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Abstract. Admission control is an important part of modern high-speed network

control and has received extensive attention in the recent literature. In this paper we

consider an admission control problem for a discrete-time polling system consisting of

two queues and a single server. The arrival process in each queue is a superposition

of mutually independent Markov-modulated processes and the server serves the two

queues according to a Bernoulli service schedule. Basing on the theory of e�ective

bandwidths and the bu�er upper bound results on the over
ow probability obtained

by large deviation techniques, we derive an admission control criterion for the polling

system under which Quality of Service (QoS) requirement by each queue is guaranteed.

1. Introduction

In the emerging high-speed networks using asynchronous transfer mode (ATM) technol-

ogy, each traÆc-source is described by its stochastic characteristics, and is assured a quality

of service, as measured by the cell loss probability due to the bu�er over
ows. Generally,

the cell loss probability is desired to be controlled below very small level, e.g., in the order

of 10�9. Therefore, providing QoS guarantees is an important and challenging issue in

the design of high-speed networks. Admission control using the concept of e�ective band-

width is an integral part of this challenge and has received extensive attention in the recent

literature (see Kelly[21], Gibbens and Hunt[15], Kesidis et al.[22], Elwalid and Mitra[10],

Berger and Whitt[1], Liu et al.[19], Gautam and Kulkarni[14], [23], Whitt[28] and Zhang

et al.[25]). The main aim of the admission control is to control acceptance of a new call

that arrives to a network under the condition without violating existing QoS guarantees

made to on on-going calls. Most of the previous work have been devoted to single queueing

systems with a single class of traÆc ([4], [7], [19]), or with multiple classes of traÆc with

and without priority structure ([21], [10], [15], [22], [28] and [1], [14], [23]). For a network

consisting of two-parallel queues and a single server, Zhang et al.[25] construct a theoretical

framework of the call admission control schemes with multiple statistical QoS guarantee

under the Generalized Processor Sharing (GPS) schedule discipline.

In the present paper, we consider an admission control problem for a polling system. As

known, polling systems have been used for modeling distributed multiqueue systems sharing

a single server and extensively studied in the literature under various service schedules

such as the exhaustive, gated, K-limited and Bernoulli service schedules (see [11], [18]).

Especially, polling systems consisting of two-parallel queues and a single server have an

important application in modeling communication systems with two di�erent types of traÆc:
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the real-time traÆc(i.e., voice and video) and the non-real-time traÆc(i.e., data). In general,

the real-time traÆc has a more stringent delay requirement but can tolerate higher cell-loss;

while the non-real-time traÆc can tolerate higher delay but demands much smaller cell

loss. They have di�erent requirements for QoS. Therefore, deriving an admission control

criterion for such polling systems is an important work in network control. To the best of

our knowledge, such a research has not been done before. The reason can be considered to

be that performance analysis such as the delay, cell loss and bu�er over
ow probabilities

for polling systems with general arrival processes is extremely diÆcult. Recently, applying

large deviation technique, we have obtained in [12] and [13] the upper and lower bounds

of the over
ow probability for polling systems under the Bernoulli service schedule. This

sheds some light on the admission control problem of polling systems. Large deviation

technique is an asymptotic technique for analyzing rare events and estimating rare event

probabilities(see Bucklew[5], Dembo and Zeitouni[8]). In this decade, it has been extensively

used to estimate tail probabilities for queueing systems(see Botvich and DuÆeld[4], Chang[6]

and [7], Weiss[24], Glynn and Whitt[16], DuÆeld[9], Bertsimas et al.[2] and [3], and Zhang

et al.[26] and [27].

The model considered in this paper is a discrete-time polling system consisting of two

parallel queues and a single server. The arrival process in the ith queue is a superposition of

mutually independent Markov-modulated processes. A single server serves the two queues

according to the Bernoulli service schedule described as follows: At the beginning of each

discrete time, the server who just completed the service in the ith queue makes a random

decision: with the probability pi(0 � pi < 1), it continues to sever the packets of the ith

queue in the next slot, with the probability qi = 1 � pi, it switches to the other queue.

Further, when the queue being served becomes empty, the server switches its service to the

other queue immediately. The server is assumed not to take switching times in its transition

from one queue to the other. The service rate in Qi is assumed to be ci. Note that the

Bernoulli service schedule constitutes a generalization to both the exhaustive and 1-limited

service schedules. The main purpose of this paper is to present an admission control criterion

under which the cell-loss probability requirement is satis�ed for each queue.

The paper is organized as follows. In Section 2, we describe the model, de�ne the

potential service processes, and view some results on the large deviation and concept of

e�ective bandwidth. In Section 3, we give the large deviation upper and lower bounds, and

then, derive the admission control criterion for the polling system. In Section 4, we present

an algorithm for a special case where the arrival processes are the superposition processes

of mutually independent Markov on/o� sources. Some conclusions are included in Section 5.

2. Model and Preliminaries

We denote the two queues by Q1 and Q2. Throughout the paper, all time indices t; � ,

etc., are always integers and N = f0; 1; 2; � � � g. On a notational remark, we denote by

SX�;t =
Pt�1

k=� Xk; � < t and SXt =
Pt�1

k=0Xk the partial sums of the random sequence

X = fXt; t 2 Ng, and by SXt (s) =
Pdtse

k=0Xk=t; 0 � s � 1 the scaled partial sum of X,

respectively. We also denote by �X(�) and �
�
X(�) the limit logarithmic moment generating

function of the partial sum process of X, and the Legendre-Fenchel transform of �X(�),

namely,

�X(�) = lim
t!1

1

t
logE[e�S

X
t ]; � 2 R; (1)

��X(�) = sup
�2R

f�� � �X(�)g; � 2 R: (2)
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A. Arrival processes

