap \sigma_{j} \in \Delta_{d-1}^{0}$), let $l_{\tau} \in R$ be the linear polynomial defining the affine hyperplane containing $\tau=\sigma_{i} \cap \sigma_{j} \in \Delta_{d-1}^{0}$.

Proposition 2.2 ([3, Corollary 1.3]). Let F be a piecewise polynomial function on $\Delta \subset \mathbb{R}^{d}$, and for each $i, 1 \leq i \leq t$, let $f_{i}=\left.F\right|_{\sigma_{i}} \in R$. Then $F=\left(f_{1}, \ldots, f_{t}\right) \in C^{r}(\Delta)$ if and only if, for every adjacent pair $\sigma_{i}, \sigma_{j} \in \Delta_{d}, f_{i}-f_{j} \in\left(l_{\tau}^{r+1}\right)$, where $\tau=\sigma_{i} \cap \sigma_{j} \in \Delta_{d-1}^{0}$.

By Proposition 2.2, the elements of $C^{r}(\Delta)$ are piecewise polynomial functions $F=$ $\left(f_{1}, \ldots, f_{t}\right)$ such that, for every adjacent pair $\sigma_{i}, \sigma_{j} \in \Delta_{d}$, the partial derivatives up to order r of f_{i} and f_{j} agree at every point in $\tau=\sigma_{i} \cap \sigma_{j} \in \Delta_{d-1}^{0}$.

Mixed splines are obtained by extending C^{r}-splines. Let $e=f_{d-1}^{0}(\Delta)$. We fix an ordering $\tau_{1}, \ldots, \tau_{e}$ of Δ_{d-1}^{0}. We now define mixed splines.

Definition 2.3. For $\Delta \subset \mathbb{R}^{d}$ and $\alpha=\left(\alpha_{\tau_{1}}, \ldots, \alpha_{\tau_{e}}\right) \in \mathbb{Z}_{\geq 0}^{e}, C^{\alpha}(\Delta)$ is the set of functions $F:|\Delta| \longrightarrow \mathbb{R}$ such that
(i) $\left.F\right|_{\sigma_{i}}$ is given by a polynomial in R for all $\sigma_{i} \in \Delta_{d}$;
(ii) for every adjacent pair $\sigma_{i}, \sigma_{j} \in \Delta_{d}$, the partial derivatives up to order $\alpha_{\tau_{s}}$ of $\left.F\right|_{\sigma_{i}}$ and $\left.F\right|_{\sigma_{j}}$ agree at every point in $\tau_{s}=\sigma_{i} \cap \sigma_{j} \in \Delta_{d-1}^{0}$, that is, $\left.F\right|_{\sigma_{i}}-\left.F\right|_{\sigma_{j}} \in\left(l_{\tau_{s}}^{\alpha_{\tau_{s}}+1}\right)$.

We call the elements of $C^{\alpha}(\Delta)$ mixed splines.

Figure 1:

Note that if $\alpha_{\tau_{s}}=r$ for every $s, 1 \leq s \leq e$, then $C^{\alpha}(\Delta)$ is the set of C^{r}-splines, that is, $C^{r}(\Delta)$.
Example 2.4. Let $\Delta \subset \mathbb{R}^{2}$ be the simplicial complex shown in Figure 1. Let $\tau_{1}=\sigma_{1} \cap \sigma_{2}$, $\tau_{2}=\sigma_{2} \cap \sigma_{3}, \tau_{3}=\sigma_{3} \cap \sigma_{4}$, and $\tau_{4}=\sigma_{1} \cap \sigma_{4}$. Then $l_{\tau_{1}}=l_{\tau_{3}}=x$, and $l_{\tau_{2}}=l_{\tau_{4}}=y$. Let $\alpha=(1,2,3,4)$. Then, for example, $\left(y^{5}, x^{4}+y^{5}, x^{4}, 0\right) \in C^{\alpha}(\Delta)$, and $\left(y^{5}, x^{4}+y^{5}, x^{4}, x^{4}\right) \notin$ $C^{\alpha}(\Delta)$.

We now describe some important properties of $C^{\alpha}(\Delta)$. Let $t=f_{d}(\Delta)$. Fixing an ordering $\sigma_{1}, \ldots, \sigma_{t}$ of Δ_{d}, we can represent $F \in C^{\alpha}(\Delta)$ as a t-tuple of polynomials in R, i.e., $F=$ $\left(f_{1}, \ldots, f_{t}\right)$, where $f_{i}=\left.F\right|_{\sigma_{i}} \in R$ for each i. In this way, we can view $C^{\alpha}(\Delta)$ as a submodule of R^{t}. Moreover, we can easily see that $C^{\alpha}(\Delta)$ is a finitely generated R-module of rank t.

We say that Δ is central if there is some vertex $v \in \Delta$ such that every $\sigma_{i} \in \Delta_{d}$ contains v. For example, the simplicial complex in Figure 1 is central. If Δ is central, then $C^{\alpha}(\Delta)$ is a graded R-module.

Let $\Delta \subset \mathbb{R}^{d}$ and $R=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$. We define $\widehat{\Delta} \subset \mathbb{R}^{d+1}$ in the following manner. We think of Δ as a subset of the hyperplane $x_{d+1}=1 \subset \mathbb{R}^{d+1}$. Let $\widehat{\Delta}$ be the join of Δ with the origin in \mathbb{R}^{d+1}, which we define to be the complex $\Delta \cup\{\hat{\sigma}: \sigma \in \Delta\}$, where $\hat{\sigma}$ denotes the convex hull of σ and the origin in \mathbb{R}^{d+1}. Then, $\widehat{\Delta}$ is a $(d+1)$-dimensional simplicial complex in \mathbb{R}^{d+1} such that $\widehat{\Delta}$ and all its links are pseudomanifolds. Therefore, for $\Delta \subset \mathbb{R}^{d}$, we can consider the set $C^{\alpha}(\widehat{\Delta})$. Since $\widehat{\Delta}$ is central, $C^{\alpha}(\widehat{\Delta})$ is a finitely generated graded \widehat{R}-module of rank $f_{d+1}(\widehat{\Delta})=f_{d}(\Delta)$, where $\widehat{R}=\mathbb{R}\left[x_{1}, \ldots, x_{d+1}\right]$.

In the next section, we will focus on the problem of the freeness of the module $C^{\alpha}(\widehat{\Delta})$ in the case $d=2$.

3 Conditions for $C^{\alpha}(\widehat{\Delta})$ to be free when $d=2$. Let $d=2$ and $R=\mathbb{R}[x, y, z]$. The module $C^{\alpha}(\widehat{\Delta})$ over R can be free only if $\Delta \subset \mathbb{R}^{2}$ has genus zero. So, let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk. We fix an ordering $\tau_{1}, \ldots, \tau_{e}$ of Δ_{1}^{0}, where $e=f_{1}^{0}(\Delta)=$ $f_{2}^{0}(\widehat{\Delta})$. Let $l_{\tau_{j}} \in R$ be the homogeneous linear polynomial defining the plane containing $\widehat{\tau}_{j} \subset \mathbb{R}^{3}$. We define a complex \mathcal{J} as

$$
\mathcal{J}: 0 \longrightarrow \bigoplus_{\sigma_{k} \in \Delta_{2}} \mathcal{J}\left(\sigma_{k}\right) \xrightarrow{\partial_{2}} \bigoplus_{\tau_{j} \in \Delta_{1}^{0}} \mathcal{J}\left(\tau_{j}\right) \xrightarrow{\partial_{1}} \bigoplus_{v_{i} \in \Delta_{o}^{0}} \mathcal{J}\left(v_{i}\right) \longrightarrow 0
$$

where $\mathcal{J}\left(\sigma_{k}\right):=0$ for $\sigma_{k} \in \Delta_{2}, \mathcal{J}\left(\tau_{j}\right):=\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1}\right)$ for $\tau_{j} \in \Delta_{1}^{0}, \mathcal{J}\left(v_{i}\right):=\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1}: \tau_{j} \in\right.$ $\Delta_{1}^{0}, v_{i} \in \tau_{j}$) for $v_{i} \in \Delta_{0}^{0}$, and ∂_{i} is the usual (relative to $\partial \Delta$) simplicial boundary map, and we define $H_{*}(\mathcal{J})$ to be the homology of this complex. Moreover, we define a complex \mathcal{R} as

$$
\mathcal{R}: 0 \longrightarrow R^{f_{2}} \xrightarrow{\partial_{2}} R^{f_{1}^{0}} \xrightarrow{\partial_{1}} R^{f_{0}^{0}} \longrightarrow 0
$$

where $\mathcal{R}(\sigma):=R=\mathbb{R}[x, y, z]$ for any $\sigma \in \Delta^{0}$, and we define $H_{*}(\mathcal{R})$ to be the homology of this complex. Let $\mathcal{R} / \mathcal{J}$ be the quotient of \mathcal{R} by \mathcal{J}, and let $H_{*}(\mathcal{R} / \mathcal{J})$ be the homology of this complex. From the short exact sequence of complexes $0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{R} \longrightarrow \mathcal{R} / \mathcal{J} \longrightarrow 0$, we get a long exact sequence in homology:

$$
0 \rightarrow H_{2}(\mathcal{R}) \rightarrow H_{2}(\mathcal{R} / \mathcal{J}) \rightarrow H_{1}(\mathcal{J}) \rightarrow H_{1}(\mathcal{R}) \rightarrow H_{1}(\mathcal{R} / \mathcal{J}) \rightarrow H_{0}(\mathcal{J}) \rightarrow 0
$$

By the same argument as [9, Theorem 4.1], it follows that $C^{\alpha}(\widehat{\Delta})$ is a free R-module if and only if $H_{1}(\mathcal{R} / \mathcal{J})=0$. Moreover, since $H_{1}(\mathcal{R})=0$ if $\Delta \subset \mathbb{R}^{2}$ is a triangulation of a topological disk, $H_{1}(\mathcal{R} / \mathcal{J}) \cong H_{0}(\mathcal{J})$. So, it follows that $C^{\alpha}(\widehat{\Delta})$ is a free R-module if and only if $H_{0}(\mathcal{J})=0$. In this section, we characterize Δ and α such that $C^{\alpha}(\widehat{\Delta})$ can be free.

We call an edge $\tau \in \Delta$ totally interior, if both vertices of τ are interior vertices in Δ. For example, none of the edges in the simplicial complex in Figure 1 is totally interior. We define $K^{\alpha} \subset \bigoplus_{\tau \in \Delta_{1}^{0}} R \mathbf{e}_{\tau}$ to be the submodule generated by

$$
\left\{\mathbf{e}_{\tau}: \tau \in \Delta_{1}^{0} \text { is not totally interior }\right\}
$$

and

$$
\left\{\sum_{v \in \tau} a_{\tau} \mathbf{e}_{\tau}: \sum_{v \in \tau} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}=0, a_{\tau} \in R\right\}
$$

for each $v \in \Delta_{0}^{0}$, where $\mathbf{e}_{\tau} \in \mathbb{R}^{e}$ is the vector such that the component corresponding to τ is 1 and all the other components are 0 . Then, there exists an exact sequence

$$
0 \longrightarrow K^{\alpha} \longrightarrow \bigoplus_{\tau \in \Delta_{1}^{0}} R \mathbf{e}_{\tau} \longrightarrow H_{0}(\mathcal{J}) \longrightarrow 0
$$

Putting the above argument together, we get the following result.
Proposition 3.1. The module $C^{\alpha}(\widehat{\Delta})$ over R is free if and only if $\mathbf{e}_{\tau} \in K^{\alpha}$ for any $\tau \in \Delta_{1}^{0}$.
Proof. By the above argument, $C^{\alpha}(\widehat{\Delta})$ is a free R-module if and only if $H_{0}(\mathcal{J})=0$. Moreover, by the above exact sequence, it follows that $H_{0}(\mathcal{J})=0$ if and only if $K^{\alpha}=$ $\bigoplus_{\tau \in \Delta_{1}^{\circ}} R \mathbf{e}_{\tau}$.