The arrival process fAit; t 2 Ng in Qi is a superposition of a number of independent

Markov Modulated Arrival Processes (MMAP's). There are Ni classes of traÆc in Qi and

the nij streams of the class j. The mth stream of the jth class is a MMAP de�ned by

A
ijm
t = H

ijm
t (a

ijm
t ), where fa

ijm
t ; t 2 Ng is an irreducible, aperiodic, stationary Markov

chain on the �nite state space Sij with transition matrix Pij = (p
ij

kl)k;l2Sij , and stationary

distribution �ij , and fH
ijm
t (k); t 2 Ng is a renewal process with the mean h

ij

k = E[H
ij
0 (k)]

and the moment generating function  
ij

k (�) = E[exp(�H
ij
0 (k))] for �xed k 2 Sij . In general,

the source state a
ijm
t can be thought of as modeling the burstiness of the arrival process at

time t, and the Markov structure models correlation in the arrival process. Assume that

all the Markov chains fa
ijm
t ; t 2 Ng and all the renewal processes fH

ijm
t (k); t 2 Ng are

mutually independent, and these arrival processes in Q1 and Q2 are also mutually inde-

pendent. Further assume that all the underlying Markov chains have reached their steady

state. Let ait = (ai11t ; � � � ; ai1n1t ; � � � ; aiNi1t ; � � � ; a
iNiniNi
t ), then fait; t 2 Ng is a Markov

chain with state space Si = �Ni
n=1(S

ij)nij , transition matrix Pi = 

Ni
n=1(P

ij )
nij and sta-

tionary distribution �i = 
Ni
n=1(�

ij)
nij , where 
 denotes the Kronecker product. De�ne

Hi
t (k

i) =
PNi

n=1

Pnij
m=1H

ijm
t (kij) for ki = (ki11; � � � ; ki1ni1 ; � � � ; kiNi1; � � � ; kiNiniNi ) 2 Si.

Then, the aggregate arrival process in Qi can be denoted as Ait = Hi
t (a

i
t). We have

Ai � E[Ait] =
PNi

j=1

Pnij
m=1

P
kijm2Sij �

ij

kijm
h
ij

kijm
.

B. Potential service processes

According to the Bernoulli service schedule described above, the potential service process

in each queue (i.e., the service processes when both queues are not empty) can be described

by a Markov chain. Let fb1t ; t 2 Ng be a Markov chain with state space f0; 1g and transition

matrix

Pb1 =

�
p2 q2
q1 p1

�
: (3)

Let b2t = 1 � b1t ; t 2 N. Then fb2t ; t 2 Ng is also a Markov chain with state space f0; 1g

and transition matrix

Pb2 =

�
p1 q1
q2 p2

�
: (4)

Furthermore, de�neBi
t = bitci; t 2 N. We have that fBi

t; t 2 Ng is a Markov chain with state

space SBi = f0; cig and transition matrix Pbi . From the above de�nition, fBi
t; t 2 Ng, i =

1; 2 are independent of the arrival processes fA1
t ; t 2 Ng and fA

2
t ; t 2 Ng. The equilibrium

distributions of fB1
t ; t 2 Ng and fB2

t ; t 2 Ng are �B1 = (q2=(q1 + q2); q1=(q1 + q2)) and

�B2 = (q1=(q1 + q2); q2=(q1 + q2)), respectively. Let B
i � E[Bi

t] = qi=(q1 + q2)ci; i = 1; 2.

Note that fB1
t + B2

t ; t 2 Ng is a Markov chain with state space fc1; c2g and transition

matrix Pb2 . Its equilibrium distribution and mean are �2B = (q1=(q1+q2); q2=(q1+q2)) and

B1 + B2, respectively.

C. Stability condition

Since fB1
t + B2

t ; t 2 Ng can be referred as the service process of the aggregate arrival

process fA1
t + A2

t ; t 2 Ng, from Loynes's Stability Theorem[20], the stability condition of

the polling system is given as follows:

A1 +A2 < B1 + B2: (5)

Throughout the paper, we assume that the condition (5) holds.



84 WEI FENG, KOUICHI ADACHI AND MASASHI KOWADA

D. Large deviations of the arrival processes and potential service processes

For ki 2 Si, de�ne  ki (�) = E[exp(�Hi
0(k

i))]. Then, by independent assumption we

have  ki(�) = �Ni
j=1�

nij
m=1 

ij

kijm
(�). Furthermore, let Di = f� > 0 :  ki (�) <1; ki 2 Sig

for i = 1; 2. We assumeDi is non-empty and open. These technical assumptions are satis�ed

in most cases of practical interest which includes r.v.'s with phase-type distributions. For

� 2 Di, de�ne the matrix

Hi
A(�) =

�
Pi1	i1(�)

�
ni1


�
Pi2	i2(�)

�
ni2

 � � � 


�
PiNi	iNi(�)

�
niNi
(6)

where 	ij(�) � diag( 
ij

k (�); k 2 S
ij), and for any � > 0, de�ne two-dimensional matrices

H1
B(�) =

�
p2 q2e

�c1

q1 p1e
�c1

�
; H2

B(�) =

�
p1 q1e

�c2

q2 p2e
�c2

�
: (7)

Furthermore, let �iA(�) = sp(Hi
A(�)) and �iB(�) = sp(Hi

B(�)) be the spectral radii of

the matrices Hi
A(�) and Hi

B(�), x
i
A(�) = (ximA ; 1 � m � �Ni

j=1jS
ijjnij ) and xiB(�) =

(xi0B (�); x
i1
B (�))

T the positive right eigenvector corresponding to �iA(�) and �
i
B(�), where jS

ij j

denotes the state number of state space Sij . Let �iA(�) = max
0�k;l��

Ni
j=1

jSij jnij
xikA (�)=x

il
A(�),

�iB(�) = max0�k;l�1 x
ik
B (�)=x

il
B (�). Then, the following properties hold (see Graham[17]).

Proposition 1: (i) �iA(�) = �Ni
j=1(�

ij
A(�))

nij , where �
ij
A(�) = sp(Pij	ij(�)) is the spectral

radii of matrix Pij	ij(�) for j = 1; � � � ;Ni.

(ii) xiA(�) = 
Ni
j=1(x

ij

A(�))

nij , where x

ij

A (�) = (x
ijm

A ; 1 � m � jSij j) is the positive right

eigenvector corresponding to �
ij
A(�) for j = 1; � � � ;Ni.

(iii) �iB(�) =
pj + pie

�ci +
p
(pj � pie�ci)2 + 4qiqje�ci

2
; i; j = 1; 2; i 6= j:

(iv) xiB(�) = (
�iB(�) � pie

�ci

�iB(�) + qi � pie�ci
;

qi

�iB(�) + qi � pie�ci
)T ; i = 1; 2:

(v) �iB(�) = maxf
qi

�iB(�) � pie�ci
;
�iB(�) � pie

�ci

qi
g; i = 1; 2:

Applying the large deviation results on general Markov-modulated processes and chains

(see Dembo and Zajic [7], and Chang [6]) to the processes fAit; t 2 Ng and fB
i
t; t 2 Ng, we

get the following proposition.

Proposition 2: (i) �iA(�) = log(�iA(�)) =
PNi

j=1 nij log(�
ij

A(�)) and �iB(�) = log(�iB(�)),

and both �iA(�) and �iB(�) are convex function of �.

(ii) The processes fSA
i

t =t; t 2 Ng and fSB
i

t =t; t 2 Ng satisfy the large deviation principle

with the convex, good rate functions �i�A (�) = sup�2Rf�� � �iA(�)g and �i�B (�) =

sup�2Rf�� � �iB(�)g, respectively.

(iii) Let FAi

t = �fAi� ; � � tg and FBi

t = �fBi
� ; � � tg, then for all � 2 R and �; t � 0,

�iA(�)t � �iA(�) � logE[e�S
Ai

�;�+t jFAi

� ] = logE[e�S
A
i

�;�+t jAi� ] � �iA(�)t + �iA(�); a:s:

�iB(�)t � �iB(�) � logE[e�S
Bi

�;�+t jFBi

� ] = logE[e�S
Bi

�;�+t jBi
� ] � �iB(�)t + �iB(�); a:s::

Other basic properties of �iA(�), �
i
B(�), �

i�
A (�) and �i�B (�) can be found in Dembo and

Zeitouni[7], and Zhang[19] and [20].
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E. Admission control and e�ective bandwidth

The admission control for the statistical multiplexing of bursty sources aims at a admit-

ting a new connection application into a network only if it can be guaranteed a minimal

QoS without violating the QoS of other connection applications already in the system. The

main task of the admission control is to construct an admissible set for the numbers of all

connection types. The theory bases is the concept of e�ective bandwidths, which has been

originally developed for a single server system with multiplexing input streams. Consider a

single bu�er 
uid model with the service rate c and the arrival process which is a superpo-

sition of number of independent processes fA
jm
t ; t 2 Ng; 1 � j � N , 1 � m � nj . Assume

that nj streams of class j are identical distribution. For � (� > 0), the e�ective bandwidth

function of fA
jm
t ; t 2 Ng is de�ned as follows:

eb
j

A(�) = lim
t!1

1

�t
logE[exp(�SA

j

t )] =
�
j

A(�)

�
: (8)

Let �� be the solution to the equation

NX
j=1

njeb
j

A(�) = c: (9)

Basing on the result of the large-bu�er asymptotics on the tail probability of the steady

state queue length L:

lim
t!1

PfLt > xg = PfL > xg � e��
�x (10)

as x !1, one has that the QoS criterion PfL > xg < � for cell loss probability is satis�ed

if e�x�
�

< �, as x!1 and �! 0 such that � log(�)=x! ��. Then, the e�ective bandwidth

associated with fA
jm
t ; t 2 Ng is assigned to be eb

j

A = eb
j

A(�
�), and an admissible set for

the vector (n1; � � � ; nN ) is de�ned as follows.

N = f(n1; � � � ; nN );

NX
j=1

njeb
j

A � cg: (11)

Therefore, the e�ective bandwidth actually is a number associated with each connection

such that if the sum of the e�ective bandwidths of all connection onto a bu�er is less than

the output rate of that bu�er, then QoS is satis�ed. Recently, the concept of e�ective

bandwidths has been extended to networks with priority classes by Berger and Whitt[1], [2]

and [3]. For the polling system considered here, we want to �nd a similar admissible set for

which the cell-loss probability requirement is satis�ed by each queue. Concretely, let Lit be

the queue length of Qi at time t. Since the server allocates its capacity randomly between

the two queues, we know that fLit; t 2 Ng is a�ected not only by itself arrival processes,

but also by the arrival processes of Qj ; j 6= i. Namely, the behavior of fLit; t 2 Ng depends

on both (n11; � � � ; n1N1
) and (n21; � � � ; n2N2

). Let �i be the cell-loss probability target for

the traÆc of Qi. The purpose of the admission control is to satisfy the QoS criterion for

the each class:

Gi((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) = lim
t!1

PfLit > xig � �i (12)

on the asymptotic region: xi !1 and �i ! 0 such that � log(�i)=xi ! ��i > 0. The main

work is to identify the following feasible region:

K = f((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) : G1((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) � �1;

G2((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) � �2g:(13)
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3. Upper bounds and admission control