Let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk which has at least one totally interior edge. For each $v \in \Delta_{0}^{0}$, we set $H_{v}:=\left\{l_{\tau_{j}}^{\alpha_{j}+1}: v \in \tau_{j}\right\}$ and construct the set $L_{v} \subset H_{v}$ in the following manner. If there are $l_{\tau_{p}}^{\alpha_{\tau_{p}}+1}, l_{\tau_{q}}^{\alpha_{\tau_{q}}+1} \in H_{v}$ such that $l_{\tau_{p}}=l_{\tau_{q}}$ and $\alpha_{\tau_{p}}<\alpha_{\tau_{q}}$, then we remove $l_{\tau_{q}}^{\alpha_{\tau_{q}}+1}$ from H_{v}. If there are $l_{\tau_{p}}^{\alpha_{\tau_{p}}+1}, l_{\tau_{q}}^{\alpha_{\tau_{q}}+1} \in H_{v}$ such that $l_{\tau_{p}}=l_{\tau_{q}}$ and $\alpha_{\tau_{p}}=\alpha_{\tau_{q}}$, then we may remove either of $l_{\tau_{p}}^{\alpha \tau_{p}+1}$ and $l_{\tau_{q}}^{\alpha \tau_{q}+1}$ from H_{v} since $l_{\tau_{p}}^{\alpha_{\tau_{p}}+1}=l_{\tau_{q}}^{\alpha \tau_{q}+1}$, but we consider $l_{\tau_{p}}^{\alpha_{\tau_{p}}+1}, l_{\tau_{q}}^{\alpha_{\tau_{q}}+1}$ as distinct polynomials from a viewpoint that $l_{\tau_{p}}^{\alpha_{\tau_{p}}+1}$ is the polynomial corresponding to τ_{p} and $l_{\tau_{q}}^{\alpha_{\tau_{q}}+1}$ is the polynomial corresponding to τ_{q}. Thus, we can get distinct L_{v} from H_{v} by removing $l_{\tau_{p}}^{\alpha_{\tau_{p}}+1}$ or removing $l_{\tau_{q}}^{\alpha_{\tau_{q}}+1}$.

Proposition 3.2. Let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk which has at least one totally interior edge. If the following condition holds, then $C^{\alpha}(\widehat{\Delta})$ is not a free R-module:

Whatever $L_{v}\left(v \in \Delta_{0}^{0}\right)$ we construct, we have a totally interior edge $\tau \in \Delta_{1}^{0}$ such that

$$
\left\{\begin{array}{l}
l_{\tau}^{\alpha_{\tau}+1} \notin\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \tau_{j} \neq \tau, \alpha_{\tau_{j}} \leq \alpha_{\tau}\right) \tag{1}\\
l_{\tau}^{\alpha_{\tau}+1} \notin\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{w_{\tau}}: \tau_{j} \neq \tau, \alpha_{\tau_{j}} \leq \alpha_{\tau}\right)
\end{array}\right.
$$

where v_{τ}, w_{τ} are the vertices of τ.
Proof. By assumption, there are totally interior edges $\tau_{1}, \ldots, \tau_{s}$ which satisfy the following condition:
$\alpha_{\tau_{1}}=\cdots=\alpha_{\tau_{s}}, l_{\tau_{1}}=\cdots=l_{\tau_{s}}$ and for each $i=1, \ldots, s-1, \tau_{i}$ and τ_{i+1} share a common vertex, and furthermore

$$
\begin{align*}
& l_{\tau_{1}}^{\alpha_{\tau_{1}}+1} \notin\left(l_{\tau}^{\alpha_{\tau}+1}: \tau \in \Delta_{1}^{0}, v_{0} \in \tau, \tau \neq \tau_{1}, \alpha_{\tau} \leq \alpha_{\tau_{1}}\right), \\
& l_{\tau_{1}}^{\alpha_{\tau_{1}}+1}=l_{\tau_{2}}^{\alpha_{\tau_{2}}+1} \quad \notin\left(l_{\tau}^{\alpha_{\tau}+1}: \tau \in \Delta_{1}^{0}, v_{1} \in \tau, \tau \neq \tau_{1}, \tau_{2}, \alpha_{\tau} \leq \alpha_{\tau_{1}}\right), \\
& l_{\tau_{2}}^{\alpha_{\tau_{2}}+1}=l_{\tau_{3}}^{\alpha_{\tau_{3}}+1} \quad \notin\left(l_{\tau}^{\alpha_{\tau}+1}: \tau \in \Delta_{1}^{0}, v_{2} \in \tau, \tau \neq \tau_{2}, \tau_{3}, \alpha_{\tau} \leq \alpha_{\tau_{2}}\right), \\
& l_{\tau_{s-1}}^{\alpha_{\tau_{s}-1}+1}=l_{\tau_{s}}^{\alpha_{\tau_{s}}+1} \notin\left(l_{\tau}^{\alpha+1}: \tau \in \Delta_{1}^{0}, v_{s-1} \in \tau, \tau \neq \tau_{s-1}, \tau_{s}, \alpha_{\tau} \leq \alpha_{\tau_{s-1}}\right) \text {, } \tag{2}\\
& l_{\tau_{s}}^{\alpha_{\tau_{s}}+1} \notin\left(l_{\tau}^{\alpha_{\tau}+1}: \tau \in \Delta_{1}^{0}, v_{s} \in \tau, \tau \neq \tau_{s}, \alpha_{\tau} \leq \alpha_{\tau_{s}}\right),
\end{align*}
$$