In this section, we �rst give the large deviation upper bounds on the over
ow probability

of each queue, and then basing on the upper bounds, present an admission control criterion

for the polling system. By fDi
t; t 2 Ng and fE

i
t; t 2 Ng, we denote the stationary and tran-

sient departure processes from anMMAP=MSP=1 queueing system with the arrival process

fAit; t 2 Ng and the service process fB
i
t; t 2 Ng, respectively. HereMMAP andMSP de-

note Markov-Modulated Arrival Process and Markov service process. Note that the stability

condition of this system is Ai < Bi. The e�ective bandwidths of fAit; t 2 Ng and fB
i
t; t 2

Ng are expressed by ebiA(�) and ebiB(�), respectively. Then, from Proposition 2, we have

ebiA(�) =
PNi

j=1

Pnij
m=1 eb

ijm

A (�) =
PNi

j=1

Pnij
m=1 �

ijm

A (�)=� =
PNi

j=1 nij log(�
ij

A(�))=� and

ebiB(�) = �iB(�)=� = log(�iB(�))=�. Then �iA
0
(�) � (�iA(�))

0 =
PNi

j=1

Pnij
m=1(�

ijm
A (�))0 =PNi

j=1 nij(�
ij

A(�))
0=�

ij

A(�) and �iB
0
(�) � (�iB(�))

0 = (�iB(�))
0=�iB(�). Furthermore, we de�ne

ebiD(�) as follows:

For any � � 0,

ebiD(�) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

CASE1: Ai < �iA
0
(Æ�i ) � Bi < minf�ir; cig

ebiA(�) if � � Æ�i

Æ�i
�
ebiA(Æ

�
i ) +

� � Æ�i
�

ebiB(� � Æ�i ) if Æ�i < � and

Bi � �iB
0
(� � Æ�i )

� minf�ir; cig
Æ�i
�
ebiA(Æ

�
i ) +

� � Æ�i
�

minf�ir; cig if Æ�i < � and

�
minf�ir; cig

�
ebiB(minf�ir; cig) minf�ir; cig <

�iB
0
(� � Æ�i )

CASE2: Ai < Bi < �iA
0
(Æ�i ) � minf�ir; cig

ebiA(�) if � : �iA
0
(�)) � Bi (14)

Ji(�)

�
if � : �iA

0
(�) > Bi; � � Æ�i

or, �iA
0
(�) > Bi; � > Æ�i

and �iB
0
(� � Æ�i ) � �iA

0
(Æ�i )

maxf
Ji(�)

�
;
Æ�i
�
�Ai(Æ

�
i ) +

� � Æ�i
�

�iB(� � Æ�i )g if � : �iA
0
(�) > Bi; � > Æ�i

and �iA
0
(Æ�i ) < �iB

0
(� � Æ�i )

� minf�ir; cig

maxf
Ji(�)

�
;
Æ�i
�
�Ai(Æ

�
i ) +

� � Æ�i
�

minf�ir; cig if � : �iA
0
(�) > Bi; � > Æ�i

�
minf�ir; cig

�
ebiB(minf�ir; cig)g and minf�ir; cig < �iB

0
(� � Æ�i )

CASE3: Ai < Bi < minf�ir; cig < �iA
0
(Æ�i )

ebiA(�) if � : �iA
0
(Æ�i ) � Bi

Ki(�)

�
if � : �iA

0
(Æ�i ) > Bi

CASE4: Ai � Bi

ebiB(�)
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where, �ir is the right end point of dom�i�A = int(ran�iA
0
), and Æ�i is the largest solution

to the equation �iA(�)+�iB(��) = 0. Ji(�) = (�� ~��
Ai
(�)� ~��

Bi
(�))�A

iBi(�)+�iA(
~��
Ai
(�))+

�iB(
~��
Bi
(�)), where �A

iBi(�) is the maximum point of the function ����i�A (�) ��i�B (�) in

the interval [Bi;�iA
0
(Æ�)], and for � �xed, ~��

Ai
(�) and ~��

Bi
(�) are the unique solution of the

equations �iA
0
(~�) = �A

iBi(�) and �iB
0
(~�) = �A

iBi(�), respectively. Ki(�) = (� � �̂�
Ai
(�) �

�̂�
Bi
(�))�A

iBi(�) + �iA(�̂
�
Ai
(�)) + �iB(�̂

�
Bi
(�)), here �A

iBi(�) is the maximum point of the

function �� � �i�A (�) � �i�B (�) in the interval [Bi;minf�ir; cig], and for � �xed, �̂�
Ai
(�) and

�̂�
Bi
(�) are the unique solution of the equations �iA

0
(�̂) = �A

iBi(�) and �iB
0
(�̂) = �A

iBi(�),

respectively.

As will be seen, ebiD(�) actually is the e�ective bandwidths of the stationary departure

fDi
t; t 2 Ng. Obviously, ebiD(�) is a function of the integer number nij and the e�ective

bandwidths eb
ij

A(�) for j = 1; 2; � � � ;Ni. Recall that Lit denotes the queue length of the

queue Qi at time t. Then under the stability condition (5), Lit converges in distribution to a

�nite random variable Li1. Here we assume that the queue processes of the polling system

have reached their steady state. Thus Li0 has the same distribution as Li1.

Theorem 1. Under the stability condition (5), the steady state queue length Li0 of the

queue Qi satis�es the following upper bound:

(i) For any � 2 Di, if ebiA(�) + vieb
j

D(vi�) < ci; j 6= i, then

lim sup
x!1

1

x
logPfLi0 > xg � ��; (15)

where, vi = ci=cj; i; j = 1; 2.

(ii) The positive solution ��
ij(vi) of the equation:

ebiA(�) + vieb
j
D(vi�) = ci; j 6= i: (16)

exists uniquely and ���
ij(vi) is the tightest upper bound.

Before going to prove Theorem 3, we �rst present two lemmas on the e�ective bandwidth

of the stationary departure fDi
t; t 2 Ng. First lemma is due to Theorem 2 of Chang and

Zajic[7].

Lemma 1. Under Ai < Bi, for any � 2 R,

lim
t!1

1

t
logPfSD

i

t > �tg = � inf
x��

�i�D(x); (17)

lim
t!1

1

t
logE[e�S

Di

t ] = �iD(�); � � 0; (18)

where, �i�D(�) = Æ�i �� sup
x��

fÆ�i x� �i�A (x)g + inf
x��

�i�B (x)

=

8>>>>>>><
>>>>>>>:

0 if � < Ai

�i�A (�) if � � �iA
0
(Æ�) and Ai < � � Bi

�i�A (�) + �i�B (�) if � � �iA
0
(Æ�i ) and Bi < � � minf�ir; cig

Æ�i �� �iA(Æ
�
i ) if � > �iA

0
(Æ�) and Ai < � � Bi

Æ�i �� �A(Æ
�
i ) + ��B(�) if � > �iA

0
(Æ�i ) and Bi < � � minf�ir; cig

1 if � > minf�ir; cig;

(19)
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here, Æ�i is the largest solution of the equation, �iA(�) + �iB(��) = 0, and

�iD(�) = sup
Ai��

f�� � �i�D(�)g = sup
Ai���minf�ir;cig

f��� �i�D(�)g: (20)

For theMMAP=MAP=1 queueing system, we can directly derive �iD(�) as follows. The

proof is similar to that of Theorem 3.3 in Feng et al.[12].

Lemma 2. Under Ai < Bi, for any � > 0, �iD(�) = �ebiD(�), where eb
i
D(�) is given in the

formula (13).

The proof of Theorem 1: For the sake of convenience, we look backwards in time from time

0. As the Bernoulli service schedule is work-conserving, the evolutions of the two queues

are governed by the following recursive equations:

L1�t = maxfL1�t�1 +A1
�t�1 �maxfB1

�t�1; c1 � v1(L
2
�t�1 +A2

�t�1)g; 0g; (21)

L2�t = maxfL2�t�1 +A2
�t�1 �maxfB2

�t�1; c2 � v2(L
1
�t�1 +A1

�t�1)g; 0g: (22)

De�ne Ri
�t = maxfBi

�t; ci � vi(L
j
�t + Aj�t)g; i; j = 1; 2; i 6= j. Then, Ri

�t denotes the

amount of the service actually received by Qi at time �t. Expanding (21) and (22) recur-

sively we have

Li0 = max
t2N

f SA
i

�t � SR
i

�t g; i = 1; 2; (23)

where, SR
i

�t =
P�1

�=�tR
i
� is the total amount of the service actually received by Qi in [�t; 0).

Observing that

SR
i

�t = Li�t + SA
i

�t � Li0: i = 1; 2; (24)

we have SR
i

t � SA
i

t � Li0. Without loss of generality, we consider here the case that

i = 1; j = 2. Then, the maximum in (22) for i = 1 must be achieved at the time when

L1t = 0. Let �t � 0 be the �rst time such that L1�t = 0 and L1�� > 0 for � 2 (0; t). Since

the queue Q1 is busy during the interval (�t; 0] and the Bernoulli service schedule is a work-

conserving policy, the queue Q1 gets at least S
B1

�t amount of the service (by considering the

situation that the queue Q2 may become empty between �t and 0). Thus, SR
1

�t � SB
1

�t . On

the other hand, since SR
2

�t is the amount of the service actually received by Q2 during the

interval [�t; 0) and the service rate is c2, S
R2

�t =c2 is the time that the server spends in Q2

during the interval [�t; 0). We have that c1(t�S
R2

�t =c2) = c1t� v1S
R2

�t is the amount of the

service received by Q1, where v1 = c1=c2. Hence,

SR
1

�t = maxf c1t� v1S
R2

�t ; c1t� v1S
R2

�t g = c1t� v1minf SR
2

�t ; SB
2

�t g: (25)

Substituting (23) into (22) for i = 1 yields

L10 = max
t2N

f SA
1

�t + v1minf SR
2

�t ; SB
2

�t g � c1t g: (26)

Note that under the stability condition (5) of the polling system, it is possible that for

some i =1 or 2, Ai � Bi. Thus, it is necessary to distinguish theses two cases in the proof.

CASE1: A2 < B2.

We introduce a MMAP=MSP=1 queueing system with the arrival process fA2
t ; t 2 Ng

and the service process fB2
t ; t 2 Ng. Let ~L2�t be its queue length at time �t. Since this
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virtual system does not receive extra service except SB
2

�t , it always holds that L
2
�t �

~L2�t.

We have SR
2

�t � L2�t + SA
2

�t �
~L2�t + SA

2

�t : Thus,

L20 � max
t2N

f SA
1

�t + v1minf ~L�t + SA
2

�t ; SB
2

�t g � c1t g = max
t2N

f SA
1

�t + v1S
M2

�t � c1t g; (27)

where SM
2

�t = minf ~L2�t + SA
2

�t ; SB
2

�t g. From Proposition 2, Lemma 1 and 2, we have for

any � > 0,

E[e�L
2
0 ] � E[e�maxt2NfS

A2

�t+v1S
M2

�t �c1tg] �
X
t2N

E[e�(S
A2

�t+v1S
M2

�t �c1t)]

� C� +
X
t�t�

e(�
1
A(�)+�

2
D(v1�)+2��c1�)t

where t� is suÆcient large and C� is a constant dependent on �. Therefore, we haveE[e
�L10 ] <

1 if �1A(�)+�2D(v1�)+2��c1� < 0. By Chebyshev's inequality, PfL10 > xg � e��xE[e�L
1
0 ]

for any x � 0. Then, using the de�nition of eb1A(�) and eb
2
D(�), we have that if eb

1
A(�) +

v1eb
2
D(v1�) + 2�=� � c1 < 0,

lim sup
x!1

1

x
PfL10 > xg � ��: (28)

Taking �! 0, we get the upper bound (15) in this case.