where, for $i=1, \ldots, s-1, v_{i}$ is the vertex which τ_{i} and τ_{i+1} share, v_{0} is the vertex of τ_{1} which is different from v_{1}, and v_{s} is the vertex of τ_{s} which is different from v_{s-1}.
In fact, we assume that the condition (2) does not hold for some vertex v_{i}. If we construct

$$
\begin{array}{ccl}
L_{v_{0}}=\left\{l_{\tau_{1}}^{\alpha_{\tau_{1}}+1}, \ldots\right\}, & \ldots & , L_{v_{i-1}}=\left\{l_{\tau_{i}}^{\alpha_{\tau_{i}}+1}, \ldots\right\} \\
L_{v_{i+1}}=\left\{l_{\tau_{i+1}}^{\alpha \tau_{i+1}+1}, \ldots\right\}, & \ldots & , L_{v_{s}}=\left\{l_{\tau_{s}}^{\alpha_{\tau_{s}}+1}, \ldots\right\}
\end{array}
$$

then none of the edges $\tau_{1}, \ldots, \tau_{s}$ satisfies the condition (1) in Proposition 3.2 whatever $L_{v_{i}}$ we construct. Hence, if there are not $\tau_{1}, \ldots, \tau_{s}$ as above, then we can construct the sets $L_{v}\left(v \in \Delta_{0}^{0}\right)$ such that the condition (1) in Proposition 3.2 does not hold for any totally interior edge. This contradicts the assumption.

For each $v_{i} \in \Delta_{0}^{0}$, we set

$$
K_{v_{i}}^{\alpha}:=\left\{\sum_{v_{i} \in \tau} a_{\tau} \mathbf{e}_{\tau}: \sum_{v_{i} \in \tau} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}=0, a_{\tau} \in R\right\}
$$

For any element $\sum_{v_{0} \in \tau} a_{\tau} \mathbf{e}_{\tau}$ in $K_{v_{0}}^{\alpha}$, the constant term $a_{\tau_{1}}^{\prime}$ of $a_{\tau_{1}} \in R$ is 0 . In fact, we assume that $a_{\tau_{1}}^{\prime} \neq 0$. Since $\sum_{v_{0} \in \tau} a_{\tau} \mathbf{e}_{\tau} \in K_{v_{0}}^{\alpha}$,

$$
a_{\tau_{1}} l_{\tau_{1}}^{\alpha_{\tau_{1}}+1}+\sum_{v_{0} \in \tau, \tau \neq \tau_{1}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}=0
$$

Comparing the homogeneous parts of degree $\alpha_{\tau_{1}}+1$ on both sides, we get

$$
a_{\tau_{1}}^{\prime} l_{\tau_{1}}^{\alpha_{\tau_{1}}+1}+\sum_{v_{0} \in \tau, \tau \neq \tau_{1}} a_{\tau}^{\prime} l_{\tau}^{\alpha_{\tau}+1}=0
$$

where $a_{\tau}^{\prime} \in R$. This contradicts the condition (2). Hence, it follows that $a_{\tau_{1}}^{\prime}=0$. Similarly, for any element $\sum_{v_{s} \in \tau} a_{\tau} \mathbf{e}_{\tau}$ in $K_{v_{s}}^{\alpha}$, the constant term $a_{\tau_{s}}^{\prime}$ of $a_{\tau_{s}} \in R$ is 0 .

Moreover, for any element $\sum_{v_{i} \in \tau} a_{\tau} \mathbf{e}_{\tau}$ in $K_{v_{i}}^{\alpha}(i=1, \ldots, s-1)$, let $a_{\tau_{i}}^{\prime}$ (resp. $a_{\tau_{i+1}}^{\prime}$) be the constant term in $a_{\tau_{i}} \in R$ (resp. $a_{\tau_{i+1}} \in R$). Then, it holds that $a_{\tau_{i}}^{\prime}+a_{\tau_{i+1}}^{\prime}=0$. In fact, we assume that $a_{\tau_{i}}^{\prime}+a_{\tau_{i+1}}^{\prime} \neq 0$. Since $\sum_{v_{i} \in \tau} a_{\tau} \mathbf{e}_{\tau} \in K_{v_{i}}^{\alpha}$, it follows that

$$
a_{\tau_{i}} l_{\tau_{i}}^{\alpha_{\tau_{i}}+1}+a_{\tau_{i+1}} l_{\tau_{i+1}}^{\alpha_{\tau_{i+1}}+1}+\sum_{\substack{v_{i} \in \tau \\ \tau \neq \tau_{i}, \tau_{i+1}}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}=0
$$

Since $l_{\tau_{i}}^{\alpha_{\tau_{i}}+1}=l_{\tau_{i+1}}^{\alpha_{\tau_{i+1}}+1}$, we get

$$
\left(a_{\tau_{i}}+a_{\tau_{i+1}}\right) l_{\tau_{i}}^{\alpha_{\tau_{i}}+1}+\sum_{\substack{v_{i} \in \tau \\ \tau \neq \tau_{i}, \tau_{i+1}}} a_{\tau} l_{\tau}^{\alpha \tau+1}=0
$$

Comparing the homogeneous parts of degree $\alpha_{\tau_{i}}+1$ on both sides,

$$
\left(a_{\tau_{i}}^{\prime}+a_{\tau_{i+1}}^{\prime}\right) l_{\tau_{i}}^{\alpha_{\tau_{i}}+1}+\sum_{\substack{v_{i} \in \tau \\ \tau \neq \tau_{i}, \tau_{i+1}}} a_{\tau}^{\prime} l_{\tau}^{\alpha}+1=0
$$

where $a_{\tau}^{\prime} \in R$. This contradicts the condition (2). Hence, it follows that $a_{\tau_{i}}^{\prime}+a_{\tau_{i+1}}^{\prime}=0$.
In this way, if, for any element in the submodule generated by $\bigcup_{i=0}^{s} K_{v_{i}}^{\alpha}$, we denote the constant term in the coefficient of $\mathbf{e}_{\tau_{i}}$ by $a_{\tau_{i}}$, then it follows that $\sum_{i=1}^{s} a_{\tau_{i}}=0$. Hence, for any element in K^{α}, the sum of the constant terms in the coefficients of $\mathbf{e}_{\tau_{1}}, \ldots, \mathbf{e}_{\tau_{\varepsilon}}$ is also 0. Therefore, it follows that $\mathbf{e}_{\tau_{1}} \notin K^{\alpha}$. This implies that $K^{\alpha} \neq \bigoplus_{\tau \in \Delta_{1}^{0}} R \mathbf{e}_{\tau}$. Hence, by Proposition 3.1, $C^{\alpha}(\widehat{\Delta})$ is not a free R-module.