CASE2: A2 � B2

By (23), we have

L10 � max
t2N

f SA
1

�t + v1S
B2

�t � c1t g: (29)

For any � > 0, similarly, if �A1(�) + �B2(v1�) + 2�� c1� < 0, then,

E[e�L
1
0 ] �

X
t2N

E[e�(S
A2

�t+v1S
M2

�t �c1t)] <1:

Again by Chebyshev's inequality, if eb1A(�) + v1ebB2 (v1�) + 2�=� � c1 < 0,

lim sup
x!1

1

x
logPfL10 > xg � ��: (30)

Taking �! 0 and noting that eb2D(�) = eb2B(�) in this case, we establish (15).

Next consider the assertion (ii) of Theorem 1. Write the equation ebiA(�)+vieb
j
D(vi�) =

ci as �
i
A(�) + �

j

D(vi�) = ci�. Note that fDi
t; t 2 Ng is the stationary departure process

from the MMAP=MSP=1 queueing system with the arrival process fAit; t 2 Ng and the

service process fBi
t; t 2 Ng. Then, Di

t � Bi
t for t 2 N. It follows that E[D

j
0] � Bj.

Hence, if Ai < Bi, we have (�iA
0
(�) + vi�

j

D

0
(�))j�=0 = Ai + viE[D

j
0] < Bi + viB

j = ci.

Otherwise, we must have that Aj < Bj; j 6= i from the stability condition (5). Thus, the

MMAP=MSP=1 queueing system with the arrival process fA
j
t ; t 2 Ng and the service

process fB
j
t ; t 2 Ng is stable. We have E[D

j
0] = Aj. Again by the stability condition (5),

Ai + viE[D
j
0] < Ai + viA

j < Bi+ viB
j = ci. Finally, by the convexity of �

i
A(�) and �

j
D(�),

we obtain the assertion (ii). These complete the proof. 2

Remarks: (1) Note that �ij(vi) is the function of the integer numbers nij and the
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e�ective bandwidths eb
ij
A (�) and the e�ective bandwidth ebiB(�).

(2) In fact, by the similar method in [12] and [13], we can also derive the lower bounds on

the over
ow probability. Since only the upper bounds of the over
ow probability will be

used to determine the admission control criterion, here we give the lower bounds without

proof.

Theorem 2. Under the stability condition (5), the steady state queue length Li0 of the

queue Qi satis�es the following lower bound:

lim inf
x!1

1

x
logPfLi0 > xg � ���ij(li);

where, ��ij (li) is the unique solution of the equation:

ebiA(�) + lieb
j
E(li�) = ci; i 6= j;

here, li = maxfvi; 1g1fAj<Bjg + vi1fAj�Bjg, 1C is the indicator function of the set C, and

ebiE (�) is de�ned as follows: for any � � 0,

ebiE(�) =

8>>>>>>><
>>>>>>>:

CASE1: Ai < Bi

ebiA(�) if � : �iA
0
(�) � Bi

Ki(�)=� if � : �iA
0
(�) > Bi

CASE2: Ai � Bi

Bi:

By the upper bounds (15), for xi suÆciently large, we have PfLi0 > xig � e��
�

ijxi .

Therefore, if e��
�

ijxi � �i, i.e., �
�
i � � log(�i)=xi � ��

ij , then it holds that PfLi0 > xig � �i.

From Theorem 1(ii), this means that

ebiA(�
�
i ) + eb

j

D(�
�
i ) � ci: (31)

Note that ebiA(�
�
i ) =

PNi
j=1 nijeb

ij
a (�

�
i ) � ebiA(�

�
i ;ni1; � � � ; niNi) is a linear function of

ni1; � � � ; niNi, and eb
j
D(�

�
i ) � eb

j
D(�

�
i ;nj1; � � � ; njNj ) is a nonlinear function of ni1; � � � ; niNi .

Thus, (31) is a nonlinear constraint on the integer numbers n11; � � � ; n1N1
;n21; � � � ; n2N2

.

Let N be the set of points ((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) such that

N = f((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) :

eb1A(�
�
1 ;n11; � � � ; n1N1

) + eb2D(�
�
1 ;n21; � � � ; n2N2

) � c1;

eb2A(�
�
2 ;n21; � � � ; n2N2

)+ eb1D(�
�
2 ;n11; � � � ; n1N1

) � c2g: (32)

We have the following theorem.

Theorem 3. N � K, i.e., the QoS criteria

Gi((n11; � � � ; n1N1
); (n21; � � � ; n2N2

)) � �i; i = 1; 2

are satis�ed if

ebiA(�
�
i ;ni1; � � � ; niNi) + eb

j
D(�

�
i ;nj1; � � � ; njNj ) � ci; i; j = 1; 2; j 6= i (33)
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where ��i ; i = 1; 2 is given by

��i = �
log �i

xi
:

4. Algorithm for two classes case
In this section we present an algorithm to calculate the admissible set for a polling

model that each queue has only one input class of traÆc, i.e., N1 = N2 = 1. Assume that

ni input streams faimt ; t 2 Ng of Qi are independent and identical stationary Makovian

on/o� sources. That is, faimt ; t 2 Ng is a stationary Markov chain with the state space

f0; 1g and transition matrix

Pi
a =

�
1� �i �i

�i 1� �i

�
: (34)

While in the state on (denoted by 1), the source produces information of traÆc at a constant

ri; while in the state o� (denoted by 0), it produces no information. The equilibrium

distribution of faimt ; t 2 Ng is �ia = (�i=(�i + �i); �i=(�i + �i)). The aggregate arrival

process Ait of Qi can be described as Ait =
Pni

m=1 a
im
t ri, and A

i � E[Ait] =
Pni

m=1 �
i=(�i +

�i)niri. Since each input stream faimt ; t 2 Ng is a two-state Markov chain, we can easily

calculate �ia(�) = sp(Pi
a	

i
a(�)){the spectral radii of the matrix Pi

a	
i
a(�) as follows:

�ia(�) =
1� �i + (1� �i)e�ri +

p
((1 � �i) � (1� �i)e�ri )2 + 4�i�ie�ri

2
: (35)

We have �iA(�) = ni log(�
i
a(�)) and the e�ective bandwidth ebiA(�; ni) = ni log(�

i
a(�))=� �

ni eb
i
a(�), where eb

i
a(�) denotes the e�ective bandwidth of faitri; t 2 Ng. Similarly, the

admission control policy for this special case can be described as follows: under the condition

that n1 class-1 streams and n2 class-2 streams are transmitting, if a new stream arrives into

the polling system, the admission control scheme decides whether or not to admit this

stream. A simple admission control scheme is an admissible region such that all points

within it denote the numbers of class-1 and class-2 streams for which QoS of each queue is

satis�ed. Namely,

K = f(n1; n2) : G1(n1; n2) � �1; G2(n1; n2) � �1g: (36)

Now the subset N of K obtained by using the upper bounds becomes to:

N = f(n1; n2) : eb1A(�
�
1 ;n1) + eb2D(�

�
1 ;n2) � c1; eb2A(�

�
2 ;n2) + eb1D(�

�
2 ;n1) � c2g: (37)

Since for any � � 0 and any ni � 0, ebiD(�; ni) � 0. We have that the maximum num-

bers n�1 and n�2 of input streams under which QoS of each queue is ensured should be the

maximum numbers satisfying inequalities eb1A(�
�
1 ;n1) � c1 and eb

2
A(�

�
2 ;n2) � c2. Thus, we

can take n�i = b��i ci= log(�
i
a(�

�
i ))c for i = 1; 2. In the following, we give an algorithm to

determine the admissible set N .

Algorithm.

Step 1. For i = 1; 2 and � � 0, put

(i) �ia(�) =
1� �i + (1� �i)e�ri +

p
((1 � �i) � (1� �i)e�ri )2 + 4�i�ie�ri

2
;

�iA(�; ni) = ni log(�
i
a(�)) and eb

i
A(�; ni) = ni log(�

i
a(�))=�.
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(ii) �ib(�) =
pj + pie�ci +

p
(pj � pie�ci)2 + 4qiqje�ci

2
; j = 1; 2; j 6= i;

�iB(�) = log(�ib(�)) and eb
i
B(�) = log(�ib(�))=�.

Step 2. For the given �i and xi, calculate �
�
i = � log(�i)=xi, and the maximum numbers of

the input streams in each queue n�i = b��i ci= log(�
i
a(�

�
i ))c.

Step 3. For i = 1; 2, determine the set N1 = f(n1; n2); eb1A(�
�
1 ;n1)+ eb2D(�

�
1 ;n2) � c1g and

N2 = f(n1; n2); eb2A(�
�
2 ;n2) + eb1D(�

�
2 ;n1) � c2g as follows: �rst, set

N1 = f(0; 0); (1; 0); � � � ; (n�1; 0)g and N2 = f(0; 0); (0; 1); � � � ; (0; n�2)g.

For i = 1 to 2,

For ni = 0 to n�i ,

For nj = 1 to n�j

(i) Find Æ�j (nj)|the largest root of the equation �
j
A(�; nj ) + �

j
B(��) = 0, or

equivalently, the largest root of the equation (�ja(�))
nj = �

j

b(��)
�1.

(ii) calculate �jA
0
(Æ�j (nj); nj), where

�
j
A

0
(�; nj ) =

njrje
�rj

2�
j
a(�)

(
(1� �j) +

2�j�j � (1� �j)((1 � �j)� (1� �j)e�rj )p
((1� �j) � (1 � �j)e�rj )2 + 4�j�je�rj

)
:

(iii) Distinguish the following four cases:

CASE1. if Aj < �
j

A

0
(Æ�j (nj); nj ) � Bj < minf�jr; cjg, then go to (1).

CASE2. if Aj < Bj < �
j

A

0
(Æ�j (nj ; nj) � minf�jr; cjg, then go to (2).

CASE3. if Aj < Bj < minf�jr; cjg < �
j

A

0
(Æ�j (nj); nj), then go to (3).

CASE4. if Aj � Bj, then go to (4).

(1) calculate eb
j

D(�
�
i ;nj) for CASE1.

eb
j
D(�

�
i ;nj) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

nj eb
j
a(�

�
i ) if ��i � Æ�j (nj )

Æ�j (nj)

��i
nj eb

j
a(Æ

�
j (nj) +

��i � Æ�j (nj)

��i
if Æ�j (nj) < ��i and

�eb
j

b(�
�
i � Æ�j (nj)) Bj � �

j

B

0
(��i � Æ�j (nj ))

� minf�jr; cjg
Æ�j (nj)

��i
nj eb

j
a(Æ

�
j (nj)) +

��i � Æ�i (nj)

��i
minf�jr; cjg if Æ�j (nj) < ��i and

�
minf�jr; cjg

��i
eb
j

b(minf�jr; cjg) minf�jr; cjg <

�
j

B

0
(��i � Æ�j (nj));

then go to (iv).