Figure 2:

Example 3.3. Let $\Delta \subset \mathbb{R}^{2}$ be the simplicial complex shown in Figure 2. We order the elements in Δ_{1}^{0} as

$$
\begin{aligned}
\tau_{1} & =\sigma_{1} \cap \sigma_{2}, \quad \tau_{2}=\sigma_{2} \cap \sigma_{3}, \quad \tau_{3}=\sigma_{3} \cap \sigma_{4} \\
\tau_{4} & =\sigma_{1} \cap \sigma_{4}, \quad \tau_{5}=\sigma_{4} \cap \sigma_{5}, \quad \tau_{6}=\sigma_{5} \cap \sigma_{6} \\
\tau_{7} & =\sigma_{6} \cap \sigma_{7}, \quad \tau_{8}=\sigma_{7} \cap \sigma_{8}, \quad \tau_{9}=\sigma_{8} \cap \sigma_{9} \\
\tau_{10} & =\sigma_{6} \cap \sigma_{9}, \quad \tau_{11}=\sigma_{9} \cap \sigma_{10}, \quad \tau_{12}=\sigma_{3} \cap \sigma_{10}
\end{aligned}
$$

If $\alpha=(2,3,1,3,2,2,3,1,2,0,3,3)$, then

$$
\begin{aligned}
L_{v_{1}} & =\left\{l_{\tau_{3}}^{2}, l_{\tau_{2}}^{4}\right\} \text { or }\left\{l_{\tau_{3}}^{2}, l_{\tau_{4}}^{4}\right\}, \\
L_{v_{2}} & =\left\{l_{\tau_{10}}, l_{\tau_{5}}^{3}, l_{\tau_{6}}^{3}\right\}, \\
L_{v_{3}} & =\left\{l_{\tau_{10}}, l_{\tau_{9}}^{3}\right\} .
\end{aligned}
$$

Hence, whatever $L_{v_{i}}(i=1,2,3)$ we construct, the condition in Proposition 3.2 holds for τ_{10}. Therefore, by Proposition 3.2, $C^{\alpha}(\widehat{\Delta})$ is not a free R-module.

If $\alpha=(2,1,1,1,2,2,1,3,1,1,3,3)$, then

$$
\begin{aligned}
L_{v_{1}} & =\left\{l_{\tau_{2}}^{2}, l_{\tau_{3}}^{2}\right\} \text { or }\left\{l_{\tau_{3}}^{2}, l_{\tau_{4}}^{2}\right\}, \\
L_{v_{2}} & =\left\{l_{\tau_{3}}^{2}, l_{\tau_{5}}^{3}, l_{\tau_{6}}^{3}\right\} \text { or }\left\{l_{\tau_{10}}^{2}, l_{\tau_{5}}^{3}, l_{\tau_{6}}^{3}\right\}, \\
L_{v_{3}} & =\left\{l_{\tau_{7}}^{2}, l_{\tau_{10}}^{2}\right\} \text { or }\left\{l_{\tau_{9}}^{2}, l_{\tau_{10}}^{2}\right\} .
\end{aligned}
$$

Hence, whatever $L_{v_{i}}(i=1,3)$ we construct, the condition in Proposition 3.2 holds for τ_{3} if $L_{v_{2}}$ is the former, and the condition in Proposition 3.2 holds for τ_{10} if $L_{v_{2}}$ is the latter. Therefore, by Proposition 3.2, $C^{\alpha}(\widehat{\Delta})$ is not a free R-module.

We now come to the first main result in this paper.
Theorem 3.4. The module $C^{\alpha}(\widehat{\Delta})$ over R is free for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ if and only if Δ possesses no totally interior edge.

Proof. If Δ does not have a totally interior edge, none of the edges in Δ is totally interior. Hence, for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$, it follows that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any $\tau \in \Delta_{1}^{0}$. Therefore, by Proposition 3.1, $C^{\alpha}(\widehat{\Delta})$ is a free R-module for all $\alpha \in \mathbb{Z}_{\geq 0}^{e}$.

On the other hand, by Proposition 3.2, it follows that if Δ has a totally interior edge, there exists $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ such that $C^{\alpha}(\widehat{\Delta})$ is not a free R-module.

Figure 3:

Example 3.5. Let $\Delta \subset \mathbb{R}^{2}$ be the simplicial complex in Figure 3. By Theorem 3.4, $C^{\alpha}(\widehat{\Delta})$ is free for all $\alpha \in \mathbb{Z}_{\geq 0}^{8}$, since Δ does not have a totally interior edge.

We next consider the freeness of $C^{\alpha}(\widehat{\Delta})$ for a triangulation $\Delta \subset \mathbb{R}^{2}$ of a topological disk which has at least one totally interior edge.

Proposition 3.6. Let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk which has at least one totally interior edge. If the following condition holds, then $C^{\alpha}(\widehat{\Delta})$ is a free R-module:

We can construct the sets $L_{v}\left(v \in \Delta_{0}^{0}\right)$ such that, for any totally interior edge $\tau \in \Delta_{1}^{0}$, there is a vertex $v_{\tau} \in \Delta_{0}^{0}$ of τ such that

$$
l_{\tau}^{\alpha_{\tau}+1} \in\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)
$$

Proof. By Proposition 3.1, in order to prove that $C^{\alpha}(\widehat{\Delta})$ is a free R-module, it suffices to show that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any $\tau \in \Delta_{1}^{0}$. Since $\mathbf{e}_{\tau} \in K^{\alpha}$ for any edge $\tau \in \Delta_{1}^{0}$ which is not totally interior, we have only to show that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any totally interior edge $\tau \in \Delta_{1}^{0}$.

First, we set

$$
r_{1}:=\min \left\{\alpha_{\tau}: \tau \in \Delta_{1}^{0} \text { is totally interior }\right\}
$$

and take any totally interior edge $\tau_{1} \in \Delta_{1}^{0}$ such that $\alpha_{\tau_{1}}=r_{1}$. By assumption, there is a vertex $v_{1} \in \Delta_{0}^{0}$ of τ_{1} such that

$$
l_{\tau_{1}}^{\alpha_{\tau_{1}}+1} \in\left(l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{1}}: \alpha_{\tau}<\alpha_{\tau_{1}}\right)
$$

By the choice of r_{1}, the edge $\tau \in \Delta_{1}^{0}$ satisfying $\alpha_{\tau}<\alpha_{\tau_{1}}$ is not totally interior. Hence, if

$$
l_{\tau_{1}}^{\alpha_{\tau_{1}}+1}=\sum_{v_{1} \in \tau, \alpha_{\tau}<\alpha_{\tau_{1}}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}
$$

where $a_{\tau} \in R$, then it follows that

$$
\mathbf{e}_{\tau_{1}}-\sum_{v_{1} \in \tau, \alpha_{\tau}<\alpha_{\tau_{1}}} a_{\tau} \mathbf{e}_{\tau} \in K^{\alpha}
$$

Since τ is not totally interior, $\mathbf{e}_{\tau} \in K^{\alpha}$. Therefore, it follows that $\mathbf{e}_{\tau_{1}} \in K^{\alpha}$.
We next set

$$
r_{2}:=\min \left\{\alpha_{\tau}: \tau \in \Delta_{1}^{0} \text { is a totally interior edge such that } \alpha_{\tau} \neq r_{1}\right\}
$$

and take any totally interior edge $\tau_{2} \in \Delta_{1}^{0}$ such that $\alpha_{\tau_{2}}=r_{2}$. By assumption, there is a vertex $v_{2} \in \Delta_{0}^{0}$ of τ_{2} such that

$$
l_{\tau_{2}}^{\alpha_{\tau_{2}}+1} \in\left(l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{2}}: \alpha_{\tau}<\alpha_{\tau_{2}}\right)
$$

By the choice of r_{2}, the edge $\tau \in \Delta_{1}^{0}$ satisfying $\alpha_{\tau}<\alpha_{\tau_{2}}$ is not a totally interior edge or is a totally interior edge such that $\alpha_{\tau}=r_{1}$. In either case, it follows that $\mathbf{e}_{\tau} \in K^{\alpha}$. Hence, if

$$
l_{\tau_{2}}^{\alpha_{\tau_{2}}+1}=\sum_{v_{2} \in \tau, \alpha_{\tau}<\alpha_{\tau_{2}}} a_{\tau} l_{\tau}^{\alpha_{\tau}+1}
$$

where $a_{\tau} \in R$, then it follows that

$$
\mathbf{e}_{\tau_{2}}-\sum_{v_{2} \in \tau, \alpha_{\tau}<\alpha_{\tau_{2}}} a_{\tau} \mathbf{e}_{\tau} \in K^{\alpha}
$$

Since $\mathbf{e}_{\tau} \in K^{\alpha}$, it follows that $\mathbf{e}_{\tau_{2}} \in K^{\alpha}$.
Since the number of totally interior edges in Δ_{1}^{0} is finite, by the repeat of this process, it follows that $\mathbf{e}_{\tau} \in K^{\alpha}$ for any totally interior edge $\tau \in \Delta_{1}^{0}$. This implies that $C^{\alpha}(\widehat{\Delta})$ is a free R-module.

Example 3.7. Let $\Delta \subset \mathbb{R}^{2}$ be the same simplicial complex as in Example 3.3. If $\alpha=$ $(1,3,2,3,2,2,2,4,2,3,3,3)$, then

$$
\begin{aligned}
L_{v_{1}} & =\left\{l_{\tau_{1}}^{2}, l_{\tau_{2}}^{4}\right\} \text { or }\left\{l_{\tau_{1}}^{2}, l_{\tau_{4}}^{4}\right\}, \\
L_{v_{2}} & =\left\{l_{\tau_{3}}^{3}, l_{\tau_{5}}^{3}, l_{\tau_{6}}^{3}\right\} \\
L_{v_{3}} & =\left\{l_{\tau_{7}}^{3}, l_{\tau_{10}}^{4}\right\} \text { or }\left\{l_{\tau_{9}}^{3}, l_{\tau_{10}}^{4}\right\} .
\end{aligned}
$$

Since

$$
l_{\tau_{3}}^{3} \in\left(l_{\tau_{1}}^{2}\right), \quad l_{\tau_{10}}^{4} \in\left(l_{\tau_{3}}^{3}\right) \subset\left(l_{\tau_{3}}^{3}, l_{\tau_{5}}^{3}, l_{\tau_{6}}^{3}\right)
$$

the condition in Proposition 3.6 holds. Hence, by Proposition 3.6, $C^{\alpha}(\widehat{\Delta})$ is a free R-module.
We say that $\alpha=\left(\alpha_{\tau_{1}}, \ldots, \alpha_{\tau_{e}}\right) \in \mathbb{Z}_{\geq 0}^{e}$ is generic if $\alpha_{\tau_{i}} \neq \alpha_{\tau_{j}}$ for any $v \in \Delta_{0}^{0}$ and for every pair $\tau_{i}, \tau_{j} \in \Delta_{1}^{0}$ such that $v \in \tau_{i}$ and $v \in \tau_{j}$. By Proposition 3.2 and Proposition 3.6, we get the following result.