(2) calculate eb
j
D(�

�
i ;nj) for CASE2.

(2.1) �nd �A
jBj (��i )|the maximum point of the function f(�) = ��i �

�
j�
A (�) � �

j�
B (�) on the interval [Bj;�

j

A

0
(Æ�j (nj))].

(2.2) �nd ~��
Aj
(��i ) and

~��
Bj
(��i )|the unique solution of the equations

�
j
A

0
(~�; nj ) = �A

jBj (��i ) and �
j
B

0
(~�) = �A

jBj (��i ), where
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�
j

B

0
(�) =

cje
�cj

2�
j

b(�)

(
pj +

2qjqi � pj(pi � pje�c)p
(pi � pje�cj )2 + 4qjqie�cj

)
; i 6= j:

(2.3) put

Jj(�
�
i ) = (��i �

~��
Aj
(��i )�

~��
Bj
(��i ))�

AjBj (��i )+�
j
A(
~��
Aj
(��i ))+�

j
B(

~��
Bj
(��i )):

(2.4) calculate eb
j
D(�

�
i ;nj):

eb
j
D(�

�
i ;nj)

=

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

nj eb
j
a(�

�
i ) if �

j
A

0
(��i ) � Bj

Jj(�
�
i )

��i
if �

j

A

0
(��i ) > Bj ; ��i � Æ�j (nj) or

�
j

A

0
(��i ) > Bj; ��i > Æ�j (nj) and

�
j

B

0
(��i � Æ�j (nj)) � �

j

A

0
(Æ�j (nj))

maxf
Jj(�

�
i )

��i
;
Æ�j (nj)

��i
nj eb

j
a(Æ

�
j (nj)) if �

j

A

0
(��i ) > Bj ; ��i > Æ�j (nj) and

+
��i � Æ�j (nj)

��i
ebjb(�

�
i � Æ�j (nj))g �jA

0
(Æ�j (nj)) < �jB

0
(��i � Æ�j (nj))

� minf�jr; cjg

maxf
Jj(�

�
i )

��i
;
Æ�j (nj)

��i
eb
j
A(Æ

�
j (nj)) +

��i � Æ�j (nj)

��i
if �

j
A

0
(��i ) > Bj ; ��i > Æ�j (nj) and

�minf�jr; cjg �
minf�jr; cjg

��i
eb
j
B(minf�jr; cjg)g minf�jr; cjg < �

j
B

0
(��i � Æ�j (nj ))

then go to (iv).

(3) calculate eb
j
D(�

�
i ;nj) for CASE3.

(3.1) �nd �A
iBi(��j )|the maximum point of the function f(�) = ��j ��i�A (�)

��i�B (�) on the interval [Bi;minf�jr; cjg].

(3.2) �nd �̂�
Ai
(��j ) and �̂

�
Bi
(��j )|the unique solution of the equations

�iA
0
(�̂) = �A

iBi(��j ) and �iB
0
(�̂) = �A

iBi(��j ).

(3.3) put

Ki(�
�
j ) = (��j��̂

�
Ai
(��j )��̂

�
Bi
(��j ))�

AiBi (��j )+�
i
A(�̂

�
Ai
(��j ))+�

i
B(�̂

�
Bi
(��j )):

(3.4) calculate eb
j

D(�
�
i ;ni):

eb
j
D(�

�
i ;nj) =

8><
>:

nj eb
j
a(�

�
i ) if �

j
A

0
(��i ) � Bj;

Kj (�
�
i )

��i
if �

j

A

0
(��i ) > Bj,

then go to (iv).

(4) calculate eb
j
D(�

�
i ;nj) for CASE4.

eb
j
D(�

�
i ;nj) = eb

j

b(�
�
i ), then go to (iv).
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(iv) If ebiA(�
�
i ;ni) + eb

j
D(�

�
i ;nj) � ci; then next nj , else go to (v).

(v) set n�j (ni) = nj , and

Ni = Ni [ f(ni; 0); (ni; 1); � � � ; (ni; n
�
j (ni))g:

Next ni

Next i.

Step 4. Set N = N1 \N2: Then, end.

5. Conclusion
In this paper we have considered an admission control problem for the polling system

consisting of two-parallel queues and a single server, under the Bernoulli service schedule.

Basing on the e�ective bandwidth theory and the large deviation bounds, we have derived

an admission control criterion under which QoS of each queue is guaranteed, and presented

an algorithm to �nd the admissible set. As known, the e�ective bandwidth approach based

completely on large-bu�er asymptotics often give a very conservative approximation, e.g.,

see [1], [2]. Moreover, the large deviation upper and lower bounds used here are not match-

ing. This fact also a�ects the accuracy of approximation. Nevertheless, we believe that our

results can be very useful because they identify an appropriate structure for the admissible

set for the polling system. Furthermore, since eb
j
D(�

�
i ;nj1; � � � ; njNj ) is non-linear function

of nj1; � � � ; njNj , the resulting admissible set (32) has nonlinear constraints for each class

of each queue. These non-linear constraints make the notation of e�ective bandwidths lose

much of its original meaning: i.e., assigning an e�ective bandwidth to each connection of

each type. However, we can produce a smaller admissible set with linear constraint bound-

ary by using the similar method in [2,3], e.g., approximating the admissible set (32) by

a linear hyperplane chosen to be tangent to the admissible set at some point of typical

operating region, say, n�. With this admissible set, we can assign an e�ective bandwidth

to each connection of each type in each queue. As a future work, it should be worthwhile

to consider the problem that if taking the probabilities of routing servers, pi; i = 1; 2 as

control variables, whether or not there exist optimal values of pi; i = 1; 2 such that they

give a maximum admissible set.
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