Proposition 3.8. Let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk which has at least one totally interior edge, and let $\alpha \in \mathbb{Z}_{>0}^{e}$ be generic. Then, the following conditions are equivalent:
(i) $C^{\alpha}(\widehat{\Delta})$ is a free R-module;
(ii) for any totally interior edge $\tau \in \Delta_{1}^{0}$, there is a vertex $v_{\tau} \in \Delta_{0}^{0}$ of τ such that

$$
l_{\tau}^{\alpha_{\tau}+1} \in\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)
$$

Proof. First, by Proposition 3.6, it follows immediately that (ii) \Rightarrow (i). Thus, we must prove that (i) \Rightarrow (ii). We now assume that there is a totally interior edge $\tau \in \Delta_{1}^{0}$ such that

$$
\begin{array}{ll}
l_{\tau}^{\alpha_{\tau}+1} & \notin\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right) \\
l_{\tau}^{\alpha_{\tau}+1} & \notin\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{w_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)
\end{array}
$$

where v_{τ}, w_{τ} are the vertices of τ. Then, since α is generic, it follows that

$$
\begin{aligned}
l_{\tau}^{\alpha_{\tau}+1} & \notin\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \tau_{j} \neq \tau, \alpha_{\tau_{j}} \leq \alpha_{\tau}\right) \\
l_{\tau}^{\alpha_{\tau}+1} & \notin\left(l_{\tau_{j}}^{\alpha_{j}+1} \in L_{w_{\tau}}: \tau_{j} \neq \tau, \alpha_{\tau_{j}} \leq \alpha_{\tau}\right) .
\end{aligned}
$$

Hence, by Proposition $3.2, C^{\alpha}(\widehat{\Delta})$ is not a free R-module, which contradicts (i).
By the following lemma, we can determine whether $l_{\tau}^{\alpha_{\tau}+1} \in\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)$ or not for each totally interior edge $\tau \in \Delta_{1}^{0}$ and for each vertex $v_{\tau} \in \Delta_{0}^{0}$ of τ.

Lemma 3.9 ([6, Corollary 2.5]). Let $f_{1}, \ldots, f_{s} \in S=\mathbb{R}[x, y]$ be homogeneous linear polynomials which are pairwise linearly independent, and let $0<c_{1} \leq c_{2} \leq \cdots \leq c_{s}$ be integers. Then, for $m \geq 2$,

$$
f_{m+1}^{c_{m+1}} \notin\left(f_{1}^{c_{1}}, \ldots, f_{m}^{c_{m}}\right) \Longleftrightarrow c_{m+1} \leq \frac{\sum_{i=1}^{m} c_{i}-m}{m-1}
$$

Remark 3.10. Let $S=\mathbb{R}[x, y]$ and $R=\mathbb{R}[x, y, z]$. For each $\tau_{i} \in \Delta_{1}^{0}, i=1, \ldots, s$, containing the vertex $v \in \Delta_{0}^{0}$, let $l_{\tau_{j}} \in R$ be the homogeneous linear polynomial defining the plane containing $\widehat{\tau}_{j} \subset \mathbb{R}^{3}$. Suppose that the set $\left\{l_{\tau_{1}}, \ldots, l_{\tau_{s}}\right\}$ is pairwise linearly independent. Let $0<c_{1} \leq c_{2} \leq \cdots \leq c_{s}$ be integers. Moreover, let $f_{\tau_{i}}=a_{i} x+b_{i} y+d_{i} \in S$ be the linear polynomial defining the line containing $\tau_{i} \subset \mathbb{R}^{2}$ and let $f_{\tau_{i}}^{\prime}=a_{i} x+b_{i} y \in S$. Then, for $m \geq 2$,

$$
f_{\tau_{m+1}}^{\prime}{ }^{c_{m+1}} \in\left(f_{\tau_{1}}^{\prime}{ }^{c_{1}}, \ldots, f_{\tau_{m}}^{\prime}{ }^{c_{m}}\right) \Longleftrightarrow l_{\tau_{m+1}}^{c_{m+1}} \in\left(l_{\tau_{1}}^{c_{1}}, \ldots, l_{\tau_{m}}^{c_{m}}\right)
$$

Hence, we can determine whether $l_{\tau_{m+1}}^{c_{m+1}} \in\left(l_{\tau_{1}}^{c_{1}}, \ldots, l_{\tau_{m}}^{c_{m}}\right)$ or not by using the inequality in Lemma 3.9.

For each totally interior edge $\tau \in \Delta_{1}^{0}$, and for each vertex v_{τ} of τ, we set

$$
\begin{aligned}
K_{v_{\tau}} & :=\left\{\tau_{j} \in \Delta_{1}^{0}: l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}, \alpha_{\tau_{j}}<\alpha_{\tau}\right\} \\
m_{v_{\tau}} & :=\left|K_{v_{\tau}}\right|
\end{aligned}
$$

By Proposition 3.8 and Lemma 3.9, we obtain a method for determining whether $C^{\alpha}(\widehat{\Delta})$ is a free R-module if $\Delta \subset \mathbb{R}^{2}$ is a triangulation of a topological disk which has at least one totally interior edge and $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ is generic.
Theorem 3.11. Let $\Delta \subset \mathbb{R}^{2}$ be a triangulation of a topological disk which has at least one totally interior edge, and let $\alpha \in \mathbb{Z}_{\geq 0}^{e}$ be generic. Then, $C^{\alpha}(\widehat{\Delta})$ is a free R-module if and only if, for any totally interior edge $\tau \in \Delta_{1}^{0}$, there exists a vertex v_{τ} of τ such that either (i) or (ii) below is satisfied:
(i) $@ l_{\tau}^{\alpha_{\tau}+1} \notin L_{v_{\tau}}$;
(ii) $@ l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}, m_{v_{\tau}} \geq 2$, and

$$
\alpha_{\tau}+1>\frac{\sum_{\tau_{j} \in K_{v_{\tau}}}\left(\alpha_{\tau_{j}}+1\right)-m_{v_{\tau}}}{m_{v_{\tau}}-1}
$$

Proof. Let $\tau \in \Delta_{1}^{0}$ be any totally interior edge, and let $v_{\tau} \in \Delta_{0}^{0}$ be a vertex of τ. If $l_{\tau}^{\alpha \alpha_{\tau}+1} \notin L_{v_{\tau}}$, then there is $l_{\tau^{\prime}}^{\alpha_{\tau^{\prime}}+1} \in L_{v_{\tau}}$ such that $l_{\tau}=l_{\tau^{\prime}}, \alpha_{\tau}>\alpha_{\tau^{\prime}}$. Hence,

$$
l_{\tau}^{\alpha_{\tau}+1} \in\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)
$$

If $l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}$ and $m_{v_{\tau}} \geq 2$, then it follows from Lemma 3.9 and Remark 3.10 that

$$
l_{\tau}^{\alpha_{\tau}+1} \in\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right) \Longleftrightarrow \alpha_{\tau}+1>\frac{\sum_{\tau_{j} \in K_{v_{\tau}}}\left(\alpha_{\tau_{j}}+1\right)-m_{v_{\tau}}}{m_{v_{\tau}}-1}
$$

If $l_{\tau}^{\alpha_{\tau}+1} \in L_{v_{\tau}}$ and $m_{v_{\tau}} \leq 1$, then

$$
l_{\tau}^{\alpha_{\tau}+1} \notin\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)
$$

In this way, for the totally interior edge $\tau \in \Delta_{1}^{0}$ and for the vertex $v_{\tau} \in \Delta_{0}^{0}$ of τ, the condition (i) or (ii) holds if and only if

$$
l_{\tau}^{\alpha_{\tau}+1} \in\left(l_{\tau_{j}}^{\alpha_{\tau_{j}}+1} \in L_{v_{\tau}}: \alpha_{\tau_{j}}<\alpha_{\tau}\right)
$$

Hence, we obtain the desired result by Proposition 3.8.

Figure 4:

Example 3.12. Let $\Delta \subset \mathbb{R}^{2}$ be the simplicial complex shown in Figure 4. Then, τ_{5} is the only totally interior edge of Δ. For example, let $\alpha=(0,4,2,1,3,4) \in \mathbb{Z}_{\geq 0}^{6}$. Then α is generic. In this case,

$$
\begin{aligned}
H_{v} & =\left\{l_{\tau_{1}}, l_{\tau_{4}}^{2}, l_{\tau_{5}}^{4}, l_{\tau_{6}}^{5}\right\} \\
L_{v} & =\left\{l_{\tau_{1}}, l_{\tau_{4}}^{2}, l_{\tau_{5}}^{4}\right\}, \\
K_{v} & =\left\{\tau_{1}, \tau_{4}\right\},
\end{aligned}
$$

and

$$
3+1=4>\frac{(0+1)+(1+1)-2}{2-1}=1
$$

Therefore, by Theorem $3.11, C^{\alpha}(\widehat{\Delta})$ is free.
Moreover, let $\alpha=(0,2,3,2,1,4) \in \mathbb{Z}_{\geq 0}^{6}$, which is also generic. In this case, for the vertex v,

$$
\begin{aligned}
H_{v} & =\left\{l_{\tau_{1}}, l_{\tau_{4}}^{3}, l_{\tau_{5}}^{2}, l_{\tau_{6}}^{5}\right\} \\
L_{v} & =\left\{l_{\tau_{1}}, l_{\tau_{4}}^{3}, l_{\tau_{5}}^{2}\right\}, \\
K_{v} & =\left\{\tau_{1}\right\},
\end{aligned}
$$

and for the vertex w,

$$
\begin{aligned}
& H_{w}=L_{w}=\left\{l_{\tau_{2}}^{3}, l_{\tau_{3}}^{4}, l_{\tau_{5}}^{2}\right\} \\
& K_{w}=\emptyset
\end{aligned}
$$

Therefore, by Theorem $3.11, C^{\alpha}(\widehat{\Delta})$ is not free.

References

[1] L. Billera, Homology of smooth splines : Generic triangulations and a conjecture of Strang, Trans. Amer. Math. Soc. 310 (1988), $325-340$.
[2] L. Billera, The algebra of continuous piecewise polynomials, Adv. in Math. 76 (1989), 170 183.
[3] L. Billera and L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom. 6 (1991), 107 - 128.
[4] L. Billera and L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), $485-497$.
[5] D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry. Springer-Verlag, New York-BerlinHeidelberg, 1998.
[6] A. Geramita and H. Schenck, Fat points, inverse systems, and piecewise polynomial functions, J. Algebra 204 (1998), 116 - 128.
[7] L. Rose, Combinatorial and topological invariants of modules of piecewise polynomials, Adv. in Math. 116 (1995), $34-45$.
[8] H. Schenck, A spectral sequence for splines, Adv. in Appl. Math. 19 (1997), 183 - 199.
[9] H. Schenck and M. Stillman, Local cohomology of bivariate splines, J. Pure Appl. Algebra 117 - 118 (1997), 535 - 548.
[10] H. Schenck and M. Stillman, A family of ideals of minimal regularity and the Hilbert series of $C^{r}(\widehat{\Delta})$, Adv. in Appl. Math. 19 (1997), $169-182$.

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka, Osaka 560-0043, Japan
Tel: $(+81) 6-6850-5326$
Fax: $(+81) 6-6850-5327$
E-mail: sm5013kt@ecs.cmc.osaka-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. $65 \mathrm{D} 07,13 \mathrm{C} 10,55 \mathrm{~N} 35$.
 Key words and phrases. mixed spline, free module.

